Кулашев М.Ф., Базоев Т.Х., Коссой В.А.

РАСЧЕТ ТЕЧЕНИЯ ЖИДКОСТИ ВНЕ ТУРБУЛЕНТНОЙ ОБЛАСТИ ЗАТОПЛЕННОЙ ИЗОТЕРМИЧЕСКОЙ ОСЕСИММЕТРИЧНОЙ СТРУМ

В работе [1] приведено решение задачи расчета функции гока вне турбулентной области осесимметричной струи методом интегральных соотношений. К сожалению, автор ограцичился только этим решением, проиллюстрировав его графическими материалами огруказания размерности как по осям координат, так и величин функций тока, что полностью исключает возможность использования результатов исследования в практических целях.

Целью настоящей работы являлась разработка методики расчета течения (линий токан поля скоростей) вне турбулентной области свободной затопленной изотермической осесниметричной струи в безразмерной форме, что, в конечном итоге, позволило построить обобщенное решение поставленной задачи.

При решении данной задачи [1] принята сферическая система координат г, θ , φ с полярной осью вдоль оси струи и началом координат в точке ее выхода. В силу осевой симмерии струи компонента скорости U_{φ} отсутствует, а U_{θ} и U_{r} являются функциями толькоги θ . Эти скорости определяются по формулам [1].

$$U_r = -\frac{b}{r},\tag{1}$$

$$U_{\theta} = \frac{b \, 1 + \cos \theta}{r - \sin \theta} \,, \tag{2}$$

где b коэффициент, определяемый начальными условиями истечения струи;

- г радиус-вектор произвольной точки вне турбулентной области струи;
- θ угловая координата этой точки (рис.1).

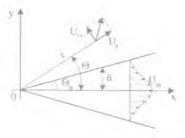


Рис.1

Координаты х и у определяются по формулам:

$$x = r \cos \theta$$
; $y = r \cdot \sin \theta$.

Коэффициент в определяется по формуле:

$$b = \frac{q}{2\pi} \frac{\cos \theta_0}{1 + \cos \theta_0} = \frac{q}{4\pi} \cdot \left(1 - ig^2 \frac{\theta_0}{2} \right). \tag{3}$$

где q - расход жидкости в струе, отнесенный к единице се длины

$$q = \frac{b_1}{b_2} \frac{\chi}{0.0726} \left(\frac{J}{\rho}\right)^2,$$
 (4)

 b_1 и b_2 – коэффициенты, зависящие от профиля скорости в поперечном сечении струп, числовые значения которых приняты равными, соответственно

$$b_1 = \frac{1}{10}, \ b_2 = \frac{11}{210}, \tag{5}$$

1-избыточный импульс струи в рассматриваемом сечении,

р-плотность жидкости в струе,

$$T=\frac{1}{24}\frac{\delta}{x}=\frac{1}{24}Ig\theta_0$$
 — экспериментальный коэффициент.

Так как в рассматриваемом случае илотность жидкости в струе и в окружающем пропранстве одинакова, то, применяя закон сохрансния избыточного импульса, для осесимметличной струи имеем:

$$\frac{J}{\rho} = \frac{J_0}{\rho} = \pi \delta_0^2 U_0^2 = \frac{\pi}{4} d_x^2 U_{0x}^2$$
(6)

 $^{\text{lac}}$ de – диаметр coma; U_0 – начальная скорость струи.

Таким образом, с учетом (6), (5) и (4) находим:

$$b = 0.155U_0 \cdot d_c tg \frac{\theta_a}{2}.$$

Результирующая скорость потока в точке вне гурбулентной области будет:

$$U = \sqrt{U_r^2 + U_\theta^2} = \frac{b \cdot 2}{r} \cdot \frac{\sqrt{1 + \cos \theta}}{\sin \theta}$$

Согласно работе [1], рассматриваемому течению соответствует функция тока:

$$\psi = b \cdot r(1 + \cos \theta)$$

Прицимая $\psi = const$, получим уравнение линин тока:

$$r = \frac{\psi}{b(1 + \cos \theta)} \tag{10}$$

(8)

(9)

112.01

$$r = \frac{6,452\psi}{U_0 d_c t g} \frac{\theta_0}{2} \left(1 + \cos \theta\right) \tag{1}$$

Введем безразмерные величины:

$$W = \frac{W}{Q_0} \cdot r - \frac{r}{d_1} \cdot U \cdot \frac{U}{U_0}$$
 (12)

Здесь $Q_{\rm o} = \frac{\pi}{4} d_{\rm c}^{-2} U_{\rm o}$ – расход жидкости через сопло, $U_{\rm o}$ – скорость истечения струи.

Гогда

$$\psi = 0.197tg \frac{\theta_0}{2} \left(1 + \cos \theta \right) r_1, \tag{13}$$

откуда

$$r_1 - 5,065 \qquad \psi \qquad (14)$$

$$tg \frac{\theta_0}{2} \left(1 + \cos \theta\right)$$

Здесь индекс «1» соответствует линии тока. Поле скоростей вне турбулентной области будет определяться семейством кривых при U = const. Решая уравнение (8) отпосительно г, в безразмерном виде получим:

$$r_3 = 0.155 \frac{\iota g}{U \sin \frac{\theta}{2}} \tag{15}$$

Рис. 2. Фотография реального взаимодействия струи с внешним потоком

Таким образом, формулы (8), (13), (14) и (15) позволяют построить обобщенную кариму течения вне турбулентной области осесимметричной затопленной струи. Для этого неокодимо и достаточно знать угол полураствора струи θ_0 , который можно либо измерить по отографии, полученной с помощью камеры для визуализации обтекания тел плоским потогом жидкости [2] (рис. 2), либо взять по рекомендациям [1].

На рисунке 3 представлена расчетная обобщенная картина рассматриваемого течения.

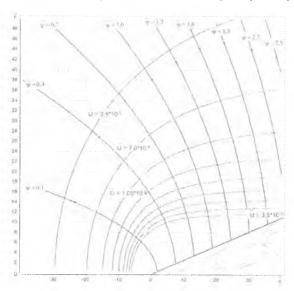


Рис. 3. Обобщенная картина течения вне турбулентной области осесимметричной затопленной струи (стрелками обозначены линии тока)

БИБЛИОГРАФИЧЕСКИЙ СНИСОК

Кулашев М.Ф., Шахов В.Г., Чапаев В.Ф. Камера для визуализации обтекания тел плоским можом жидкости. А. С. СССР № 726456.