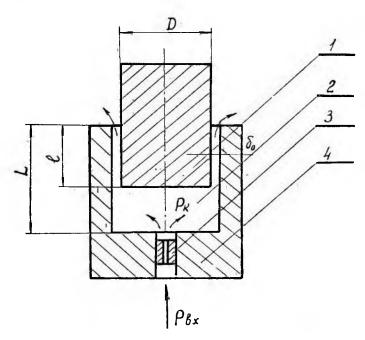
КУЙБЫШЕВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ им. С. П. КОРОЛЕВА Tруды, выпуск XXXVI, 1969 ε .

Вибрационная прочность и надежность двигателей и систем летательных аппаратов

А. И. БЕЛОУСОВ, В. Т. АНИСКИН

ИССЛЕДОВАНИЕ СТАТИЧЕСКИХ ХАРАКТЕРИСТИК ГИДРОСТАТИЧЕСКИХ АМОРТИЗАТОРОВ

Амортизаторы, использующие принцип гидростатической смазки, практически могут работать на любых жидкостях. Обладая повышенной демпфирующей способностью, значительной жесткостью смазочного слоя, гидростатические амортизаторы могут быть использованы также в качестве демпферов и противоударных устройств [1]. Использование гидростатического принципа смазки при создании амортизаторов позволяет получить надежную систему, так как истечение жидкости здесь является не вредным фактором (как это имеет место в поршневых и других подобных системах), а участвует в рабочем цикле амортизации.


Схема рассматриваемого амортизатора представлена на фиг. 1. В камеру 2, выполненную в подпятнике 4, подается смазка (сжимаемая или несжимаемая) под давлением $P_{\rm Bx}$ через дросселирующий элемент 3, в качестве которого могут использоваться: капилляр диаметром $d_{\rm K}$ и длиной $l_{\rm K}$, диафрагма диаметром $d_{\rm R}$ или какой-либо другой элемент, обладающий гидравлическим сопротивлением, например, цилиндрический пакет из материала MP [2]. На выходе из камеры дросселирование жидкости осуществляется в кольцевой щели длиной l с диаметральным зазором $2\delta_0$. При постоянном дросселирующем элементе d давление в камере d будет определяться ходом амортизатора.

Возможна схема гидростатического амортизатора, работающего не при постоянном давлении на входе в амортизатор, а при постоянном расходе Q через амортизатор. В этом случае дросселирующий элемент 3 отсутствует.

В настоящей статье приведены результаты теоретического и экспериментального исследования статических характеристик односторонних гидростатических амортизаторов.

Для удобства анализа и обобщения имеющихся данных исследование ведется в безразмерных величинах. Введены: относительное давление в камере амортизатора P, представляющее собой отношение избыточного давления в камере $P_{\rm K}$ к избыточному давлению $P_{\rm Bx}$, подводимому в амортизатор; относительный расход Q — отношение расхода через дросселирующий элемент при определенном положении пяты к расходу через тот же элемент, если пята отсутствует; относительный ход пяты амортизатора χ — отношение длины щели l к полному ходу амортизатора L.

Под нагрузочной и расходной характеристиками гидростатического амортизатора понимается зависимость относительного

Фиг. 1. Схема гидростатического амортизатора: I- ията; 2- камера; 3- дросселирующий элемент; 4- подпятник.

давления P и относительного расхода \overline{Q} от параметров конструкции или относительного хода χ амортизатора.

При исследовании статических харажтеристик исходим из уравнения неразрывности:

$$Q_{\text{BX}} = Q_{\text{BMX}},\tag{1}$$

где $Q_{\mathtt{Bx}}$ — количество втекающей в камеру жидкости; $Q_{\mathtt{Bbx}}$ — количество вытекающей из камеры жидкости через коль-

цевую щель.

 $Q_{\mathtt{BX}},~Q_{\mathtt{BMX}}$ определяются в зависимости от режимов течения жидкости через элементы гидравлического тракта гидростатического

амортизатора.

Меняя $P_{\rm BX}$ на гидростатическом амортизаторе, вязкость жидкости, тип дросселирующего элемента, можно получить следующую комбинацию режимов течения жидкости соответственно в селирующем элементе и выходной щели:

1. Ламинарный — ламинарный (сокращенно ЛЛ);

2. Турбулентный — турбулентный (ТТ);

3. Турбулентный — ламинарный (TЛ);

4. Ламинарный — турбулентный (ЛТ).

В случае турбулентного режима течения жидкости рассматриваем автомодельную область, где коэффициент трения при турбулентном режиме $\lambda_{\rm T}$ не зависит от числа Рейнольдса Re, а определяется только отношением шероховатости стенок к гидравлическому диаметру дросселирующего элемента или выходной щели.

При ламинарном режиме течения жидкости в дросселирующем

элементе (в капилляре) и выходной щели будем иметь [3, 4]:

$$Q_{\rm BX} = \frac{\pi d_{\rm K}^4 \left(p_{\rm BX} - p_{\rm K}\right)}{128 \rho \nu l_{\rm K}},\tag{2}$$

$$Q_{\text{BMX}} = \frac{\pi D \delta_0^3 p_{\text{K}}}{12 p_{\text{V}} l} f_{\pi}(\epsilon). \tag{3}$$

Если в дросселирующем элементе и выходной щели устанавливается турбулентный режим течения жидкости, то расходы Qвх, $Q_{\text{вых}}$ определяются по зависимостям [3, 4]:

$$Q_{\rm BX} = f_{\rm s\phi, pp} \sqrt{\frac{2}{p}(p_{\rm BX} - p_{\rm K})}, \qquad (4)$$

$$Q_{\text{вых}} = f_{\theta \phi_{\text{III}}} \sqrt{\frac{2}{\rho} p_{\text{K}}} \cdot f_{\text{T}}(\epsilon). \tag{5}$$

В уравнениях (2) - (5):

», ρ — коэффициент кинематической вязкости и плотность жидкости;

D- диаметр камеры; $f_\pi(\varepsilon) = 1 + \frac{3}{2} \, \varepsilon^2 - функция,$ зависящая от относительного эксцентриситета при ламинарном режиме течения жидкости в кольцевой щели;

 $\varepsilon = \frac{e}{2\delta_0}$ — относительный эксцентриситет;

e — смещение оси пяты 1 относительно оси подпятника 4;

 $f_{
eg \Phi_{
m III}} = \mu_{
m III} F_{
m III}$ — эффективная площадь выходной щели; $\mu_{\rm m}$, $F_{\rm m}$ — коэффициент расхода и площадь выходной щели; $f_{\rm r}(\epsilon)$ — функция, зависящая от относительного эксцентриситета при турбулентном режиме течения жидкости в щели [4].

Коэффициент расхода выходной щели можно представить [3]

$$\mu_{\rm III} = \frac{{\tt s}_{\rm crp}}{\sqrt{\sum \xi + \xi_{\rm rp}}},$$

где $\varepsilon_{\text{стр}}$ — коэффициент сужения струи в щели (для $\frac{l}{2\delta_0} > 5$ можно брать $\varepsilon_{c \tau p} = 1$);

 $\sum \xi$ — коэффициент местных сопротивлений щели; $\xi_{\tau p}$ — коэффициент сопротивления, обусловленный трением. Для щели можно принять [5]:

$$\sum \xi = 1,3.$$

Коэффициент сопротивления ξ_{rp} определяется по известному выражению:

 $\xi_{\rm TP} = \lambda_{\rm T} \frac{l}{28} = \lambda_{\rm T} \frac{\kappa L}{28}$.

Коэффициент потерь на трение при турбулентном режиме в автомодельной области не зависит от числа Re и его можно в первом приближении определить по кривой Никурадзе или [3] в зависимости от относительной шероховатости.

Таким образом, согласно (1) относительное давление в камере при различных комбинациях режимов течения жидкости дросселирующем элементе и в щели после преобразований опре-

делится

$$\overline{p}_{nn} = \frac{1}{1+E_0},\tag{6}$$

$$\bar{p}_{\text{TT}} = \frac{1}{1 + M_0},$$
 (7)

$$\bar{p}_{\tau n} = A_0 \left(\sqrt{1 + \frac{2}{A_0}} - 1 \right),$$
 (8)

$$\vec{p}_{n\tau} = \left(1 + \frac{S_0}{2}\right) - \sqrt{\left(1 + \frac{S_0}{2}\right)^2 - 1}.$$
 (9)

В уравнениях (6) — (9):

$$E_0=\frac{E}{x},$$

$$E=10,67\cdot\Phi\cdot f_{\pi}(\varepsilon),$$

 $\Phi = \frac{D \, \delta_0^3 \, l_{\kappa}}{l \, d^4} -$ безразмерный параметр амортизатора;

$$M_0 = \dfrac{M}{\lambda_{\mathrm{T}} \left(\dfrac{\Sigma \xi \cdot 2 \delta_0}{\lambda_{\mathrm{T}} L} + \chi\right)};$$
 $M = 19,74K f_{\mathrm{T}}^2(\varepsilon);$
 $K = \dfrac{D^2 \, \delta_0^3}{L f_{\mathrm{9}\Phi_{\mathrm{RP}}}^2} - \mathrm{безразмерный}$ параметр амортизатора;
 $A_0 = \dfrac{\chi^2}{2A};$
 $A = 0,034B f_{\mathrm{R}}^2(\varepsilon);$
 $B = \left(\dfrac{D \, \delta_0^3}{f_{\mathrm{9}\Phi_{\mathrm{RP}}} L}\right)^2 \cdot \dfrac{p_{\mathrm{B}\,\mathrm{X}}}{\rho^{\mathrm{V}^2}} - \mathrm{безразмерный}$ параметр амортизатора;
 $S_0 = \dfrac{S}{\lambda_{\mathrm{T}} \left(\dfrac{\Sigma \, \xi \, 2 \delta_0}{\lambda_{\mathrm{T}} \, L} + \chi\right)};$
 $S = 65536T \, f_{\mathrm{P}}^2(\varepsilon);$

$$S = 65536T f_{\tau}^{2}(\varepsilon);$$

$$T = rac{I_{ exttt{K}}^2 D^2 \delta_0^3
ho
u^2}{d_{ exttt{K}}^8 L p_{ exttt{BX}}}$$
 — безразмерный параметр амортизатора.

Безразмерные параметры амортизатора. Ф, К, В, Т характеризуют отношение гидродинамических сопротивлений дросселирующего элемента и выходной щели амортизатора.

При принятом определении относительный расход будет зависеть от режима течения жидкости в дросселирующем элементе:

$$\overline{Q}_{\pi} = .1 - \overline{p} , \qquad (10)$$

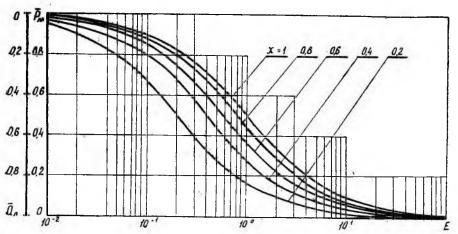
$$\overline{Q}_{\tau} = \sqrt{1 - \overline{p}} . \tag{11}$$

Из уравнений (6)—(11) следует, что нагрузочная и расходная характеристики гидростатического амортизатора при одинаковых режимах течения жидкости в дросселирующем элементе и выходной щели не зависят от внешних условий и от рода используемой жидкости. Если режимы различны, то статические характеристики зависят от рода смазки и внешних условий.

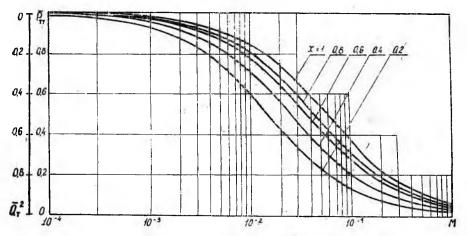
Теоретические зависимости относительного давления и сительного расхода от параметров конструкции приведены на фиг. 2—5. С ростом параметров конструкции относительный расход растет, а относительное давление падает.

При построении зависимостей, показанных на фиг. 3 и 5, принято, что $\Sigma \zeta = 1,3$, а $\lambda_{\rm T} = 0,056$, что соответствует чистоте обработки поверхностей щели $\nabla 6$ и гидравлическому диаметру $2\delta_0 = 0.2$ мм.

Так как осевая сила (несущая способность) амортизатора


$$R = \frac{\pi D^2}{4} \overline{p} \cdot p_{\text{Bx}}, \tag{12}$$

то, регулируя давление подачи жидкости в амортизатор $P_{\mathtt{Bx}}$ по желаемому закону, можно изменять жесткость гидростатического амортизатора.

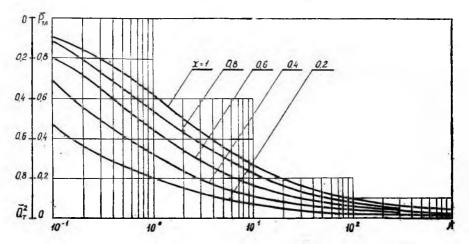

Под статической жидкостью понимается производная несущей

способности амортизатора по перемещению

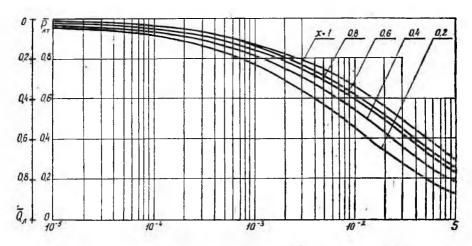
$$C = \frac{dR}{dl}. (13)$$

Фиг. 2. Зависимость относительного давления \overline{P}_{nn} и расхода \overline{Q}_n от параметра E при различных χ .

 Φ иг. 3. Зависимость относительного давления $\overline{P}_{ exttt{tr}}$ и расхода $\overline{Q}_{ exttt{tr}}$ от параметра М при различных х.

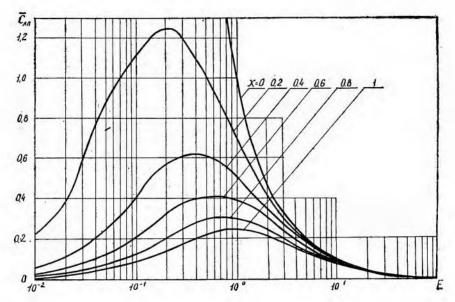

Безразмерная жесткость или коэффициент статической жесткости принимается равным

 $\overline{C} = \frac{CL}{p_{\mu\nu}F_{\nu}} = \frac{dp}{d\chi},$ (14) где $F_{\kappa} = \frac{\pi D^2}{4}$ — площадь поперечного сечения камеры.


Используя (6)—(9), получим при различных комбинациях режимов течения жидкости в дросселирующем элементе и в щели:

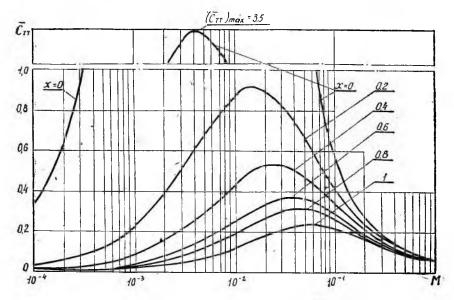
$$\overline{c}_{\pi\pi} = \frac{E}{(\chi + E)^2}; \tag{15}$$

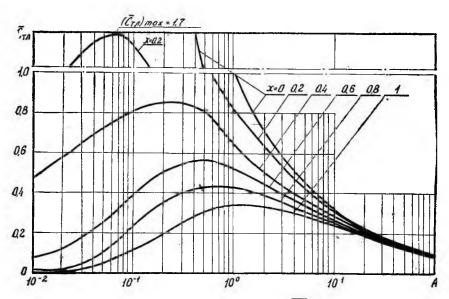
$$\overline{c}_{TT} = \frac{\lambda_{T}M}{\left[\lambda_{T}\left(\frac{\sum \xi \cdot 2\delta_{0}}{\lambda_{T} \cdot L} + \gamma\right) + M\right]^{2}};$$
(16)


Фиг. 4. Зависимость относительного давления $ar{P}_{ au\pi}$ и расхода $ar{Q}_{ au}$ от параметра A при различных χ .

 Φ иг. 5. Зависимость относительного давления $\overline{P}_{n\tau}$ и расхода \overline{Q}_n от параметра S при различных χ .

$$\overline{c_{\tau n}} = \frac{\chi}{A} \left(\sqrt{1 + \frac{4A}{\chi^2}} - 1 \right) - \frac{2}{\chi \sqrt{1 + \frac{4A}{\chi^2}}}; \tag{17}$$

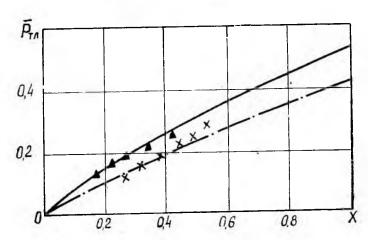

$$\overline{C}_{\pi\tau} = \left[\frac{1 + \frac{2 \cdot \lambda_{T}}{S} \left(\frac{\Sigma \xi \cdot 2\delta_{0}}{\lambda_{T} L} + \chi \right)}{\sqrt{1 + \frac{4\lambda_{T}}{S} \left(\frac{\Sigma \xi \cdot 2\delta_{0}}{\lambda_{T} \cdot L} + \chi \right)}} - 1 \right] \frac{S}{2\lambda_{T} \left(\frac{\Sigma \xi \cdot 2\delta_{0}}{\lambda_{T} L} + \chi \right)^{2}}$$
(18)


Фиг. 6. Зависимость коэффициента жесткости $C_{\pi\pi}$ от параметра E при различных χ .

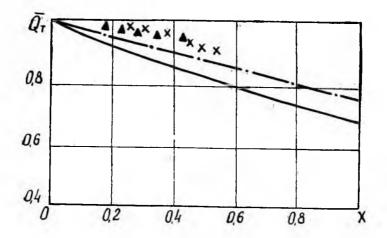
Зависимости коэффициента жесткости от безразмерных параметров E, M, A, S представлены на фиг. 6—9. При определенном значении параметров E, M, A, S коэффициент статической жесткости достигает максимального значения, причем максимум с ростом относительного хода амортизатора смещается в сторону больших значений параметров конструкции. При χ =0 и малых значениях безразмерных параметров коэффициенты статической жесткости $C_{\pi\pi}$, $C_{\tau\pi}$ стремятся к бесконечности. При χ >0 наибольшее значение коэффициента статической жесткости достугает при турбулентном режиме течения жидкости в дросселирующем элементе и ламинарном — в выходной щели.


Экспериментальное исследование статических характеристик гидростатического амортизатора проведено при турбулентном режиме течения жидкости в дросселирующем элементе и ламинарном— в выходной щели. В качестве дросселирующих злементов

Фиг. 7. Зависимость коэффициента жесткости $\overline{C}_{\mathtt{TT}}$ от параметра M при различных χ .

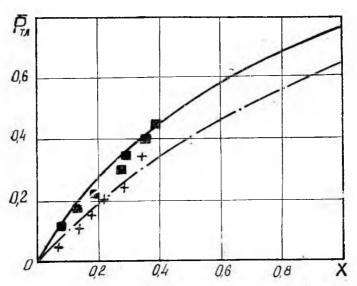


Фиг. 8. Зависимость коэффициента жесткости $\overline{C}_{\text{тл}}$ от параметра A при различных χ .


Фиг. 9. Зависимость коэффициента жесткости $\overline{C}_{\pi\pi}$ от параметра S при различных χ .

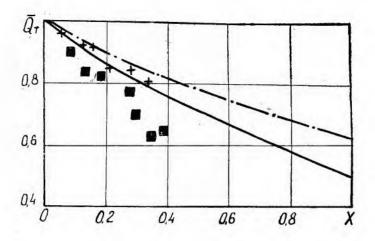
применялись жиклеры длиной $l_{\rm ж}=12$ мм, диаметром $d_{\rm ж}=1,28$ мм и 2 мм. Диаметральный зазор между пятой I и подпятником 4 составлял $2\delta_0=0,2$ мм, полный ход пяты L=65 мм, диаметр ее D=50 мм. Рабочей жидкостью была вода. Давление на входе в амортизатор менялось от 0,5 $\kappa e/c m^2$ до 3 $\kappa e/c m^2$. При работе аморт

Фиг. 10. Зависимость относительного давления $\overline{P}_{\tau\pi}$ от относительного хода амортизатора χ .

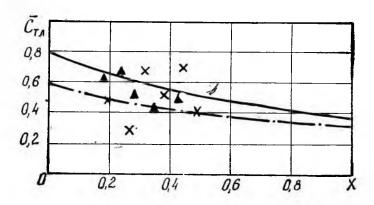

— теория $A = 1,65; \quad A = 1,65; \quad A = 3,2.$

Фие. 11. Зависимость относительного расхода $\overline{Q}_{\mathtt{T}}$ от относительного хода амортизатора χ :

— теория


— жесперимент $A = 1,65; \quad \overline{\chi} - \text{теория} \quad A = 3,2.$

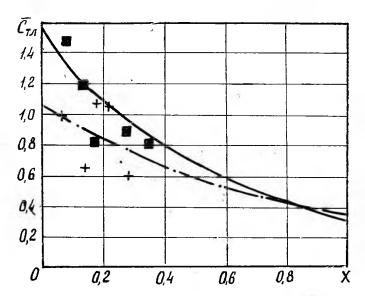
Фиг. 12. Зависимость относительного давления $\overline{P}_{\tau,\pi}$ от относительного хода амортизатора. χ :


— теория

эксперимент A = 0.44;— зксперимент A = 0.91.

Фиг. 13. Зависимость относительного расхода $\overline{Q}_{\mathtt{T}}$ от относительного хода амортизатора χ :

— теория A = 0.44; — теория A = 0.91.


Фиг. 14. Зависимость коэффициента жесткости $\overline{C}_{\text{т.т.}}$ от относительного хода амортизатора χ :

— теория A = 1.65; A = 3.2.

тизатора наблюдались неустойчивые режимы, что объясняется, возможно, закруткой жидкости в камере амортизатора, создаваемой мощной струей, вытекающей из жиклера, а также наличием воздуха в воде.

Экспериментальные и теоретические зависимости относительного давления, расхода и коэффициента статической жесткости от относительного хода амортизатора приведены на фиг. 10—15. Из сравнения теоретических и экспериментальных результатов сле-

дует, что теоретические зависимости удовлетворительно согласуются с экспериментальными данными в пределах погрешности эксперимента.

 Φ иг. 15. Зависимость коэффициента жесткости $C_{ au\pi}$ от относительного хода амортизатора теория

— теория A = 0,44;эксперимент

Таким образом, полученными в настоящей работе зависимостями для определения статических характеристик гидростатических амортизаторов можно пользоваться в практической деятельности.

ЛИТЕРАТУРА

- 1. А. И. Белоусов. Гидростатический амортизатор шасси. Труды КуАИ, вып. XXIX, 1967.
- 2. А. М. Сойфер, В. Н. Бузицкий. Цельнометаллические упруго-демпфирующие элементы, их изготовление и применение. Труды КуАИ, вып. XIX, 1965.
- 3. Б. Б. Некрасов. Гидравлика. Воениздат, М., 1960.
 4. Donnovan and Tao. Throngh-Flow in Concentric and Eccentric Annuli of Fine Clearance With and Without Relative Motion of Boundaries. Trans. of the ASME, vol. 77, № 8, 1955.
- 5. Е. И. Кожевникова. Исследование гидравлических сопротивлений узких щелей. Труды ВИГМ, вып. XXIV, 1959.