7. Радченко, В.П. Методика расчёта предела выносливости упрочнённых цилиндрических образцов с концентраторами напряжений при температурных выдержках в условиях ползучести / В.П. Радченко, О.С. Афанасьева // Вестник Самарск. госуд. техн. унта. Сер.: Физ.-мат. науки. – 2009. – №2 (19). – С. 264–268.

УДК 621.787:539.319

Павлов В.Ф., Шадрин В.К., Прохоров А.А., Богданова И.В., Коныхова А.С.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭКСПЛУАТАЦИОННЫХ ФАКТОРОВ НА МНОГОЦИКЛОВУЮ УСТАЛОСТЬ УПРОЧНЁННЫХ ОБРАЗЦОВ

Одним из определяющих параметров ресурса техники является предел выносливости $P_R(\sigma_R, \tau_R)$ поверхностно упрочнённых деталей. Зависимость для определения предела выносливости в общем виде записывается как

$$P_R = P_R^0 - \psi_P \cdot \sigma_{ocm}, \tag{1}$$

где $P_R^0(\sigma_R^0, \tau_R^0)$ — предел выносливости неупрочнённой детали; $\psi_P(\psi_\sigma, \psi_\tau)$ — коэффициент влияния поверхностного упрочнения на предел выносливости по остаточным напряжениям на поверхности опасного сечения детали; σ_{ocm} — осевые (меридиональные) остаточные напряжения в наименьшем сечении детали [1]. Остальные компоненты остаточного напряжённого состояния в соответствии с теорией наибольших касательных напряжений не учитываются.

Для прогнозирования предела выносливости P_R поверхностно упрочнённых деталей используются два критерия: критерий, учитывающий влияние осевых остаточных напряжений σ_z^{nos} на поверхности упрочнённой детали, и критерий среднеинтегральных остаточных напряжений $\bar{\sigma}_{ocm}$ по толщине упрочнённого слоя [2]. В настоящем исследовании изучалась возможность прогнозирования предела выносливости упрочнённых деталей с концентраторами напряжений по распределению остаточных напряжений в поверхностном слое с учётом таких эксплуатационных факторов, как тип деформации и рабочая температура.

Первый критерий σ_z^{noe} учитывает лишь остаточные напряжения на поверхности опасного сечения упрочнённых деталей. Однако, на практике, при обработке деталей механическими способами, в том числе и при поверхностном упрочнении, наблюдается подповерхностный максимум сжимающих остаточных напряжений с уменьшением до нуля к поверхности. Этот спад часто бывает весьма значительным, иногда остаточные напряжения даже становятся растягивающими [3], но несмотря на это наблюдается увеличение предела выносливости. Поэтому критерий σ_z^{noe} является применимым лишь при прогнозировании предела выносливости упрочнённых деталей в тех случаях, когда максимум сжимающих остаточных напряжений находится на поверхности детали.

Второй критерий $\bar{\sigma}_{ocm}$ был получен в работе [2] при использовании решения задачи [4] о дополнительных остаточных напряжениях в наименьшем сечении упрочнённой детали после нанесения надреза полуэллиптического профиля в виде:

$$\bar{\sigma}_{ocm} = \frac{2}{\pi} \cdot \int_{0}^{1} \frac{\sigma_{z}(\xi)}{\sqrt{1 - \xi^{2}}} d\xi , \qquad (2)$$

где $\sigma_z(\xi)$ — осевые остаточные напряжения в наименьшем сечении детали; $\xi = y/t_{\kappa p}$ — расстояние от дна концентратора до текущего слоя, выраженное в долях $t_{\kappa p}$ (рис. 1); $t_{\kappa p}$ — критическая глубина нераспространяющейся трещины усталости, возникающей в случае работы детали на пределе выносливости.

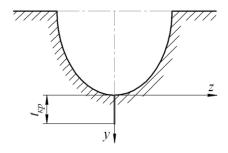


Рис. 1. Нераспространяющаяся трещина усталости

Из формулы (2) следует, что критерий $\bar{\sigma}_{ocm}$ учитывает влияние остаточных напряжений по толщине упрочнённого поверхностного слоя, равной $t_{\kappa p}$.

Для прогнозирования предела выносливости по критерию среднеинтегральных остаточных напряжений $\bar{\sigma}_{ocm}$ необходимо определить две величины: критическую глубину нераспространяющейся трещины усталости $t_{\kappa p}$ и коэффициент $\bar{\psi}_P(\bar{\psi}_\sigma, \bar{\psi}_\tau)$ влияния поверхностного упрочнения по критерию $\bar{\sigma}_{ocm}$.

На основании многочисленных экспериментальных исследований [5] установлено, что значение $t_{\kappa p}$ определяется только размерами опасного поперечного сечения детали и вычисляется по формуле:

$$t_{KD} = 0.0216D, (3)$$

где D — диаметр поперечного сечения детали.

Коэффициент $\overline{\psi}_{\sigma}$ влияния поверхностного упрочнения на предел выносливости при изгибе и растяжении-сжатии, полученный на основании экспериментов, определяется по следующей зависимости [6]:

$$\bar{\psi}_{\sigma} = 0.612 - 0.081\alpha_{\sigma},$$
 (4)

где α_{σ} – теоретический коэффициент концентрации напряжений.

В работе [5] было установлено, что при $\alpha_{\sigma}=2,5-3$ в случае изгиба коэффициент $\overline{\psi}_{\sigma}$ можно принять равным $\cong 0,36$. Для значительной группы авиационных деталей (валы, рессоры, торсионы) характерной деформацией является переменное кручение. Для исследования влияния поверхностного упрочнения на предел выносливости при кручении были изготовлены образцы из сталей $30\mathrm{X}\Gamma\mathrm{CA}$, $9\mathrm{U}961$ и алюминиевого сплава B95 [7]. На неупрочнённые и упрочнённые образцы диаметром $D_I=12$ мм из стали $9\mathrm{U}961$ и сплава B95 наносились круговые надрезы полукруглого профиля с радиусом R=0,3 мм, из стали $30\mathrm{X}\Gamma\mathrm{CA}-\mathrm{c}\ R=0,35$ мм. Результаты испытаний на усталость по определению предела выносливости образцов в случае кручения τ_{-1} приведены в табл. 1.

Таблица 1. Результаты испытаний на усталость при кручении

Мате- риал	Размеры образ- цов и концентра- торов			Неупрочнён- ные образцы	Упрочнённые образцы			зцы
	$D_{\!\scriptscriptstyle 1}$,	D,	R,	$ au_{-1},$ M Π a	$ au_{ ext{}1}$, МПа	$t_{\kappa p}$,	$ar{\sigma}_{\scriptscriptstyle{ocm}}$, МПа	$ar{\psi}_{\scriptscriptstyle au}$
30ХГСА	12	11,3	0,35	180,7	222,5	0,235	-233	0,179
ЭИ961	12	11,4	0,30	244	300	0,240	-293	0,191
B95	12	11,4	0,30	37,5	72,5	0,250	-193	0,180

Из данных табл. 1 видно, что коэффициент $\overline{\psi}_{\tau}$ влияния упрочнения на предел выносливости при кручении имеет небольшой разброс и составляет в среднем значение 0,183, что вдвое меньше значения аналогичного коэффициента $\overline{\psi}_{\sigma}$ при изгибе. Также было исследовано влияние остаточных напряжений на предел выносливости при растяжении-сжатии σ_{-1p} образцов диаметром $D_I=10$ мм из сталей 30ХГСА, ЭИ961 и сплава Д16Т. Половина образцов подвергалась гидродробеструйной обработке. Затем на неупрочнённые и упрочнённые образцы наносились круговые надрезы полукруглого профиля с радиусом R=0,3 мм. Результаты испытаний на усталость представлены в табл. 2.

Таблица 2. **Результаты испытаний на усталость** при растяжении-сжатии

	Неупрочнённые	Упрочнённые образцы				
Материал	образцы	$\sigma_{_{-1}p}$,	$t_{\kappa p}$,	$ar{\sigma}_{\!\scriptscriptstyle ocm}$,	$\overline{\psi}_{\sigma}$	
	$\sigma_{_{-1}p}$, МПа	МПа	MM	МПа	Ψ_{σ}	
30ХГСА	146	198	0,200	-144	0,361	
ЭИ961	151,3	233,4	0,198	-258	0,357	
Д16Т	78,4	105	0,200	-75,3	0,353	

Из данных табл. 2 видно, что прогнозирование предела выносливости упрочнённых образцов при растяжении-сжатии с использованием критерия $\bar{\sigma}_{ocm}$ при одинаковой степени концентрации напряжений приводит к таким же результатам, как и при изгибе, что подтвеждается примерным равенством коэффициентов влияния поверхностного упрочнения $\bar{\psi}_{\sigma}$ по данному критерию.

Значительное количество деталей в газотурбинных двигателях работают при высоких температурах. Для исследования влияния температуры на предел выносливости деталей были проведены испытания на усталость образцов диаметром 7,5 мм из

стали ЭИ961 после алмазного выглаживания и диаметром 10 мм из алюминиевого сплава В95 после пневмодробеструйной обработки. Далее образцы из стали ЭИ961 выдерживались в печи в течение 100 часов при температуре 400°С, а из сплава В95 — при температуре 125°С. На неупрочнённые и упрочнённые образцы наносились надрезы полукруглого профиля с R = 0,3 мм. Затем определялись остаточные напряжения и проводились исптытания на усталость при изгибе в случае симметричного цикла. Результаты испытаний на усталость и определения остаточных напряжений приведены в табл. 3.

Таблица 3. Результаты испытаний на усталость при изгибе

Мате- риал	Температура, град. С	Неупрочнённые	Упрочнённые образцы			
		образцы $\sigma_{_{-1}}$,	$\sigma_{\scriptscriptstyle{-1}}$,	$t_{\kappa p}$,	$ar{\sigma}_{\scriptscriptstyle{ocm}}$,	$ar{\psi}_{\sigma}$
		МПа	МПа	MM	МПа	
ЭИ961	20	230	380	0,160	-422	0,356
	400	190	270	0,160	-242	0,331
B95	20	105	200	0,310	-249	0,382
	125	105	155	0,310	-141	0,355

Из данных табл. З видно, что после термоэкспозиции остаточные напряжения в образцах релаксируют. Коэффициент $\overline{\psi}_{\sigma}$, учитывающий влияние поверхностного упрочнения через критерий среднеинтегральных остаточных напряжений $\overline{\sigma}_{ocm}$, как для стальных, так и для алюминиевых образцов достаточно близок к значению $\overline{\psi}_{\sigma}=0,36$.

Таким образом, по результатам проведённых экспериментов по изучению влияния исследованных эксплуатационных факторов, действующих на детали на протяжении всего их жизненного цикла в пределах назначенного ресурса, установлено, что прогнозирование предела выносливости поверхностно упрочнённых деталей

представляется возможным проводить по критерию среднеинтегральных остаточных напряжений.

Библиографический список

- 1. Павлов, В.Ф. Прогнозирование предела выносливости поверхностно упрочнённых деталей в условиях концентрации напряжений / В.Ф. Павлов, В.С. Вакулюк, А.В. Чирков, В.П. Сазанов // Вестник УГАТУ. 2011. Т 15.– № 1. С. 1–6.
- 2. Павлов, В.Ф. О связи остаточных напряжений и предела выносливости при изгибе в условиях концентрации напряжений / В.Ф. Павлов // Известия вузов. Машиностроение. 1986. № 8. С. 29–32.
- 3. Школьник, Л.М. Повышение прочности шестерён дробеструйным наклёпом / Л.М. Школьник, В.П. Девяткин // Вестник машиностроения. 1950. № 12. С. 7–12.
- 4. Иванов, С.И. Влияние остаточных напряжений на выносливость образцов с надрезом / С.И. Иванов, М.П. Шатунов, В.Ф. Павлов // Вопросы прочности элементов авиационных конструкций. Куйбышев: КуАИ. 1974. Вып. 1. С. 88–95.
- 5. Павлов, В.Ф. Прогнозирование сопротивления усталости поверхностно упрочнённых деталей по остаточным напряжениям / В.Ф. Павлов, В.А. Кирпичёв, В.С. Вакулюк. Самара: Издательство СНЦ РАН, 2012.-125 с.
- 6. Кирпичёв, В.А. Прогнозирование предела выносливости поверхностно упрочнённых деталей при различной степени концентрации напряжений / В.А. Кирпичёв, А.С. Букатый, А.П. Филатов, А.В. Чирков // Вестник УГАТУ. 2011. Т. 15. № 4 (44). С. 81–85.
- 7. Павлов, В.Ф. Связь остаточных напряжений и предела выносливости при кручении в условиях концентрации напряжений / В.Ф. Павлов, А.А. Прохоров // Проблемы прочности. 1991. \mathbb{N}_2 5. С. 43—46.