кленев В.Д., Панков А.А.

ВЫБОР ОРБИТАЛЬНЫХ ПАРАМЕТРОВ КОСМИЧЕСКИХ СИСТЕМ НАБЛЮДЕНИЯ С УЧЕТОМ ОБЛАЧНОСТИ И ОСВЕЩЕННОСТИ

Введение. Вопросы оперативности наблюдения во многом зависят от выбора орбитальных параметров космической системы наблюдения (КСН). Одним из методов выбора орбитальных параметров КСН является метод, основанный на выделении зон обзора [1]. С целью увеличения возможностей этого метода предлагается дополнить его моделями расчета облачности и освещенности.

Задача выбора орбитальных параметров КСН рассматривается как оптимизационная задача, в которой проектными переменными являются параметры орбит КА входящих в КСН, а проектными ограничениями – ограничения на параметры орбит, облачность и освещенность.

Параметры орбит КА задаются в оскулирующих элементах: наклонение орбиты ι , долгота восходящего узла Ω , аргумент перицентра ω , фокальный параметр p, эксцентриситет орбиты e, угол истинной аномалии υ .

Оптимизационная задача выбора орбитальных параметров КСН сводится к общей задаче нелинейного программирования, которая формулируется следующим образом: определить оптимальную совокупность проектных переменных $X = \{\Omega_n, i_n, p_n, \omega_n, e_n, \upsilon_n\}, \ n = 1,..., N$, обеспечивающую достижение минимального значения показателя периодичности при ограничениях на параметры орбиты, облачность и освещенность.

Для решения оптимизационной задачи необходимо наличие модели, обеспечивающей вычисление показателя периодичности наблюдения при выбранной орбитальной структуре и заданных ОН.

Модель периодичности наблюдений. За основу взята модель гарантированной периодичности наблюдений, рассмотренная в [1], дополненная условиями освещенности ОН и наличия над ним облачного покрова.

Расчет освещенности на заданном интервале времени. Уровень освещенности наземного объекта солнечным светом определяется углом возвышения Солнца над горизонтом в районе расположения объекта в момент наблюдения. Величина этого угла зависит от широты ОН, дня года и местного времени суток в момент наблюдения [2].

Угол возвышения Солнца λ_{\otimes} в точке земной поверхности с координатами λ и $^{\phi}$ определяется из соотношения:

$$\sinh_{\infty} = \sin \delta_{\infty} \sin \varphi + \cos \delta_{\infty} \cos \varphi \cos \Delta \lambda_{\infty}$$
,

где δ_{\otimes} — угол склонения Солнца; $\Delta\lambda_{\otimes}=\lambda_{\otimes}-\lambda$ — разность между долготой Солнца и долготой меридиана точки λ .

Долгота Солица в заданный момент московского времени t (в часах) рассчивается с помощью выражений [2]:

в зимнее время

$$\lambda_{\infty} = \omega_{3} [12 - (t - 1 - \eta_{\infty})] + 30^{\circ};$$

в летнее время

$$\lambda_{\infty} = \omega_3 [12 - (t - 2 - \eta_{\infty})] + 30^{\circ},$$

где ω_3 — угловая скорость вращения Земли относительно своей оси [гради] η_{\otimes} — переменная, называемая «уравлением времени».

Полученные путем проведения баллистических расчетов моменты съемки сктов, для которых требования по освещенности не выполняются, исключаются дальнейшего рассмотрения. Эти моменты выявляются путем сравнения угла возвыния Солнца h_{\otimes} с его минимально допустимой величиной, например, $h_{\otimes}^{\min} = 20^{\circ}$ (р. 2).

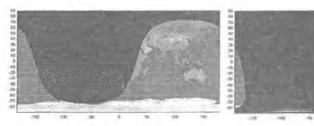


Рис.1. Освещенность земной поверхности на 1 февраля 7:15 мск

Рис.2. Область земной поверхности, д тупная для съемки 1 февраия 7:15 м

Учет вероятности наличия облачного покрова над ОН. Используется стейшая модель облачности. По статистике вероятность допустимой облачности, я можно проводить съемку ОН, P = 0.265 [3].

При допущении, что оптимальная орбига КА останется неизменной незави от наличия облачного покрова над ОН, выражение для расчета периодичности на дений будет имсть вид:

$$II = \frac{II_{opt}}{(1-P)},$$

 $_{\rm f,de}$ Π — периодичность наблюдений с учетом возможности наличия над ОН облачного покрова; $\Pi_{\it opt}$ — периодичность наблюдений без учета наличия облачного покрова над ОН: P — вероятность наличия облачного покрова над ОН.

Возможен вариант использования более точных моделей облачности, учитывающих геодезическую широту ОН и время года.

Решение модельной задачи. С использованием разработанного метода и созданного на его базе программного обеспечения решен ряд задач по выбору орбитальных параметров КСН, в том числе для наблюдения за группой объектов. Исходные данные для задачи наблюдения за 208 крупнейшими городами представлены в таблице 2, а результаты решения приведены в таблицах 3 и 4.

Таблица 2 - Исходные данные

Число КА в созвездии, шт	2
Высота орбиты, км	до 350
Вероятность наличия облачного покрова	0,28
Расчетный период, су г.	30
Начальный момент времени	01.05.2007 12:0

 Начальный момент времени
 01.05.2007 12:00 мск.

 Объекты наблюдения
 208 крупнейших городов мира

Таблица 3 – Результаты решения задачи выбора орбитальных параметров КСН

№ KA	Ω, град	і, град	р, км	ω, град	e	υ, град
	Суч	етом облач	ности и ос	вещенност	и (1)	
1	10,08	97.23	6712,76	5,26	0,0018	0,27
2	64,57	97,11	6714,38	1,6	0,006	179,44
	Без у	чета облач	нности и ос	вещенност	и (2)	
1	13,22	107,85	6707,62	-0,01	0,003	0,53
2	91,36	108,24	6701,76	5,65	0,001	182,11

Таблица 4 – Значения показателей периодичности

П	Значение, час	
Показатель		(2)
Показатель, характеризующий максимальное значение среди га- рантированных периодичностей наблюдения всех ОН [1]	144,05	28,01
Показатель, характеризующий среднее арифметическое значение от гарантированных периодичностей наблюдения для всех ОН	142,9	24,11
Показатель, характеризующий среднее значение периодичности наблюдений [1]	32,88	14,31

Таким образом, рассмотренный метод позволяет выбрать вариант орбитальной груктуры КСН по показателю наилучшей периодичности наблюдений с использованем моделей облачности и освещенности. Разработанные модели можно использовать ри планировании программы съемки земной поверхности.

Библиографический список

- 1. Еленев В.Д., Панков А.А. Метод выбора параметров орбитальной структуры косм ческих систем паблюдения // Вестник СГАУ. Самара, 2006. № 1 (9). С. 62-68.
- Спутниковые системы мониторинга. Анализ, синтез и управление / В.В. Малыца В.Т. Бобронников, О.Н. Исстеренко, А.В. Федоров; под редакцией В.В. Малыща М.:Изд-во МАИ, 2000.
- 3. Лебедев А.А. Введение в апализ и синтез систем: Учебное пособие. М: Изд МАИ. 2001.