вопросы прочности и долговечности элементов АВИАЦИОННЫХ КОНСТРУКЦИЙ

Межвузовский сборник. вып. 4. 1978

УДК 629.02:539.4

Э.И.Миноранский, А.П.Тарасов

оценка надежности элемента конструкции ПРИ ПРОИЗВОЛЬНОМ ЗАКОНЕ РАСПРЕДЕЛЕНИЯ НАГРУЗКИ

В работе предложена методика оценки надежности конструкции, находящейся под действием стационарной случайной нагрузки с произвольным законом распределения.

В качестве элемента конструкции выбран сферический пояс, воспринимающий ханическую нагрузку в виде силы Р изгибающего момента М (рис. I), которые передаются на пояс через жесткую шайбу. Отказом будем считать исчерпание конструкцией несущей способности по прочности. Для оценки надежности воспользуемся общей теорией надежности В.В.Болотина [1]:

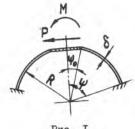


Рис. І

$$H(t) = P[v(\tau) \in \Omega_{\epsilon}; 0 \le \tau \le t], \qquad (I)$$

где H(t) - функция надежности, v(t) - функция качества, Ω предельная область.

Согласно [I] схема вычисления H(t) слагается из четырех этапов: схематизация, решение задачи статистической динамики, выбор пространства качества, определение надежности.

В большинстве случаев нагрузки, действующие на конструкцию в течение срока службы, непрерывно меняются случайным образом. Положим, что M(t) и P(t) - случайные, некоррелированы, стационарны и приложены квазистатически. Законы распределения $f(\mathsf{M})$ и f(P) отличны от нормального (рис. 2). Разложим их на нормальные составляющие [2]:

$$f(P) = \sum_{i=1}^{n} P_i f_i(P), \quad f(M) = \sum_{j=1}^{n} P_j f_j(M).$$
 (2)

Здесь P_i , P_i — вероятность того, что имеет место нормальное распределение $f_i(P)$, $f_i(M)$ с математическими ожиданиями m_i , m_i и среднеквадратическими отклонениями S_i , S_i .

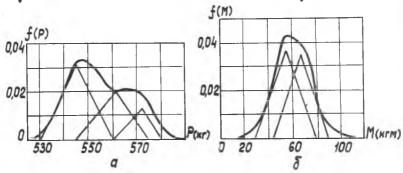


Рис. 2

В таблице I приведени результати аналитического (%I) и графического (%2) расчета вероятностей и параметров нормальных составляющих по методике работи [2].

Таблица І

Вид нагр.	Ne	Pı	P2	P ₃	m ₁	m ₂	m ₃	\bar{s}_{1}	Ī₂	$\bar{\mathcal{S}}_{\mathfrak{z}}$
Р	1 2	0,6 0,6	0,3	0,I 0,I	540 545	560 560	570 573	34,5 36	37 , 5 38	I7 I5
M	I 2	0,48 0,5	0,5 2 0,5	-	50 53	69 65	-	I04,I I00	I24,2 I25	-

Согласно исследованиям работи [3] законы распределения толдины δ и модуля упругости материала ϵ приняты нормальными. В таблице 2 приведены геометрические и вероятностные параметры исследуемой конструкции (см. рис. I).

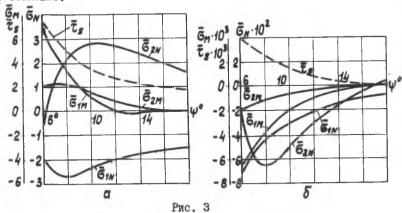
Исследуемая конструкция представляет собой систему с бесконечным числом степеней свободы. Для описания ее стохастического поведения нужно ставить и решать стохастическую краевую задачу. Однако еще слаба исходная информация о вероятностном поведении геометрических и физических параметров, которые в данном случае представляют собой некоторые случайные поля. Теория выбросов случайных полей за некоторую поверхность также недостаточно еще разработана.

Таблица 2

Ψ, град	ф	m _e	S _E	т _в .	Š8
	град	kr/mm²	Kr/mm ²	_{мм}	mm
6	30	7,15·10 ⁵	0,2.104	0,921	0,032

С учетом этого задача статистической динамики решена приближенно с использованием подхода работы [3], согласно которому конструкция приводится к системе с конечным числом степеней свободы.

Ограничимся случаем, когда напряженное состояние системы может быть охарактеризовано одной случайной величиной — напряженным состоянием в опасной зоне. Опасная зона устанавливается при анализе напряженного состояния конструкции в детерминистической постановке.



На рис. З и 4 приведены результаты анализа напряженного состояния конструкции при детерминированных параметрах, проведенного по методике работы [4].

Анализ показал, что задачу статистической динамики (определение закона распределения напряжений) следует решать для сечения 17-7823

$$\Psi = 30^{\circ}, \quad \Psi = 6^{\circ}.$$

Исследуемая система — стохастическая, линейная, обладает вырожденным оператором [I], поэтому задача решена в два этапа. На первом этапе определены условные законы распределения напряжений $f(6/E,\delta)$ при фиксированных E , δ . На втором этапе по формулам теории вероятности окончательно определен закон распределения f(6).

Для примера рассмотрим определение закона распределения нормальных напряжений $f(\mathfrak{G})$ на наружной поверхности конструкции. Остальные законы определяются аналогично.

Нормальные и касательные напряжения можно представить в виде суммы двух слагаемых, одно из которых зависит от силы, второе от момента:

$$G = \Omega_1 P + \Omega_2 M,$$

$$\tau = \Omega_3 P + \Omega_4 M.$$
(3)

Здесь Ω_i зависит от геометрии конструкции и нагрузки и определяется по формулам [4].

Учитывая линейность системы и некоррелированность P и M , определим $f(x/E,\delta)$ и $f(y/E,\delta)$.

При этом

$$\begin{aligned}
& x = \Omega_1 P, \quad y = \Omega_2 M \\
& f_x \left(\frac{x}{E, \delta} \right) = \frac{1}{\Omega_1} \sum_{i=1}^3 P_i f_i \left[\left(\frac{x}{\Omega_1} \right) / E, \delta \right], \\
& f_y \left(\frac{y}{E, \delta} \right) = \frac{1}{\Omega_2} \sum_{j=1}^2 P_j f_j \left[\left(\frac{y}{\Omega_2} \right) / E, \delta \right].
\end{aligned} \tag{4}$$

С учетом (3) запишем $f(6/E,\delta) = \int_{x}^{x} f_{x}(x/E,\delta) f_{y}[(6-x)/E,\delta] dx. \tag{5}$

 Результаты расчета по формулам (6) и (4) и по формулам, полученным для закона касательных напряжений $f(\tau)$, приведены в таблице 3.

Таблица 3

Параметры	G Hap.	бенутр.	Т нар.	Tenyip.
Pt	0,48	0,54	0,48	0,61
P ₂	0,52	0,46	0,52	0,39
P ₂ m,	590	-1542	962	495
m ₂	607	-1561	980	512
Š,	14,3	18,3	14	12,2
Š ₂	20	16,3	I5,I	10,2

Нормальные и касательные напряжения действуют одновременно, поэтому

$$f(6,\tau) = \sum_{i=1}^{2} \sum_{j=1}^{2} P_{ij} f_{ij} (6,\tau), \qquad (7)$$

гле

$$f_{ij}(\vec{s}, \tau) = \frac{1}{2\pi \bar{S}_{G_i} \bar{S}_{\tau_i} \sqrt{1 - \rho_{ij}^2}} \exp \left[-\frac{\bar{G}_i^2 - 2\rho_{ij} \bar{G}_i \tilde{\tau}_i + \bar{\tau}_i^2}{2(1 - \rho_{ij}^2)} \right],$$

$$\bar{G}_i = \frac{6 - m_{G_i}}{\bar{S}_{G_i}}, \quad \tilde{\tau}_j = \frac{\tau - m_{\tau_j}}{\bar{S}_{\tau_j}},$$

$$\rho_{ij} = \frac{\Omega_1 \Omega_2 (\bar{S}_\rho^2 + m_\rho^2) + \Omega_2 \Omega_4 (\bar{S}_M^2 + m_M^2) - m_{G_i} m_{\tau_j}}{\bar{S}_{G_i} \bar{S}_{\tau_j}}.$$

Аналогично определяем $f_{ii}(\dot{c},\dot{\tau})$.

Результаты расчета параметров для двумерных законов приведены в таблице 4.

Так как внешняя нагрузка действует квазистатически, то напряжения $\mathbf{6}$ и $\mathbf{7}$, возникающие в конструкции, могут быть приняты за параметры качества $\mathbf{7}$ системы. Пространство качества будет при этом двумерным (плоскость $\mathbf{6}$ - $\mathbf{7}$).

Условие безотказности имеет вид

$$\sqrt{6^2 + 4\tau^2} < 6_7$$
,

т.е. область $\mathbf{\hat{P}_{o}}$ - эллинс.

Таблица 4

пара- метры	наружн.	внутрен.	пара- метры	наружн.	внутрен.
\$561 \$562 \$5t1 \$5t2 \$m61 \$m62 \$mt1 \$mt2 \$P11 \$P21 \$P21	18,3 16,3 12,2 10,2 1590 1560 995 580 0,11 0,12 0,118 0,13	14,3 20 14 15,1 542 607 492 582 0,107 0,096 0,07	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	575 406 627 726 - - - 0,363 0,435 0,432 0,517	52I 1019 227 159 - - - 0,23 0,213 0,164 0,152

В процессе эксплуатации происходит изменение прочностных характеристик, одной из причин которого может быть нагрев конструкции в полете. Это изменение примем в виде

$$\mathfrak{G}_{\tau}(t) = \mathfrak{G}_{\tau}^{\circ} - at - \ell t^{2}, \tag{8}$$

где **С** и **В** - нормально распределенные коэффициенты, параметры для законов распределения которых найдем, используя данные расоты [9]:

$$m_{\mathcal{G}_{7}}(t) = 1705 + 34, 1t - 13,64t^{2},$$

 $\bar{S}_{\mathcal{G}_{7}}^{2}(t) = 85 - 885t + 70t^{2}.$

В исследуемой конструкции отказ может произойти из-за потери прочности наружной или внутренней поверхностей. Оба случая можно рассматривать как элементы [6], которые соединены между собою последовательно и зависимы по нагрузке. Тогда надежность

конструкции может быть определена по формуле

$$H = \frac{H_1 H_2}{H_1 + H_2 - H_1 H_2} \tag{9}$$

Вдесь Н; - надежность і-го элемента.

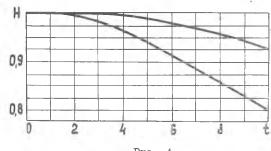


Рис. 4

Для определения нижней границы функции $H_{i}(t)$ воспользуемся формулой [I]

$$H_{i}(t) \ge 1 - \int_{1}^{t} \langle v \rangle + \langle v, \Gamma \rangle > dv.$$
 (10)

Здесь $< v^+(\tau, \Gamma) > -$ математическое ожидание числа пересечений траекторией v(t) граници Γ области Ω в единицу времени.

Как показывает анализ, проведенный в работе [7], для высоконадежных систем верхнюю границу для $H_{i}(t)$ можно определить, воспользовавшись зависимостью

$$H_i(t) < exp[-\int_{t}^{t} < \sqrt{t} + (\tau, r) > d\tau].$$
 (II)

Для определения $< \sqrt[3]{+(\tau,\Gamma)} >$ используем формулы работы [8]. Результаты расчета функции надежности по формулам (IO), (II) и (9) представлены на рис. 4.

Литература

I. Болотин В.В. Применение методов теории вероятностей к теории надежности в расчетах сооружений. М., Стройиздат, 1971.

- 2. Инуду К.А. Оптимизация устройств автоматики по критерию надежности. М., "Энергия", 1966.
- 3. Болотин В.В. Статистические методы в строительной межанике. М., Стройиздат, 1967.
- 4. Ахмедьянов И.С. Расчет сферической оболочки при обратно симметричном нагружении. В сб.: Вопросы прочности элементов авиационных конструкций. Труды КуАИ, вып. 48, Куйбышев, 1971.
- 5. Haire E.T. Tutan- $\overline{\mathbb{I}}$ Structures reliability analysis. Procudings of the sixth symposium on ballistic missill and aerospace technology. London, Academic Press, 1961.
 - 6. Кузнецов А.А. Надежность конструкции л. а. Изд.МАИ, 1971.
- 7. Болотин В.В. Двухсторонние и уточненные оценки для функции надежности. В сб.: Проблемы надежности в строительной механике. Изд. РИНТИП, Вильнюс, 1968.
- 8. Миноранский Э.И. К вопросу о вибросах случайного процесса с произвольным законом распределения (настоящий сборник).