МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОНАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА (национальный исследовательский университет)»

В. И. КУРЕНКОВ

ОСНОВЫ ПРОЕКТИРОВАНИЯ РАКЕТ-НОСИТЕЛЕЙ

Выбор основных проектных характеристик и формирование конструктивного облика

Учебно<mark>е по</mark>собие

Под редакцией доктора технических наук, профессора А. Н. Кирилина

Допущено Учебно-методическим объединением высших учебных заведений Российской Федерации по образованию в области авиации, ракетостроения и космоса в качестве учебного пособия для студентов высших учебных заведений РФ, обучающихся по специальности 160801 «Ракетостроение» направления подготовки дипломированных специалистов 160800 «Ракетостроение и космонавтика»

> с А М А Р А Издательство СГАУ 2011

Рецензенты:

кафедра 601 «Космические системы и ракетостроение» Московского авиационного института (национальный исследовательский университет) (зав. кафедрой член-корреспондент РАН, д-р техн. наук, проф. О. М. Алифанов;

главный научный сотрудник ГНГ РКЦ «ЦСКБ - Прогресс», заслуж. деятель науки и техн. РФ, Лауреат Ленинской премии, д-р. техн. наук, проф. А. В. Соллогуб

К 93 Куренков В. И. Основы проектирования ракет-носителей. Выбор основных проектных характеристик и формирование конструктивного облика: учеб. пособие / В. И. Куренков; под ред. д-ра техн. наук, проф. А. Н Кирилина – Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2011. – 458 с.: ил.

ISBN 978-5-7883-0788-6

Приведены основные соотношения теории ракетного движения, анализируется взаимосвязь летно-технических, критериальных и основных проектных характеристик ракет-носителей (РН). Обсуждаются вопросы сбора и обработки статистических данных, анализируются общие технические требования и тактико-технические требования при создании РН.

Рассматриваются методики расчета характеристической скорости, выбора топлива, стартовой массы и количества ступеней РН, вопросы оптимального распределения масс ракетных блоков по ступеням РН при различных схемах соединения ракетных блоков.

Обсуждаются вопросы определения объемно-габаритных характеристик и построения компоновочной схемы, методики расчета масс основных элементов конструкции и определения массоинерционных и центровочных характеристик проектируемых РН, вопросы автоматизации проектирования и разработки моделей РН в системе твёрдотельного моделирования.

Рассматриваются разгонные и апогейные ракетные блоки, а также вопросы совершенствования средств выведения в космос полезных нагрузок. Приведены сведения о ракетно-космическом и стартовом комплексах проектируемого космодрома «Восточный».

Учебное пособие предназначено студентам специальности 160801 «Ракетостроение» направления подготовки дипломированных специалистов «Ракетостроение и космонавтика» и 160400.68 «Ракетные комплексы и космонавтика» направления подготовки по магистерской программе «Проектирование и конструирование космических мониторинговых и транспортных систем». Оно может быть использовано не только при изучении теоретического материала по проектированию ракет, но и при выполнении курсовых и дипломных проектов. Может быть полезно молодым специалистам ракетно-космической отрасли. Подготовлено на кафедре летательных аппаратов СГАУ и ГНП РКЦ «ЦСКБ-Прогресс».

> УДК СГАУ 629.78 (075) ББК 39.62

ISBN 978-5-7883-0788-6

© Самарский государственный аэрокосмический университет, 2011

оглавление

СПИСОК СОКРАЩЕНИЙ 1	0
ПРЕДИСЛОВИЕ 1	1
ВВЕДЕНИЕ1	3
1. ОБЩИЕ ВОПРОСЫ ПРОЕКТИРОВАНИЯ 1	5
1.1. История создания баллистических ракет и ракет-носителей 1	5
1.1.1. История создания первых ракет на жидких компонентах	
топлива 1	5
1.1.2. Становление ракетной промышленности СССР 1	6
1.1.3. Первые космические полёты 1	8
1.2. Общие сведения о ракетно-космическом комплексе 1	9
1.3. Основные ракеты-носители мира 2	1
1.4. Классификация ракет-носителей 2	1
1.5. Проектирование и стадии разработки ракет-носителей 2	:4
2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ РАКЕТНОГО ДВИЖЕНИЯ 3	3
2.1. Структура многоступенчатой ракеты 3	3
2.2. Относительные характеристики масс составных частей ракеты 3	5
2.3. Функциональная связь между относительными	
характеристиками масс составных частей ракеты 3	8
2.4. Характеристические скорости ракеты 3	19
2.5. Удельный импульс 4	1
2.6. Влияние атмосферного давления на тягу ракетного двигателя 4	12
2.7. Скорость ракеты с учетом реальных условий полета 4	13
2.8. Типовая приближенно-оптимальная программа изменения	
угла наклона траектории ракеты 4	15
2.9. Уравнения движения РН для поверочных расчётов 5	50
3. ХАРАКТЕРИСТИКИ И ОСНОВНЫЕ ПРОЕКТНЫЕ	
ПАРАМЕТРЫ РАКЕТ-НОСИТЕЛЕЙ 5	55
3.1. Характеристики ракет-носителей 5	55
3.2. Основные проектные параметры ракеты 5	57
3.3. Выбор основных проектных параметров ракеты	58
3.3.1. Основные проектные параметры, полученные из анализа	
идеальной скорости ракеты	59
3.3.2. Основные проектные параметры, полученные из анализа	
потери скорости ракеты от действия гравитационных сил б	50
3.3.3. Основные проектные параметры, полученные из анализа	
потери скорости ракеты от действия аэродинамических сил	53
3.3.4. Основные проектные параметры, полученные из анализа	
потери скорости ракеты от действия сил, возникающих при	
изменении давления воздуха на срезе сопла ракетного	
двигателя	55
3.3.5. Основные проектные параметры многоступенчатых	
ракет-носителей	57
3.4. Сопоставление значений потерь скорости ракеты	70
4. СБОР И ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ ПО	
РАКЕТАМ-НОСИТЕЛЯМ	72
5. ТАКТИКО-ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ	33
	3

5.1. Структура тактико-технических требований на создаваемые
ракеты-носители
5.2. Обзор общих технических требований, предъявляемых к
ракетам-носителям
5.2.1. Требования по назначению
5.2.2. Требования к надежности 85
5.2.3. Требования к эксплуатации, удобству технического
обслуживания, ремонту и хранению
5.2.4. Требования к транспортабельности
5.2.5. Требования к безопасности
5.2.6. Конструктивные требования90
5.2.7. Технико-экономические требования
5.2.8. Другие требования95
6. ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИЧЕСКОЙ СКОРОСТИ
РАКЕТЫ-НОСИТЕЛЯ
6.1. Методы расчета характеристической скорости ракет-
носителей
6.1.1. Статистические данные по характеристической скорости
ракет-носителей
6.1.2. Структура формулы для расчета характеристической
скорости ракет-носителей
6.1.3. Расчет скорости на опорной орбите 101
6.1.4. Определение недобора характеристической скорости для
затопления ракетного блока верхней ступени РН в акватории
мирового океана 102
6.1.5. Расчет приращения скорости для перевода КА с опорной
ороиты на эллиптическую ороиту 100
о. г.о. Расчет приращения скорости для перевода КА с
5.1.7. Восист прирашия скоростей иля переода VA с высокой
0.1.7. Гасчет приращения скоростей для перевода КА с высокой
орбить на шакало круговую орбиту и с эльмптической
6.1.8. Распет прирашения скорости для изменения плоскости
опбиты
6.2 Старт к Пуше и планетам 112
6.2.1. Старт к Луне и Планотам
6.2.2. Старт к планетам 113
7 ВЫБОР ТОПЛИВА ПРИ ПРОЕКТИРОВАНИИ РАКЕТ
7.1 Классификация топлива
7.2 Требования предъявляемые к ракетным топливам
7.3. Характеристики ракетного топлива
7.4. Особенности использования тверлого ракетного топлива
7.5. Критерии выбора топлива
7.5.1. Выбор топлива с учетом влияния средней плотности и
удельного импульса на стартовую массу РН 129
7.5.2. Выбор топлива по комплексному критерию
эффективности136

8. ОПТИМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ МАССЫ РАКЕТЫ- НОСИТЕЛЯ ПО СТУПЕНЯМ И РАСЧЕТ СТАРТОВОЙ МАССЫ	
РАКЕТЫ	140
8.1. Задачи математического программирования	140
8.2. Постановка и решение задачи оптимального распределения	
массы ракеты-носителя по блокам методом неопределенных	
множителей Лагранжа	141
8.2.1. Постановка задачи	141
8.2.2. Решение задачи	143
8.3. Постановка и решение задач оптимального распределения	
массы ракеты-носителя по блокам численными методами	145
8.3.1. Схема с последовательным соединением ракетных блоков	
	146
8.3.2. Схема с параллельным соелинением ракетных блоков	
типа "пакет без перелива"	150
8 3 3 Схема с параллельным соединением ракетных блоков	
типа "пакет с переливом"	155
834 Схема "трехступенчатый пакет"	156
8 3.5 Схема "трекступенчатый пакет с лополнительными	
стартовыми ускорителями"	158
8 3.6. Особенности расчета масс ракетных блоков с	
использованием различных компонентов топлива	168
8.3.7. Метолика и алгоритм решения залач на условную	
оптимизацию в системе Mathcad	170
8.4. Выбор количества ступеней ракеты-носителя	171
8.4.1. Выбор количества ступеней ракеты по критерию	
минимума стартовой массы	171
8.4.2 Выбор количества ступеней ракеты-носителя из условия	
функционального назначения ракетных блоков	173
9. ОПРЕДЕЛЕНИЕ ПРЕДВАРИТЕЛЬНЫХ ОБЪЕМНО-	
ГАБАРИТНЫХ ХАРАКТЕРИСТИК РАКЕТ-НОСИТЕЛЕЙ	176
9.1. Выбор схемы соединения ракетных блоков	176
9.2. Определение объёма ракеты-носителя и её составных частей	177
9.2.1. Объем головного обтекателя	178
9.2.2. Объем приборных отсеков	180
9.2.3. Объем топливных отсеков	181
9.2.4. Объем хвостовых и переходных отсеков	183
9.3. Определение длины и диаметра ракеты-носителя при	
последовательном соединении ракетных блоков	184
9.4. Определение предварительных массогабаритных	
характеристик ракетных блоков в схемах с параллельным и	
смешанным соединениями	185
10. РАЗРАБОТКА ПРЕДВАРИТЕЛЬНОИ КОМПОНОВОЧНОИ	
СХЕМЫ РАКЕТЫ-НОСИТЕЛЯ	189
10.1. Методические вопросы разработки предварительной	
компоновочной схемы ракеты-носителя	189
10.2. Компоновка хвостовых отсеков	190
10.2.1. Выбор габаритов ракетных двигателей	190

10.2.2. Определение длины хвостового отсека	. 193
10.2.3. Компоновочные и силовые схемы хвостовых отсеков	. 194
10.3. Компоновка топливных отсеков	. 199
10.3.1. Компоновочные схемы топливных отсеков нижних	
ступеней РН	. 199
10.3.2. Компоновочные схемы топливных отсеков верхних	
ступеней	2.02
10.3.3. Определение масс и объемов окислителя и горючего	203
10.3.4. Определение геометрических размеров баков	204
10.3.5. Особенности компоновки тверлотопливных отсеков	207
10.4 Компоновка переходных отсеков	213
10.4.1. Схема с холодным разлелением	213
10.4.2 Схема с голяним разделением	214
10.4.3. Схема с теплым разделением	217
10.5. Компоновка приборных отсеков	219
10.5. Компоновка приобрных отсохов половину настей	221
11 УТОЧНЕНИЕ КОМПОНОВОЧНОЙ СУЕМЫ РАКЕТЫ.	
HOCUTEIR	224
11.1 Утопнение компоноводной схемы ракеты-носителя с	
последовательным соединением ракетных блоков	224
11.2 Уточнение компоноводной схемы ракеты-носителя с	1 44 44 1
парациеньным соединением ракетных блоков	231
11.2.1. Уточнение габаритов и мест сопряжения ракетных	. 25 1
блогор	231
11.2.2. Суемы с учифицированными ракетрыми блоками	233
11.2.2. Сломы с унифицированными ракетными олоками	233
11.2.3. Слема с перазвемными соединенными ракетных олоков	234
11.2.4. CAMA C OLICIBABILIA DIGNAMA LOPIOLO DI ORIGINI CINAMINA	235
11.4. Суемы с перелиром топлира	241
12 РАСИЕТ МАСС ОСНОВНЫХ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ	. 2 11
PAKETALHOCUTEIIS	244
12.1. Предератительный раснет масс основных элементов	. der II
VOUCTDV/VIII/ D2VETL-UOCUTEII	244
12.2 Предравительная массорая сволка	247
12.2 Продварительная массовая сводка	. 2 . 7
пастных блоков	249
12 4 Проектировонный расцет масс составных частей ракеты-	
uccurent	250
12.4.1 Rufon nacuetulus citulaen	251
12.4.1, DBOOD pacter har the theory and the philip of t	252
12.7.2. Factor halpyson, denote by the factor of the factor $12.4.2$. By for predenting the construction of the factor of the	254
12.4.5, Bollop pacterning correction participation $12.4.5$	254
12.4.4, $1 a c 4 c 1 o c c b b i x c k b i b c c 4 c k b k x x x x x x x x x x x x x x x x x$	256
12. T.J. I AUTOL NSI NUARUMAN MOMENTUB	258
12. т. о. тасчет приведенной слимающей силы	250
12. т. г. г арчот давления паддува раков	250
12.7.0.1 autor Maubi Uarub	262
12.4.7.5 J IOHCHHBIC PROTEIDI MAUGI UARA	268
12.7.10.1 achel Macchi Cyxnx Oleenob	. 200

12.4.11. Расчет прочих масс ракеты-носителя	271
12.5. Детальный расчет	271
13. РАСЧЕТ КООРДИНАТ ЦЕНТРА МАСС И МОМЕНТОВ	
ИНЕРЦИИ РАКЕТЫ-НОСИТЕЛЯ	273
13.1. Расчет координат центра масс ракеты	273
13.2. Расчет моментов инерции ракеты	274
13.3. Расчетные таблицы	276
13.4. Расчет положения координат центра масс ракеты-носителя	170
по времени полета	218
	202
	203
14.1. Программа для оптимального распределения массы г н по	284
14.2. Программа ная раснета масс составных настей, ракеты	207
14.2. Программа для расчета масс составных частой ракеты-	286
14.3. Программа для расцета положения коорлинат. центра масс и	200
моментов инернии РН	291
14.4 Программа для поверочных расчетов характеристик	
лвижения ракет-носителей	293
14 5 Разработка никлограммы запуска ракеты	296
15. МЕТОЛИКА РАЗРАБОТКИ ТВЕРЛОТЕЛЬНЫХ МОЛЕЛЕЙ	
РАКЕТ-НОСИТЕЛЕЙ	298
15.1. Информационная поддержка жизненного цикла изделий	298
15.2. Особенности разработки твердотельных моделей ракеты	301
15.3. Разработка моделей отсеков ракетных блоков	304
15.3.1. Разработка моделей топливных баков	304
15.3.2. Разработка моделей сухих подкрепленных отсеков	305
15.3.3. Разработка моделей ферменных конструкций	307
15.3.4. Разработка моделей элементов крепления двигателей	308
15.4. Разработка моделей космических головных частей	. 309
15.5. Разработка модели ракеты космического назначения	311
15.5.1. Сборка ракетных блоков	. 311
15.5.2. Сборка ракеты и создание анимационной картины	
разделения составных частей РН в полёте	. 312
15.6. Определение геометрических и массоинерционных	
характеристик конструкции ракеты-носителя в системе	215
твердотельного моделирования	. 315
16. КОСМИЧЕСКИЕ РАЗГОННЫЕ И АПОГЕИНЫЕ РАКЕТНЫЕ	210
ЫОКИ	. 318
16.2. А току бласти бласти	226
16.2. Апогеиные олоки	. 320
то з методика высора характеристик разгонного слока при	200
модернизации ракеты-носителя	. 320
ΠΟΠΕЗΗΝΙΥ Η ΑΓΦΥЗΟΚ Β ΚΟΓΜΟΓ	334
17.1 Создание селии РН различной грузопольемности на основе	+
Vнификации ракетных блоков	334
17.2. Молернизация ракет-носителей на базе PH «Союз»	337
- · ··································	

17.3. Методика приближенной оценки грузоподъемности РН,	
составленных из существующих ракетных блоков	340
17.4. Методика оптимизации массы модернизируемых ракетных	
блоков в составе существующих РН	344
17.5. Использование возвращаемых ракетных блоков	348
18. СОГЛАСОВАНИЕ ХАРАКТЕРИСТИК РАКЕТ-НОСИТЕЛЕЙ,	
КОСМОДРОМА И СТАРТОВОГО КОМПЛЕКСА	352
18.1. Ограничения по габаритам в связи с расположением	
космодромов и транспортировкой ракетных блоков	352
18.2 Выбор количества ступеней РН с учетом зон падения	
отработавших ракетных блоков	353
18.3. Согласование характеристик РН с элементами технических	
и наземных стартовых комплексов	353
18.3.1. Требования к ракетно-космическому комплексу	354
18.3.2. Требования к стартовому комплексу	354
18.3.3. Подготовка ракеты космического назначения на	
техническом и стартовом комплексах	355
18.4. Согласование схем крепления РН с опорными элементами	
стартовых сооружений	357
18.5. Согласование характеристик РН с расположением	250
космодрома и азимутами пуска	339
18.5.1. Влияние широты расположения космодрома и	
ограничении по азимутам пуска на потреоную	250
18.5.2. Особанизати сотуска КА, на сотисника синитали	539
18.5.2. Особенности запуска КА на солнечно-синхронные	361
18.5.3. Особациости раписка косминеских аннаратор на	501
а экраториан и не орбиты	362
зкваториальные оронты 18 6 Морской старт	363
18.7 Boarwinkie craptu	364
18.8. Оценка весовой эффективности возлушных ставтов	367
18.8.1. Постановка залачи	
18.8.2. Определение потребной характеристической скорости	
лля РН при возлушном старте	368
18.8.3. Результаты расчётов и их анализ	371
18.9. Полностью многоразовые многоцелевые авиационно-	
космические системы	374
18.10. Запуск малогабаритных космических аппаратов	374
ЗАКЛЮЧЕНИЕ	377
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	378
ПРИЛОЖЕНИЕ А	383
РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КУРСОВЫХ И	
ДИПЛОМНЫХ ПРОЕКТОВ	383
ПРИЛОЖЕНИЕ Б	391
ПРИМЕР ВЫПОЛНЕНИЯ КУРСОВОГО ПРОЕКТА И	
ОФОРМЛЕНИЯ ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ	391
ВВЕДЕНИЕ Б	396

БІ СБОР И ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ ПО	
РАКЕТАМ-НОСИТЕЛЯМ ЗАДАННОГО КЛАССА	. 397
Б2 РАЗРАБОТКА ТАКТИКО-ТЕХНИЧЕСКИХ ТРЕБОВАНИЙ	. 402
БЗ ОПРЕДЕЛЕНИЕ ПОТРЕБНОЙ ХАРАКТЕРИСТИЧЕСКОЙ	
СКОРОСТИ	. 406
Б4 ВЫБОР ТОПЛИВА	. 412
Б5 ОПРЕДЕЛЕНИЕ МАССЫ РАКЕТНЫХ БЛОКОВ И	
СТАРТОВОЙ МАССЫ РАКЕТЫ-НОСИТЕЛЯ	. 415
Б6 ПРЕДВАРИТЕЛЬНАЯ КОМПОНОВКА	. 421
Б6.1 Определение предварительных габаритов ракеты	. 421
Б6.2 Компоновка отсеков ракеты-носителя	. 424
Б7 РАЗРАБОТКА ТВЕРДОТЕЛЬНОЙ МОДЕЛИ РАКЕТЫ	. 428
Б8 РАСЧЕТ МАСС ЭЛЕМЕНТОВ РАКЕТЫ-НОСИТЕЛЯ	. 435
Б9 РАСЧЕТ ЦЕНТРОВОЧНЫХ ХАРАКТЕРИСТИК И	
МОМЕНТОВ ИНЕРЦИИ	. 438
Б10 ОБОСНОВАНИЕ И ВЫБОР БОРТОВЫХ СИСТЕМ	. 444
Б10.1 Пневмогидравлическая система ракетного блока первой	
ступени	. 444
Б10.2 Системы крепления и разделения составных частей	
ракеты-носителя	. 446
Б11 КОНСТРУКЦИЯ И ФУНКЦИОНИРОВАНИЕ РАКЕТЫ	. 448
Б11.1 Конструкция ракеты-носителя	. 448
Б11.2 Функционирование ракеты-носителя в полёте	. 451
ЗАКЛЮЧЕНИЕ Б	. 455
Б СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	. 456
ПРИЛОЖЕНИЕ БА	. 457
КОМПОНОВОЧНАЯ СХЕМА РАКЕТЫ-НОСИТЕЛЯ	457

СПИСОК СОКРАЩЕНИЙ

ББ	- боковой блок
врб	- водородный ракетный блок
ГБ	- головной блок
ГО	- головной обтекатель
ГСО	- геостационарная орбита
ГПО	- геопереходная орбита
ДУ	- двигательная установка
ЖРД	- жидкостный ракетный двигатель
КА	 космический аппарат
КГЧ	- космическая головная часть
ККС	- конструктивно-компоновочная схема
КРБ	 космический разгонный блок
OTT	- общие технические требования
ΠΓ	- полезный груз
ПН	- полезная нагрузка
ПГС	- пневмо-гидравлическая схема
ПхО	- переходный отсек
РБ	- ракетный блок
РД	- ракетный двигатель
РДТТ	- ракетный двигатель твёрдого топлива
РКК	- ракетно-космический комплекс
РКН	- ракета космического назначения
PH	- ракета-носитель
CAC	- система аварийного спасения
СЗБ	 сборочно-защитный блок
СК	- стартовый комплекс
CCO	- солнечно-синхронная орбита
TT3	- тактико-техническое задание
TTT	- тактико-технические требования
TTX	- тактико-технические характеристики
УРБ	 универсальный ракетный блок
ЭП	- эскизный проект

предисловие

Учебное пособие предназначено студентам специальности 160801 «Ракетостроение» направления подготовки дипломированных специалистов «Ракетостроение и космонавтика».

Оно написано на основе учебного пособия: Куренков В. И., Юмашев Л. П. «Выбор основных проектных характеристик и конструктивного облика ракет-носителей» под ред. чл.-кор. РАН Д.И. Козлова, которое было издано в Самарском государственном аэрокосмическом университете в 2005 г. [58], материал которого существенно переработан и дополнен.

В учебном пособии исправлены опечатки и учтены замечания, которые были высказаны преподавателями и специалистами ракетнокосмической отрасли в процессе работы с предыдущим учебным пособием.

Введены новые разделы, касающиеся автоматизации проектных расчётов и создания твердотельных моделей ракет-носителей (PH). Расширены разделы по оптимизации стартовой массы ракетносителей, введены новые материалы по выбору масс разгонных блоков и дополнительных ускорителей модернизируемых ракетносителей и др.

В разделе 18 использованы результаты работ, выполненных в соответствии с Федеральной целевой программой «Научнопедагогические кадры инновационной России» по теме «Разработка методов оптимального проектирования стартовых и технических комплексов для космодрома «Восточный» с учетом реальных условий дислокации на местности, обеспечения требуемого уровня надёжности, современных методов эксплуатации, схем подготовки к пуску и нагрузок на объекты стартового комплекса и РН при пусках» (Государственный контракт № 02.740.11.0177). В этих работах принимали участие сотрудники ГНП РКЦ «ЦСКБ-Прогресс» и СГАУ. Учебное пособие может быть использовано не только при изучении теоретического материала по проектированию PH, но и при выполнении курсовых и дипломных проектов.

Отдельные разделы учебного пособия могут быть полезны студентам специальности 160802 «Космические летательные аппараты и разгонные блоки», а также студентам специальности 230301 «Моделирование и исследование операций в организационно-технических системах», специализирующихся в области компьютерного моделирования и автоматизации проектирования изделий и систем ракетнокосмической техники. Учебное пособие также может быть полезно молодым специалистам ракетно-космической отрасли.

Хочется выразить благодарность рецензентам и специалистам ракетно-космической отрасли за ценные замечания и рекомендации, которые были учтены при подготовке рукописи учебного пособия к изданию.

введение

Создание ракет-носителей (PH) – сложный, длительный и одновременно увлекательный процесс, начинающийся с момента появления замысла о необходимости создания новой ракеты-носителя, включающий эскизное проектирование, разработку рабочей документации, изготовление опытных образцов, различные виды испытаний, сдачу ракеты-носителя заказчику, организацию серийного изготовления, проведения работ в эксплуатирующей организации, авторского сопровождения и внесения изменений для совершенствования ракеты-носителя.

Методические разработки по проектированию ракет-носителей в полном объеме имеются лишь в научно-исследовательских и проектных организациях ракетно-космической отрасли. Имеются также многочисленные публикации по данной теме. Среди них можно отметить, например, следующие учебные пособия и монографии, которыми пользуются студенты:

Проектирование и испытания баллистических ракет. / Под ред. В. И. Варфоломеева и М. И. Копытова. М. Воениздат, 1970. – 302 с.

Феодосьев В. В. Основы техники ракетного полета. М.: Наука. Главная редакция физико-математической литературы, 1979. – 496 с.

Ракеты-носители / под ред. проф. С.О. Осипова. - М.: Военное изд-во министерства обороны СССР, 1981. - 315 с.

Основы проектирования летательных аппаратов (транспортные системы). Учебник для технических вузов / В. П. Мишин, В. К. Безвербый, Б. М. Панкратов и др.; под ред. А. М. Матвеенко и О. М. Алифанова. – М.: Машиностроение, 2005. 375 с.

Баллистические ракеты и ракеты-носители: Пособие для студентов вузов / О. М. Алифанов, А. Н. Андреев, В. Н. Гущин и др.; под ред. О. М. Алифанова. - М.: Дрофа, 2004. - 512 с.

Однако подходы к проектированию ракет в различных проектных организациях и у разных авторов отличаются, рассматриваются

не одинаковые аспекты сложного и объёмного процесса проектирования, и разобраться в этой литературе непросто даже специалистам, не говоря о студентах.

Настоящее учебное пособие посвящено одному из аспектов начального этапа проектирования ракет-носителей, а именно, вопросу выбора основных характеристик и проектного облика PH.

В учебном пособии предложен подход к проектированию ракетносителей, который синтезирован из различных источников. Материал пособия излагается в той последовательности, которая может использоваться в реальной практике проектирования. Пособие иллюстрируется многочисленными примерами.

Некоторые методики и результаты оригинальны и представляются впервые, например, методика оценки грузоподъёмности ракетносителей, составленных из существующих ракетных блоков, методика оптимизации масс разгонных блоков, устанавливаемых в модернизированные ракеты-носители, методика оптимизации массы ракеты-носителя при замене отдельных ракетных блоков и стартовых ускорителей.

Учебное пособие состоит из восемнадцати разделов с контрольными вопросами и приложений, в которых изложены методические рекомендации по выполнению курсовых и дипломных проектов и пример выполнения курсового проекта.

1. ОБЩИЕ ВОПРОСЫ ПРОЕКТИРОВАНИЯ

1.1. История создания баллистических ракет и ракет-носителей

1.1.1. История создания первых ракет на жидких компонентах топлива

В 1933-1934 годах в СССР и Германии были проведены успешные пуски первых ракет на жидких компонентах топлива. Эти ракеты имели малую массу, небольшие габариты и достигали высот 1,5-2,5 км.

Разработка первой баллистической ракеты началась в Германии незадолго до начала Второй мировой войны.

Почему же стало создаваться такое сложное и дорогостоящее оружие как баллистические ракеты? Ответ следует искать в экономике. Дело в том, что использование дальнобойных пушек требовало больших финансовых, материальных и временных затрат на их производство и эксплуатацию. Так, самая большая дальнобойная пушка времен периода Первой мировой войны имела следующие характеристики:

- дальность стрельбы - 120 км;

- массу - 750 тонн;

- длину ствола – 34 м;

- вес снаряда – 120 кг.

Ствол необходимо было менять через каждые 50 выстрелов.

Поэтому в Германии было принято решение о создании исследовательского центра по разработке крылатых и баллистических ракет.

Такой центр с опытной станцией и заводом был построен в 1938 г. вблизи населенного пункта Пенемюнде на острове Узедом в Балтийском море. Там была разработана баллистическая ракета Φ AУ-2 (V-2, A-4), которая могла доставлять взрывчатое вещество массой 1000 кг на расстояние до 300 км. Главным конструктором этой ракеты был Вернер фон Браун. Стартовая масса ракеты ФАУ-2 составляла 13,5 т, длина примерно 14 м и диаметр корпуса равнялся 1,65 м [42]. Корпус ракеты напоминал самолетный фюзеляж. Конструкционный материал корпуса - сталь, а топливные баки ракеты, находящиеся внутри корпуса, были выполнены из алюминиевого сплава. В качестве компонентов топлива использовались этиловый спирт (4085 кг) и жидкий кислород (5160 кг). Тяга двигателя на Земле составляла примерно 25 т, а в пустоте – 30 т. Использование спирта было обусловлено тем, что температура его горения относительно низка по сравнению с другими, более эффективными горючими. Но даже в этом случае конструкторам двигателя и спирт балластировали (разбавляли) водой до 77-процентной концентрации [15].

Первая попытка запуска была весной 1942 г. Ракета пролетела около одного километра и упала. Первая успешно отработавшая ракета была запущена 3 октября 1942 г. Она достигла высоты 90 км и дальности 190 км.

В Нордхаузене были построены крупные серийные подземные заводы, которые выпускали ракету А-4. Эти заводы в 1944-1945 гг. выпускали по 25-30 ракет в сутки. Всего было сделано более 5000 ракет.

С 8 сентября 1944 г. велся обстрел Лондона этими ракетами.

Всего по Англии было выпущено 1402 ракеты, из них в Лондоне взорвалось 517 ракет.

Большого ущерба (в масштабах войны) от них не было. Однако психологически это оружие воздействовало, поскольку вдруг, без объявления воздушной тревоги, начиналась «бомбардировка». Тем не менее основная цель немцев - деморализация населения Великобритании с целью выведения из войны, не была достигнута.

1.1.2. Становление ракетной промышленности СССР

После Великой Отечественной войны в 1946 г. группы советских инженеров, специализировавшихся в области ракетной техники, были командированы в Германию. Одна из этих групп имела задание найти специалистов, занимающихся разработкой и производством ракет ФАУ-2, чертежи этой ракеты и оставшиеся в подземных заводах недостроенные части ракет, найти остатки оборудования заводов по производству ФАУ-2 и организовать сборку ракет из найденных частей. В состав этой группы входил С. П. Королев. Задача, поставленная перед группой, была выполнена. В 1947 году недостроенные части ракет ФАУ-2 и оставшиеся специалисты были вывезены в СССР, в Подмосковье.

Научно-исследовательскому институту 88 (НИИ-88) в г. Калининграде (ныне г. Королёв) Московской области была поставлена задача сначала разработать копию ракеты ФАУ-2, а затем на ее основе проектировать более совершенную технику. Потом из НИИ-88 выделилось опытно-конструкторское бюро №1 (ОКБ-1). Вскоре руководителем этого ОКБ стал С. П. Королев.

Копия ракеты ФАУ-2 под индексом P-1 была создана и в 1948 г. состоялись ее первые пуски. Ракета была принята на вооружение, несмотря на недостатки, которые были известны проектантам и военным.

Далее проектировались ракеты P-2, которые были похожи на P-1, но совершеннее их. Они имели отделяющуюся головную часть и несущий бак горючего.

Затем были созданы ракеты Р-5 и Р-5М. Последняя была испытана в 1956 г. и стала первой стратегической ракетой, способной доставить атомную бомбу на расстояние до 1200 км.

Тем не менее по количеству баллистических ракет и боеголовок с атомными зарядами СССР в середине 50-х годов существенно отставал от США (примерно в 20 раз). Политическое руководство страны поставило задачу перед конструкторами разработать межконтинентальную баллистическую ракету с термоядерным зарядом (водородной бомбой), способную достичь территории США. И для решения этой задачи надо было совершить качественный скачок в создании новых типов мощных баллистических ракет.

Первой межконтинентальной баллистической ракетой, способной доставить ядерную боеголовку массой 3 тонны на территорию США, стала ракета Р-7, имевшая дальность полета 8000 км.

С. П. Королев и сотрудники его ОКБ с целью сокращения сроков разработки новой ракеты предложили использовать так называемую пакетную схему. Ракета в этом случае как бы состоит из связки отдельных относительно небольших ракетных блоков, которые к тому времени уже были разработаны. В качестве компонентов топлива этой ракеты использовались жидкий кислород и керосин, что позволило создать более совершенные двигатели. Конструкторы к тому времени уже решили проблему охлаждения двигателей, работающих на этих компонентах топлива.

Модификация этой ракеты P-7A (индекс 8К74) с увеличенной до 11 000 км дальностью состояла на вооружении с 1960 года по 1968. С боеголовкой же массой около полутора тонн ракета P-7 уже могла достичь практически любой точки поверхности Земли.

Далее для новых боеголовок создавались уже менее мощные ракеты. В частности, в конце 50-х - начале 60-х годов 20-го века в конструкторском бюро г. Днепропетровска (на территории современной Украины) под руководством М. К. Янгеля были разработаны сначала одноступенчатая баллистическая ракета 8К63, затем двухступенчатая баллистическая ракета Р16 (8К64) на токсичных компонентах топлива. Эти ракеты были приняты на вооружение.

В ОКБ С. П. Королева была разработана двухступенчатая баллистическая ракета Р9 (8К75), в которой использовались в качестве компонентов топлива керосин и жидкий кислород. Эта ракета имела уже не пакетную схему, а состояла из последовательно соединенных ракетных блоков. Ракета Р-9 также была принята на вооружение.

Следует отметить, что в ОКБ С. П. Королева разрабатывалась так называемая глобальная ракета 8К713, которая могла выводить ядерный заряд на орбиту Земли. В нужный момент с помощью второго запуска ракетного блока третьей ступени головная часть с водородной бомбой могла быть заторможена, войти в плотные слои атмосферы и попасть в расчетную точку поверхности Земли. Однако в серию такая ракета не пошла.

Далее в СССР разрабатывались и другие баллистические ракеты с различными стартовой массой и дальностью полета головных частей.

1.1.3. Первые космические полёты

Руководство СССР поддержало идею ученых, в частности академиков М. В. Келдыша и С. П. Королева, о запуске первого искусственного спутника Земли, чтобы продемонстрировать всему миру, что 18 СССР обладает мощной ракетной техникой, способной доставить головные части с атомным зарядом практически в любую точку земного шара.

Таким образом, ракета Р7 стала первой в мире ракетойносителем.

1.2. Общие сведения о ракетно-космическом комплексе

Ракетно-космический комплекс – это совокупность ракеты космического назначения (или ракетно-космической системы) и космодрома, обеспечивающего предстартовую подготовку и пуск ракеты космического назначения, траекторные измерения, выдачу команд, приём и обработку телеметрической информации [18]. Структурная схема РКК представлена на рис. 1.1. Подсистемами РКК являются технический комплекс, ракета космического назначения, стартовый комплекс и др.

В состав ракеты космического назначения входят ракетаноситель и космическая головная часть. Ракета-носитель состоит из ракетных блоков и представляет собой сложную техническую систему как по своему структурному составу, так и по функционированию.

Отметим, что в публицистике (да и в технической литературе) ракету космического назначения часто отождествляют с ракетойносителем.

Космическая головная часть включает головной блок и сборочно-защитный блок. Головной блок содержит космический разгонный блок (если он имеется в составе КГЧ), адаптер и космический аппарат. Сборочно-защитный блок состоит из перходного отсека и головного обтекателя.

В зависимости от задач ракетно-космической системы и схемы полета ракета-носитель может сообщать космическому аппарату скорость, необходимую для осуществления:

- суборбитального полета (полета по орбите с высотой апогея 180...200 км и высотой перигея 0-30 км, который осуществляется для снижения и затопления ракетных блоков на первом же витке полета);

Рис. 1.1. Структурная схема ракетно-космического комплекса

- вывода на низкие «опорные» орбиты (как правило, околокруговые с высотой 180...200 км);

- вывода на переходные эллиптические орбиты (переходные к рабочим орбитам);

- вывода на рабочие орбиты (как правило, низкие).

Если в составе ракеты космического назначения или в составе космической головной части имеются космические разгонные блоки (блоки, способные длительное время находиться в космическом пространстве и обеспечивать запуск двигателей в невесомости), то ракета-носитель, как правило, сообщает космическому аппарату скорость, необходимую для осуществления суборбитального полета 20 или полета по опорной орбите. Дальнейшее маневрирование осуществляется с помощью космических разгонных блоков.

Довывод космических аппаратов на рабочие орбиты или корректировка орбит могут быть осуществлены также с помощью корректирующей двигательной установки космического аппарата.

1.3. Основные ракеты-носители мира

На рис. 1.2 представлены основные ракеты-носители мира.

В начале космической эры ракеты-носители создавались на основе баллистических ракет. Затем стали создаваться ракетыносители, которые специально предназначались для вывода полезных нагрузок в космическое пространство. В последние десятилетия, кроме США и России, ракеты-носители стали разрабатываться в Европе (Европейское космическое сообщество), в Китайской Народной Республике, в Японии и некоторых других странах.

Воздушно-космические системы разрабатывались только в США («Спейс Шаттл») и СССР («Энергия-Буран»). Однако «Спейс Шаттл», строго говоря, не является ракетой-носителем, так как центральный блок не имеет двигательной установки. Маршевые двигатели и полезная нагрузка располагаются только на космическом самолете.

1.4. Классификация ракет-носителей

Классификация ракет-носителей проводится по признакам, которые приведены ниже.

Классификация по грузоподъемности (выведение на круговую орбиту высотой 200 км) [42]:

- легкие (до 5 т);

- средние (5...20 т);

- тяжелые (20...100 т);

- сверхтяжелые (свыше 100 т).

Рис. 1.2. Основные ракеты-носители мира

В последние годы введен ещё один промежуточный класс – «средний класс повышенной грузоподъемности», что соответствует грузоподъемности несколько большей, чем 20 т. Верхняя граница этого класса пока в технической литературе не определена (не устоялась). В частности, создаваемая в настоящее время ракета-носитель «Русь-М» имеет грузоподъемность 23,5 тонны.

Классификация по количеству ступеней:

- двухступенчатые;

- трёхступенчатые;

- двух - и трёхступенчатые с разгонными блоками.

Классификация по схеме соединения ступеней:

- с последовательным соединением ступеней (схема "тандем");

- с параллельным соединением ступеней (при одновременном начале работы всех двигателей ракетных блоков - схема «пакет»);

- со смешанным соединением ступеней (ракетные блоки первой и второй ступени соединены параллельно, а ракетный блок третьей

ступени соединен последовательно с ракетным блоком второй ступени – так называемый "трехступенчатый пакет");

- схема с отделяемыми внешними (боковыми) двигателями.

Классификация по токсичности топлива:

- токсичные (с длительным сроком хранения в заправленном состоянии, например РН "Протон", конверсионная двухступенчатая баллистическая ракета "Днепр");

- нетоксичные (с ограниченным сроком хранения в заправленном состоянии, например PH "Союз", "Сатурн-V");

- с нетоксичными компонентами топлива основных ступеней РН и наличием разгонного блока с токсичными компонентами топлива, например РН "Союз" с разгонным блоком "Фрегат".

Классификация по фазовому составу топлива:

- жидкие компоненты топлива (РН "Союз", "Сатурн-V" и др.);

- твердые компоненты топлива (РН "Старт" на базе баллистических ракет "Пионер" и "Тополь");

- ракеты-носители с наличием ракетных блоков и на жидком топливе, и на твердом топливе ("Space Shuttle");

- ракеты-носители с наличием ракетных блоков на комбинированных компонентах топлива (твердое горючее и жидкий окислитель, например проект PH на базе противоспутниковой трехступенчатой ракеты-перехватчика, стартующей с самолета МиГ-31).

Классификация по наличию возвращаемых ракетных блоков:

- ракетные блоки одноразового применения;

- возвращаемые ракетные блоки (спуск на парашюте, на дельтаплане или самолетный спуск ракетных блоков первой ступени, например ракетный блок «Байкал»).

Классификация по методу старта:

- закрытый старт (шахты, подводные лодки);

- открытый старт.

Закрытый старт применяется только для конверсионных ракетносителей.

Открытый старт, в свою очередь, классифицируется следующим образом:

- наземный неподвижный (космодромы);

- наземный подвижный (железнодорожные платформы или тягачи на колесном шасси); - морской старт (с плавучей специальной платформы, например РН "Зенит");

- воздушный старт (с самолетов-носителей, например проекты "Молния", "Бурлак" и др.).

1.5. Проектирование и стадии разработки ракет-носителей

Проектирование – один из начальных этапов создания современных технических систем и объектов и, в частности, ракетносителей.

Проектирование - это творческий процесс поиска и нахождения рациональных (в определенном смысле) решений, обеспечивающих создание технических объектов, комплексов и систем, удовлетворяющих заданным требованиям.

Проект – результат проектирования (projectus (лат.) – брошенный вперед).

Проект должен содержать:

- общий замысел;

- план создания ракеты-носителя;

- конкретные технические решения по бортовым системам, агрегатам, элементам.

Затраты на выполнение собственно проекта составляют 5-10 % от общих затрат на создание изделия, включающего кроме проектирования:

- подготовку производства;

- изготовление опытных образцов;

- экспериментальную отработку и др.

Ошибки на этапе проектирования самые "дорогие". Соотношение затрат на исправление ошибок на этапах проектирования, отработки, производства и эксплуатации примерно составляет 1:10:100:1000. Принципиальные ошибки, как правило, вообще не могут быть исправлены на стадии эксплуатации.

Укрупненные стадии разработки технических изделий согласно ГОСТ 2.103-68 (2001, с изм. 2 2006): ЕСКД. Стадии разработки [62] представлены в табл. 1.1 с сокращениями.

Таблица 1.1. Стадии разработки

Стадия разработки	Этапы выполнения работ
	Подбор материалов.
Технинеское	Разработка технического предложения с присвое-
предложение	нием документам литеры "П".
	Рассмотрение и утверждение технического пред-
	ложения
	Разработка эскизного проекта с присвоением до-
	кументам литеры "Э".
Эскизный проект	Изготовление и испытание материальных или
	электронных макетов (при необходимости)
	Рассмотрение и утверждение эскизного проекта
	Разработка технического проекта с присвоением
(T) ×	документам литеры "1".
1 ехнический	Изготовление и испытание материальных или
проект	электронных макетов (при необходимости)
	Рассмотрение и утверждение технического
	проекта
	Разработка конструкторской документации, пред-
	назначенной для изготовления и испытания опыт-
Рабочая конструк-	ного образца (опытной партии).
торская документа- ция опытного об- разца изделия	Изготовление и предварительные испытания
	опытного образца (опытной партии).
	Корректировка конструкторской документации с
-	присвоением документам литеры "О".
	Приемочные испытания опытного образца

Применительно к изделиям ракетно-космической техники используется 9 стадий разработки.

I. ТТЗ – тактико-техническое задание.

П. АП – аванпроект (проект технический, инженерная записка).

Ш. ЭП – эскизный проект.

IV. КД – конструкторская документация.

V. НЭО – наземная экспериментальная отработка.

VI. КНЭО - комплексная наземная экспериментальная отработка.

VII. ЛИ (или ЛКИ) – летные (или летно-конструкторские) испытания.

VIII. ПС – подготовка к серийному производству.

IX. АН - авторский надзор над серийным изготовлением РН.

Рассмотрим подробнее первые три стадии. Остальные стадии не являются предметом обсуждения настоящего учебного пособия.

I стадия разработки

ТТЗ разрабатывает Головной институт Заказчика и выдаёт его Головному конструкторскому бюро (КБ). При разработке ТТЗ Головной институт и КБ тесно взаимодействуют между собой, решая спорные вопросы. В ТТЗ устанавливаются основные тактико-технические требования (ТТТ) к разработке ракеты-носителя.

II стадия разработки

Разработка аванпроекта (технического предложения или инженерной записки) выполняется Головным конструкторским бюро совместно с основными предполагаемыми соисполнителями.

В материалах аванпроекта должны быть приведены основные тактико-технические характеристики (TTX), которые планируется реализовать при разработке ракеты-носителя. Материалы аванпроекта должны содержать сведения о том, какова предполагаемая кооперация, сколько потребуется времени и средств до момента сдачи изделия на серийное производство, план отработки надежности функционирования изделия, а также сведения по наземному комплексу.

После проведения экспертизы в Головном институте отрасли и Заказчика и устранения замечаний принимается решение о продолжении или остановке работ.

Основные этапы разработки аванпроекта, связанные с выбором проектного облика PH, следующие:

1) выбор основных проектных характеристик и конструктивного облика (компоновочной схемы) РН;

2) поверочный расчет;

3) уточнение проектных характеристик.

Основные этапы разработки аванпроекта, связанные с выбором проектного облика PH, следующие:

- анализ аналогов и обработка статистических материалов по РН;

- разработка тактико-технических требований к проектируемой РН;

- расчёт характеристической скорости;

- выбор компонентов топлива;

- выбор количества ступеней ракеты-носителя, расчет стартовой массы с учетом оптимального распределения масс по ступеням; 26

- расчёт предварительных объёмно-габаритных характеристик РН;

- построение предварительной компоновочной схемы РН;

- проектный расчёт масс элементов конструкций ракетных блоков;

- расчёт центра масс и моментов инерции ракеты-носителя;

- уточнение компоновочной схемы с учетом требований к положению центра давления, отделяющимся элементам и др.

Поверочный расчёт осуществляется с целью проверки возможности достижения ракетой заданной высоты, скорости и направления полёта в конце активного участка траектории при принятых характеристиках РН, включая количество ступеней, силы тяги двигателей и их изменение с высотой полёта, аэродинамических сил и др.

Уточнение проектных характеристик проводится с целью их оптимизации.

Сначала выполняется параметрический анализ влияния основпараметров на тактико-технические характеристики РН. Для ных этого при моделировании осуществляется приращение (как положительное, так и отрицательное) каждого из основных параметров. Причем это приращение производится либо последовательно для каждого отдельного параметра и делаются выводы о степени влияния изменения исследуемых параметров на ТТХ РН, либо изменяются одновременно несколько параметров по определенному плану многофакторного численного эксперимента. Далее по полученным коэффициентам уравнения регрессии делаются выводы о степени влияния изменения исследуемых параметров на ТТХ РН. Степень влияния параметров на TTX PH оценивается с помощью так называемых коэффициентов чувствительности (в некоторой литературе - коэффициентов значимости). Эти коэффициенты представляют собой частные производные функции отклика (значений TTX) по исследуемому параметру.

По результатам параметрического анализа осуществляется изменение параметров в направлении улучшения TTX. Причем такие изменения могут проводиться двумя методами.

Метод последовательного улучшения TTX. Суть этого метода состоит в том, что сначала изменяется параметр с наибольшим коэффициентом чувствительности (или значимости), затем проект уточняется с измененными исходными данными. Далее рассчитываются коэффициенты значимости в новом проекте, изменяется параметр с самым наибольшим коэффициентом чувствительности и т. д. Процесс прекращается, если изменения ТТХ относительно невелики (например, меньше 2-3%).

Метод "движения по градиенту". Суть этого метода состоит в том, что осуществляется приращение сразу всех значимых параметров, причём приращение каждого из параметров происходит пропорционально коэффициенту чувствительности.

С помощью этих методов можно улучшить исходный проект. По сути дела при этом осуществляется приближение к оптимальному решению. Но поскольку оптимального решения в полном смысле этого слова достичь не удается, то принято говорить о так называемых рациональных параметрах, при которых ТТХ РН будут наилучшими с заданной степенью точности. Эти параметры и принимают в качестве проектных характеристик создаваемой ракеты-носителя.

III стадия разработки

Материалы эскизного проекта должны содержать все расчеты по основным системам и элементам, формирующим конструктивнокомпоновочную схему изделия, и обоснования по выбору её оптимального облика, реализующего ТТЗ и заданные по нему лётнотехнические характеристики.

Все параметры и характеристики, приведенные в материалах аванпроекта, должны получить соответствующие подтверждения и обоснования. Графическая часть должна содержать общие виды и теоретические чертежи изделия. Составляются программа обеспечения надежности и комплексный план экспериментальной отработки PH.

Таким образом, эскизный проект отличается более подробной проработкой всех этапов аванпроекта.

В части проработки проектного облика РН эскизный проект включает в себя следующие этапы:

1) выбор состава бортовых систем, принципов их работы;

2) разработка конструктивно-компоновочной схемы;

3) разработка технических заданий на составные части РН (на отдельные ракетные блоки и бортовые системы).

4) согласование характеристик двигательных установок с основными проектными характеристиками РН;

5) расчетно-теоретические работы и выполнение эскизных проектов по основным составным частям ракеты и бортовым системам.

Состав бортовых систем РН и принципы их работы изучаются студентами в других дисциплинах, предшествующих дисциплине «Основы проектирования РН». Ниже приведен лишь типовой состав бортовых систем ракетных блоков:

- системы обеспечения теплового режима;

- системы наддува баков;
- системы одновременного опорожнения баков объёмомерные;
- системы одновременного опорожнения баков расходомерные;
- пневмогидравлические системы ракетных блоков;
- системы подачи топлива в двигатель;
- система регулирования боковой составляющей скорости;
- система регулирования кажущейся скорости;
- система регулирования нормальной составляющей скорости;
- системы крепления и разделения ракетных блоков;
- система крепления и разделения головного обтекателя;

- система крепления и разделения КА.

Конструктивно-компоновочная схема РН является логическим развитием её компоновочной схемы.

В отличие от компоновочной схемы в ККС представлены основные решения по конструкторским и технологическим членениям ракеты и приведены основные размеры сочленяемых элементов. Причём для узлов сочленения здесь отображаются некоторые принципиальные моменты (например, форма шпангоута для крепления полезного груза и обтекателя, форма и габариты силового кольца для крепления рамы двигателя и передачи усилий на корпус ракеты).

В ККС содержатся следующие частные документы:

- теоретические чертежи;
- виды общие;
- общие схемы блоков и РН в целом;
- зона размещения полезного груза под обтекателем;

- схема расположения элементов системы аварийного спасения (если она имеется);

- схема расположения элементов системы крепления и разделения головного обтекателя;

 схема расположения элементов системы крепления и разделения полезного груза;

- схема расположения элементов системы крепления и разделения ракетных блоков и сбрасываемых элементов;

- зоны размещения приборов в приборном отсеке;

- пневмогидравлические схемы двигательных установок ракетных блоков;

- зоны установки элементов ПГС (шаров-баллонов для наддува баков, раструбов наддува, заправочных клапанов, дренажно-предохранительных клапанов и т.п.);

- схема установки датчиков наполнения топливом и датчиков опорожнения баков;

- зоны прокладки кабелей и элементов пневмогидроавтоматики;

- места установки электрических, а также пневмогидроразъёмов;

- схема установки и центровки ракетного двигателя с рамой;

- схема мест установки транспортировочных узлов;

- схема транспортировки ракетных блоков и ракеты в целом;

- схема установки ракеты на стартовое устройство;

- схема крепления ракеты на стартовом устройстве и схема разделения элементов крепления при пуске ракеты и др.

Конструктивно-компоновочная схема в процессе проектирования ракеты постоянно обновляется.

Конструктивно-компоновочная схема служит основой для задания размеров при составлении технических заданий на разработку бортовых систем и их элементов.

Разработка технических заданий на составные части РН проводится на основе состава бортовых систем ракетных блоков и конструктивно-компоновочной схемы. При составлении технических заданий (ТЗ) на составные части РН размеры берутся с ККС с учетом мест расположения и отведенных габаритов. На каждую из бортовых систем разрабатывают отдельное ТЗ.

Некоторые бортовые системы разрабатываются в том же конструкторском бюро (КБ), в котором проектируется РН, а некоторые

разрабатываются в других КБ, специализирующихся по какому-либо направлению (например, система измерения кажущейся скорости на базе гироскопических приборов).

Согласование характеристик двигательных установок с основными проектными характеристиками ракеты-носителя проводится по следующим направлениям:

- выбор схемы ПГС с учётом системы наддува баков;

- согласование температур криогенных компонентов топлива в баках с номинальной температурой на входе в двигатель;

 согласование секундного расхода топлива из баков с параметрами тяги двигателя;

- согласование диаметров трубопроводов баков и диаметров входных патрубков двигателя;

- определение массы газа для наддува баков;

- определение массы и мест расположения шаров-баллонов с запасами сжатого газа, если наддув баков осуществляется не за счёт газификации основных компонентов топлива;

- определение циклограммы давления в баках в процессе выработки топлива и дј

Расчетно-теоретические работы проводятся в полном объёме. Вот некоторые из них:

- расчет и уточнение программы изменения угла наклона траектории;

- выбор расчетных случаев и расчеты на прочность;

- расчет колебаний корпуса РН;

- расчет колебаний жидкости в баках;

- расчет аэродинамических сил на активном участке полета;

- расчет параметров системы управления;

- расчет параметров функционирования пневмогидравлической системы;

- расчет тепловых потоков при прохождении плотных слоев атмосферы;

- расчет показателей надежность и др.

В некоторых случаях осуществляется заимствование бортовых систем, реализованных на других РН. В таких случаях расчетнотеоретические работы проводят в меньшем объеме. После защиты эскизного проекта и открытия финансирования переходят к следующей стадии разработки.

Следует отметить, что при разработке ракет-носителей существенное внимание уделяется экономическим аспектам, которые не являются предметом рассмотрения настоящего учебного пособия и отражены, в частности, в работах [11, 12, 41, 44, 52].

Контрольные вопросы

1. Расскажите об истории создания первых ракет на жидких компонентах топлива.

2. Что Вы знаете о становлении ракетной промышленности СССР и первых космических полётах?

3. Воспроизведите структурную схему ракетно-космического комплекса.

4. Какие основные ракеты-носители мира Вы знаете?

5. Охарактеризуйте стадии разработки ракет-носителей.

6. Расскажите о первой стадии разработки.

7. Какие материалы должен содержать аванпроект?

8. Назовите виды проектных работ на стадии аванпроекта, касающиеся облика РН.

9. Какие материалы должен содержать эскизный проект?

10. Назовите виды проектных работ на стадии эскизного проектирования, касающиеся облика РН.

2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ РАКЕТНОГО ДВИЖЕНИЯ

2.1. Структура многоступенчатой ракеты

Ракетным блоком (или ускорителем) называется каждая отдельная часть ракеты, предназначенная для разгона полезной нагрузки. Масса ракетного блока состоит из массы конструкции и массы топлива.

Ступенью называется соединение ракетных блоков с полезной нагрузкой.

Полезной нагрузкой первой ступени ракеты считается вторая ступень, для второй - третья и т.д. Полезной нагрузкой последней ступени ракеты считается груз, выводимый на заданную орбиту.

В некоторых источниках ступень называют субракетой [9,11].

На рис. 2.1. представлена схема двухступенчатой ракеты с последовательным соединением ракетных блоков (схема "тандем").

Рис. 2.1. Двухступенчатая ракета с последовательным соединением ракетных блоков

На рис. 2.2 представлена схема со сбрасываемыми боковыми двигателями.

Рис. 2.2. Ракета со сбрасываемыми боковыми двигателями

Отделяющиеся в полете двигатели еще называют отделяемыми бустерными приставками [36] или вырожденными ускорителями [40]. Такая схема была реализована при создании американской баллистической ракеты "Атлас" и условно называлась «полутораступенчатой».

На рис. 2.3 представлена схема двухступенчатой ракеты с параллельным соединением ракетных блоков (схема "пакет"). Такая схема реализована на ракете Р-7, ракете-носителе "Энергия М" и др.

Рис. 2.3. Двухступенчатые ракеты с параллельным соединением ракетных блоков

Следует отметить, что второй ступенью ракет с параллельным соединением ракетных блоков (при схеме с одновременным запуском двигателей всех ракетных блоков при старте) считается центральный блок без части топлива, которое было выработано из центрального блока до отделения боковых блоков.

На рис. 2.4 представлена схема трехступенчатой ракеты с параллельным соединением ракетных блоков первой и второй ступеней и последовательным соединением ракетного блока третьей ступени (схема "смешанное соединение" или «трехступенчатый пакет»). Такая схема реализована на ракетах-носителях "Восток", "Союз" и др.

Рис. 2.4. Трехступенчатая ракета со смешанным соединением ракетных блоков

Космический разгонный блок совместно с полезной нагрузкой образует последнюю ступень ракеты-носителя (третью, четвертую или пятую – в зависимости от количества нижних ступеней). Он может соединяться с ракетным блоком нижней ступени так же, как и обычные ракетные блоки, или располагаться в составе космической головной части. Например, разгонный блок «Фрегат», который используется для выведения некоторых типов полезной нагрузки в составе ракеты-носителя «Союз», располагается под головным обтекателем (совместно с полезной нагрузкой).

2.2. Относительные характеристики масс составных частей ракеты

На рис. 2.5 приведена схема, иллюстрирующая составные массы ракеты. С помощью этой схемы упрощается понимание сущности

преобразований для определения соотношений масс ракеты, которые представлены ниже.

Рис. 2.5. Схема, иллюстрирующая составные массы ракеты

Число Циолковского одноступенчатой ракеты z есть отношение начальной массы ракеты m_0 к массе ракеты после выработки топлива m_T (в скобках приведена иллюстрация отношения масс составных частей ракеты):

Число Циолковского z_i *i*-ой ступени многоступенчатой ракеты есть отношение начальной массы *i*-й ступени ракеты m_{0i} к массе *i*-й ступени ракеты после выработки топлива из этой ступени ракеты:
$$z_{i} = \frac{m_{0i}}{m_{0i} - m_{Ti}}.$$
(2.1)

Относительная конечная масса *i-й* ступени ракеты μ_{ki} есть отношение массы ступени после выработки топлива $m_{\dot{\kappa}i}$ (конечной массы ступени) к начальной массе *i-й* ступени ракеты m_{0i} :

$$\mu_{ki} = \frac{m_{ki}}{m_{0i}}.$$
(2.2)

Поскольку $m_{ki} = m_{0i} - m_{Ti}$, то очевидно, что число Циолковского связано с характеристикой μ_{ki} следующим соотношением:

$$z_i = \frac{1}{\mu_{ki}}.$$

Текущее значение *относительной массы i-й ступени ракеты* (в любой момент времени её полёта после выработки части топлива):

где $m_i(t)$ - текущее значение массы і-й ступени ракеты.

Конструктивная характеристика *i*-го ракетного блока s_i есть отношение массы *i*-го ракетного блока m_{Ei} , заполненного топливом, к массе конструкции *i*-го ракетного блока m_{Ki} (без топлива):

$$s_{i} = \frac{m_{Bi}}{m_{Ki}} \qquad (2.4)$$

$$MJM \quad s_{i} = \frac{m_{Bi}}{m_{Bi} - m_{Ti}} \qquad (2.5)$$

Еще одной важной характеристикой ракеты-носителя и ее ступеней является отношение начальной массы *i*-й ступени ракеты m_{0i} к массе полезной нагрузки *i*-й ступени $m_{\Pi H i}$ [9]:

$$p_i = \frac{m_{0i}}{m_{\Pi H i}}.$$
 (2.6)

Следует отметить, что полезной нагрузкой *i*-й ступени ракеты является i+1-я ступень той же ракеты, а полезной нагрузкой последней ступени ракеты $m_{\Pi H}$ является космический аппарат (или космический комплекс с разгонными блоками).

Очевидно, что для многоступенчатой ракеты справедливо следующее выражение:

$$p_{0} = \frac{m_{0}}{m_{\Pi H}} = \frac{m_{0}}{m_{02}} \cdot \frac{m_{02}}{m_{03}} \cdot \dots \cdot \frac{m_{0n}}{m_{\Pi H}} = p_{1} \cdot p_{2} \cdot \dots \cdot p_{n}, \qquad (2.7)$$

где *p*₀ - отношение начальной массы ракеты (первой ступени) к массе полезной нагрузки;

 m_0 , m_{02} , m_{03} - начальные массы первой, второй и третьей ступеней ракеты;

*m*_{0*n*} - масса последней ступени ракеты;

*p*₁, *p*₂, *p_n* - отношение масс соответственно первой, второй и *n*-й ступеней ракеты к массам их полезных нагрузок соответственно.

2.3. Функциональная связь между относительными характеристиками масс составных частей ракеты

В качестве исходной зависимости для получения функциональной связи между относительными характеристиками масс составных частей ракеты будем использовать формулу для расчета конструктивной характеристики ракетного блока, то есть формулу (2.4).

Учитывая, что масса *i*-го ракетного блока m_{Si} равна разности между начальной массой *i*-й ступени m_{0i} и массой полезной нагрузки той же ступени $m_{\Pi Hi}$, а масса конструкции *i*-го ракетного блока m_{Ki}

равна разности между конечной массой *i*-й ступени m_{ki} и массой полезной нагрузки *i*-ступени $m_{\Pi H i}$ (см. рис. 2.5), формулу (2.4) можно представить в следующем виде:

Поделив числитель и знаменатель правой части этой зависимости на начальную массу *i*-го ракетного блока m_{0i} и учитывая выражения (2.2) и (2.6), получим следующее соотношение:

$$s_{i} = \frac{m_{0i} - m_{\Pi H i}}{m_{k i} - m_{\Pi H i}} = \frac{\frac{m_{0i}}{m_{0i}} - \frac{m_{\Pi H i}}{m_{0i}}}{\frac{m_{k i}}{m_{0i}} - \frac{m_{\Pi H i}}{m_{0i}}} = \frac{1 - \frac{1}{p_{i}}}{\frac{1}{z_{i}} - \frac{1}{p_{i}}} = z_{i} \frac{p_{i} - 1}{p_{i} - z_{i}}.$$

Разрешаем это уравнение относительно параметра p_i , получим

$$p_i = z_i \cdot \frac{s_i - 1}{s_i - z_i}.$$
 (2.8)

Это и есть искомая связь между относительными характеристиками масс составных частей ракеты.

2.4. Характеристические скорости ракеты

Располагаемая характеристическая скорость V_X^{pacn} - скорость ракеты, которую она приобрела бы после выработки всего топлива при прямолинейном движении в безвоздушном пространстве и без воздействия сил тяготения небесных тел [10]. В работе [15] такая скорость называется идеальной скоростью ракеты V_{Xud} . Эту скорость можно рассчитать по формуле, выведенной К. Э. Циолковским (формула Циолковского):

$$V_X^{pacn} = \sum_{i=1}^N w_i \cdot \ln z_i$$
 или $V_X^{pacn} = -\sum_{i=1}^N w_i \cdot \ln \mu_{ki}$, (2.9)

где *w_i* - эффективная скорость истечения газов из сопла двигателя *i*-й ступени;

z, – число Циолковского *і*-й ступени;

N -количество ступеней PH;

 μ_{ki} - относительная конечная масса *i*-й ступени ракеты, которая определяется выражением (2.2).

Для проектных расчетов используют также и другие характеристические скорости, приведенные ниже [10].

Идеальная потребная характеристическая скорость V_{Xud}^{nomp} - скорость, которую нужно сообщить у поверхности Земли мгновенным импульсом полезной нагрузке, чтобы она вышла на заданную орбиту с заданной скоростью без учета потерь из-за сопротивления атмосферы.

Эта скорость учитывает изменение потенциальной энергии ракеты и может быть рассчитана из закона сохранения энергии в центральном поле тяготении [10]. В частности, для вывода полезной нагрузки на околоземную круговую опорную орбиту с радиусом r_{oo} идеальная потребная характеристическая скорость может быть подсчитана по следующей зависимости [10]:

$$V_{Xuo}^{nomp} = \sqrt{\frac{\mu_3}{r_{oo}} \left(\frac{2r_{oo}}{R_3} - 1\right)},$$
(2.10)

где $\mu_3 = 3,986 \cdot 10^5 \ \kappa m^3 / c^2$ - гравитационная постоянная Земли;

 $R_3 = 6371, 4 \ \kappa M$ - средний радиус Земли.

Потребная характеристическая скорость V_X^{nomp} - скорость, которая необходима для обеспечения вывода на орбиту или сообщения полезной нагрузке заданного вектора скорости в заданной точке космического пространства с учетом всех потерь:

$$V_{\chi}^{nomp} = V_{\chi_{ud}}^{nomp} + \Delta V , \qquad (2.11)$$

где ΔV - потери скорости. 40 Удельный импульс является одной из важнейших совместных характеристик топлива и двигателя. Удельный импульс выражается следующим соотношением:

$$J_{yv} = \frac{R}{\tilde{m}}, \qquad (2.12)$$

где *R* – сила тяги двигателя;

m - расход топлива в единицу времени.

Размерность удельного импульса выражается в м/с:

$$\frac{H}{\kappa c_c} = \frac{\kappa c \cdot M/c^2}{\kappa c_c} = \frac{M}{c}.$$

Поскольку размерность удельного импульса такая же, как и размерность скорости (м/с), то эту характеристику еще называют условно скоростью истечения газа из сопла двигательной установки w, то есть $J_{w} = w$.

В специальной литературе, выпущенной ранее, чем была принята система СИ, использовали характеристику «удельная тяга», которая равна отношению тяги двигателя R к секундному расходу веса топлива \dot{G} :

$$P_{yo} = \frac{R}{\dot{G}} \, .$$

Размерность удельной тяги выражается в секундах:

$$\left[\frac{\kappa\Gamma c}{\kappa\Gamma c/c}=c\right].$$

Связь между удельным импульсом и удельной тягой определяется следующим очевидным соотношением:

$$J_{y0} = w = P_{y0} \cdot g_0, \qquad (2.13)$$

где g_0 - ускорение земного тяготения на поверхности Земли.

Как было отмечено в работе [13], удельную тягу в некоторых источниках иногда называют удельным импульсом. Путаница в терми-

нологии может привести к проектным ошибкам. Поэтому при работе со старой литературой прежде всего необходимо обращать внимание на размерность удельных импульсов.

Удельный импульс топлива и двигателя зависит от высоты полета летательного аппарата. Рассмотрим этот вопрос подробнее.

2.6. Влияние атмосферного давления на тягу ракетного двигателя

Тяга двигателя с учетом сил, возникающих на срезе сопла двигателя от давления атмосферы, составляет

$$R = R_n - F_c \cdot p(y) = R_n - (F_c \cdot p_0) \frac{p(y)}{p_0},$$
(2.14)

где R_n – тяга двигателя в пустоте;

р₀ - давление на поверхности Земли;

F_c - площадь среза сопла двигателя;

p(y) - давление на высоте y.

Здесь учтен тот факт, что давление атмосферы через сверхзвуковую струю газов на срез сопла двигателя не передается.

Учитывая, что произведение площади сопла двигателя на давление атмосферы на уровне поверхности Земли равно разности тяги двигателя в пустоте и тяги двигателя на уровне поверхности Земли, то есть $F_c p_0 = (R_n - R_0)$, где R_0 – тяга двигателя у поверхности Земли, выражение (2.14) можно представить в следующем виде:

$$R = R_n - (R_n - R_0) \frac{p(y)}{p_0}.$$
(2.15)

Можно условно считать, что от высоты полета зависит скорость истечения газов из сопла двигателя (или удельный импульс):

 $w_n = J_{yoll} = \frac{R_n}{m}$ - скорость истечения газов из сопла двигателя (или удельный импульс) в пустоте;

 $w_0 = J_{y00} = \frac{R_0}{\dot{m}}$ - скорость истечения газов из сопла двигателя (или

удельный импульс) на поверхности Земли.

Выражение (2.15) также можно представить в виде

$$R = R_0 \left[\frac{R_n}{R_0} - \frac{(R_n - R_0) p(y)}{R_0 p_0} \right] = R_0 \left[k_g - (k_g - 1) \frac{p(y)}{p_0} \right],$$

где $k_{a} = \frac{R_{a}}{R_{0}}$ - коэффициент высотности двигателя.

Если в полученном выражении положить $p(y) = p_0$ (на поверхности Земли), то тяга двигателя составит $R = R_0$, если p(y) = 0 (в пустоте), то $R = k_s R_0$.

2.7. Скорость ракеты с учетом реальных условий полета

Примем следующие допущения.

1. Ускорение земного тяготения для высот выведения КА на низкие орбиты (до 200 км) не зависит от высоты полета, то есть $g = g_0$, где g_0 - ускорение на поверхности Земли.

2. Поле тяготения для первой ступени ракеты – плоскопараллельное, то есть влиянием кривизны поверхности Земли на участке полёта первой ступени ракеты пренебрегаем.

3. Угол атаки α (в пределах 0...5°) слабо влияет на скорость полета ракеты, то есть $\cos \alpha \approx 1$.

Составим уравнения движения ракеты как материальной точки с учетом принятых допущений. Схема сил, действующих на ракету на активном участке траектории, представлена на рис. 2.6.

На этой схеме введены следующие обозначения: Oxy – система координат; R - сила тяги двигателя; X_a - сила лобового сопротивления; G - сила земного притяжения ракеты; θ - угол наклона траектории ракеты к линии горизонта; V - вектор скорости ракеты.

Рис. 2.6. Схема для составления дифференциальных уравнений движения ракеты на активном участке траектории

Дифференциальные уравнения движения с учетом принятых допущений будут следующими:

$$\frac{dV}{dt} = \frac{R - X_a}{m} - g_0 \sin \theta$$

$$\frac{dy}{dt} = V \sin \theta$$

$$\frac{dx}{dt} = V \cos \theta$$
(2.16)

Для решения этой системы уравнений не хватает уравнения, определяющего угол наклона траектории θ в каждый момент времени полета ракеты. Поэтому будем предполагать, что при полете ракеты реализуется типовая программа изменения угла наклона траектории θ , которая будет рассмотрена подробнее позже.

Считаем, что масса ракеты изменяется по следующему закону:

$$m = m_0 - \dot{m}t$$
, (2.17)

где *m* - расход топлива в единицу времени (секундный расход топлива).

Тяга двигателя определяется выражением (2.14). 44

Сила аэродинамического сопротивления

$$X_a = c_x q F_{\mu}, \qquad (2.18)$$

где с, - коэффициент лобового сопротивления ракеты;

q - скоростной напор;

*F*_и - площадь миделя ракеты.

Проинтегрируем первое из уравнений системы (2.16) с учетом выражений (2.14), (2.17) и (2.18) [19]:

$$V = \int_{0}^{t_{h}} \left(\frac{R - X_{a}}{m} - g_{0} \sin \theta \right) dt =$$

= $\int_{0}^{t_{h}} \left(\frac{R_{n}}{m} - \frac{F_{c} \cdot p(y)}{m} - \frac{X_{a}}{m} - g_{0} \sin \theta \right) dt =$
= $\int_{0}^{t_{h}} \frac{R_{n}}{m} dt - \int_{0}^{t_{h}} g_{0} \sin \theta dt - F_{M} \int_{0}^{t_{h}} \frac{c_{x} q}{m} dt - F_{c} \int_{0}^{t_{c}} \frac{p(y)}{m} dt$, (2.19)

где t_{μ} - время окончания работы двигателей ракеты.

С помощью этого выражения можно рассчитать скорость ракеты к моменту времени t_k в условиях полета, близких к реальным.

2.8. Типовая приближенно-оптимальная программа изменения угла наклона траектории ракеты

Программу изменения угла наклона траектории первой ступени ракеты выбирают, исходя из следующих принятых ограничений [10, 11, 15, 19, 22].

1. Старт ракеты-носителя - вертикальный (по соображениям минимизации затрат массы конструкции корпуса ракеты на реализацию свойств прочности этого корпуса).

Продолжительность этого участка $(0...t_p)$ определяется достижением такой скорости ракеты, при которой возможен разворот ракеты с помощью аэродинамических сил $(t_p$ – время начала разворота). Из статистики такая скорость составляет $V_l = 25...50$ м/с. Угол атаки на

этом участке до разворота ракеты должен быть равным нулю $\alpha(t) = 0$.

2. Закон изменения угла наклона траектории $\theta(t)$ - непрерывный. Кроме того, непрерывными также должны быть угловые скорости $\dot{\theta}(t)$ изменения этого угла. Причем угловые ускорения $\ddot{\theta}(t)$ ограничены моментом сил, который могут создать рулевые органы ракеты-носителя.

3. При прохождении околозвукового диапазона скоростей (M = 0, 8...1, 2) угол атаки также равен нулю $\alpha(t) = 0$. Это ограничение связано с резким изменением производных от коэффициентов подъемной силы по углу атаки при прохождении через скорость звука и, следовательно, с резким изменением подъемной силы.

4. Сверхзвуковой диапазон скоростей в диапазоне чисел Маха M = 1, 2...2, 0, который соответствует прохождению ракетой максимального скоростного напора примерно на высотах 10..12 км, ракета также должна проходить при углах атаки, близких к нулю $\alpha(t) = 0$. Это ограничение также связано с ограничениями по несущей способности корпуса ракеты по прочности (иначе корпус ракеты необходимо делать более прочными, следовательно, более тяжелым).

5. Отделение ракетных блоков (разделение ступеней ракеты) и сброс головного обтекателя, с целью обеспечения надежного (безударного) отделения, должны производиться при малых скоростных напорах. Практически это ограничение приводит к тому, что разделение первой и второй ступеней должно происходить на высоте не менее 50 км.

Описание типовой приближенно-оптимальной программы изменения угла наклона траектории первой ступени ракеты приведено ниже.

1. Вертикальный участок. На этом участке угол атаки равен нулю, а угол наклона траектории равен $\theta(t) = 90^{\circ}$. Этот участок кончается при достижении ракетой скорости V₁ = 50 м/с (соответствующее время полета t_p). 2. Участок начального и гравитационного разворота ракеты по плавной параболической кривой с учетом того, что в конце работы первой ступени угол наклона траектории должен быть равен некоторому значению, которое является оптимальным для начала работы второй ступени ракеты. Функция изменения программного угла наклона траектории на участке начального и гравитационного разворота ракеты на интервале времени $(t_p \le t \le t_{1\kappa})$ принимается следующей:

$$\theta(t) = \frac{(\pi/2 - \theta_{1k})}{(t_{1k} - t_p)^2} (t_{1k} - t)^2 + \theta_{1k}, \qquad (2.20)$$

где θ_{lk} - значение угла наклона траектории в конце работы первой ступени;

*t*_{1*k}</sub> - время окончания работы первой ступени ракеты;</sub>*

t_p - время начала разворота первой ступени ракеты;

t - текущее время полета первой ступени ракеты.

Замечаем, что при $t = t_p$ угол наклона траектории равен 90 градусам, $\theta(t_p) = \pi/2$, а при $t = t_{1k}$ этот угол становится равным углу наклона траектории в конце полета первой ступени, $\theta(t_{1k}) = \theta_{1k}$.

График этой зависимости представлен на рис. 2.7 в пределах времени полета ракеты от t_p до t_{1k} .

Угол наклона траектории на участке полета второй ступени на интервале времени полета ракеты $(t_{1k} \le t \le t_{2k})$, где t_{2k} - время окончания полета второй ступени, изменяется по линейному закону от θ_{1K} до θ_{2K} :

$$\theta(t) = \theta_{1k} - \frac{(\theta_{1k} - \theta_{2k})}{(t_{2k} - t_{1k})} (t - t_{1k}).$$
(2.21)

где θ_{2k} - значение угла наклона траектории в конце работы второй ступени;

*t*_{2k} - время окончания полета второй ступени.

Рис. 2.7. График изменения программного угла наклона траектории для типовой приближенно-оптимальной траектории РН

Замечаем, что при $t = t_{1k}$ угол наклона траектории равен конечному углу в конце работы первой ступени $\theta(t_{1k}) = \theta_{1k}$, а при $t = t_{2k}$ этот угол становится равным углу наклона траектории в конце полета второй ступени $\theta(t_{2k}) = \theta_{2k}$.

Для двухступенчатой ракеты конечный угол наклона траектории второй ступени, если вывод полезной нагрузки осуществляется на круговую орбиту, должен быть равным нулю $\theta_{2k} = 0$. Тогда из выражения (2.21), в частности, можно получить

$$\begin{aligned} \theta(t) &= \theta_{1k} - \frac{\left(t - t_{1k}\right)}{\left(t_{2k} - t_{1k}\right)} \theta_{1k} = \theta_{1k} \left(1 - \frac{\left(t - t_{1k}\right)}{\left(t_{2k} - t_{1k}\right)}\right) = \\ &= \theta_{1k} \left(\frac{t_{2k} - t_{1k} - t + t_{1k}}{t_{2k} - t_{1k}}\right) = \theta_{1k} \left(\frac{t_{2k} - t}{t_{2k} - t_{1k}}\right). \end{aligned}$$

Программа изменения угла наклона траектории на участке полета **третьей ступени** на интервале времени полета ракеты $(t_{2\kappa} \le t \le t_{3\kappa})$, где t_{3k} - время окончания полета третьей ступени, также должна соответствовать линейному закону от угла наклона траектории в конце работы второй ступени θ_{2k} до угла наклона траектории в конце работы третьей ступени θ_{3k} :

$$\theta(t) = \theta_{2k} - \frac{(\theta_{2k} - \theta_{3k})}{(t_{3k} - t_{2k})} (t - t_{2k}).$$
(2.22)

В частности, для трехступенчатой ракеты, если вывод полезной нагрузки осуществляется на круговую орбиту, конечный угол наклона траектории должен быть равным нулю $\theta_{3k} = 0$ и формулу (2.22), по аналогии со случаем с двухступенчатой ракетой, можно привести к следующему виду:

$$\theta(t) = \theta_{2k} \left(\frac{t_{3k} - t}{t_{3k} - t_{2k}} \right).$$

Следует также отметить, что в приведенной приближеннооптимальной программе изменения угла наклона траектории отсутствуют участки "выдерживания" перед разделением ступеней, так как они слабо влияют на результирующую скорость ракеты.

Параметры θ_{1k} и θ_{2k} считаются варьируемыми при решении оптимизационной задачи по выбору программы угла наклона траектории. В первом приближении для двухступенчатой ракеты можно брать $\theta_{1k} \approx 25...40^{\circ}$, а для трехступенчатой ракеты

 $\theta_{2k} \simeq (0, 15...0, 25) \theta_{1k} \,. \tag{2.23}$

На последующих этапах проектирования ракеты-носителя оптимизируется уже не программа наклона траектории, а программа изменения угла тангажа с учетом изменения углов атаки при управлении ракетой.

Следует отметить, что в приведенных выше рассуждениях нигде не использовались стартовая масса ракеты или масса полезной нагрузки, так как оптимальная программа изменения угла наклона траектории нечувствительна к этим параметрам. В этой связи уместно говорить о семействе подобных ракет-носителей, запускаемых по типовой приближенно-оптимальной траектории.

2.9. Уравнения движения РН для поверочных расчётов

Рассмотренная выше система уравнений движения РН (2.16) использовалась для выделения и анализа основных проектных характеристик. В уравнения этой системы входят углы наклона траектории, которые изменяются во времени. Наименьшие потери скорости РН будут тогда, когда ракета движется по оптимальной траектории.

Однако проблема состоит в том, что оптимальная траектория не всегда может быть реализована с конкретными характеристиками тяги двигателей и управляющих органов. При недостаточной силе тяги двигателей ракета вообще может не выйти на орбиту. Поэтому необходимы поверочные расчёты характеристик движения РН.

Для реализации оптимальной программы изменения угла наклона траектории в процессе вывода РН на заданную орбиту необходимо управлять ракетой. Управление РН, как правило, реализуется с помощью программы изменения угла тангажа (или изменения угла атаки) и циклограммы изменения силы тяги двигателей. Поэтому для поверочных расчётов в уравнения движения должны входить именно эти параметры.

Уравнения движения PH, которые учитывают достаточно полный набор основных факторов, влияющих на параметры движения PH, известны и представлены, например, в работах [11, 57]. Однако на начальных этапах проектирования многие конструктивные характеристики ракеты и двигателей либо вовсе неизвестны, либо известны весьма приближенно. Из-за отсутствия точных сведений о силах и моментах, действующих на ракету, о характеристиках автомата стабилизации, циклограммах работы двигателей и т.п. можно ограничиться точностью по скорости и высоте полета, характеризуемой ошибкой в 3—5% [11].

Чтобы обеспечить такую точность, используют упрощенные уравнения движения ракеты на активном участке, в которых отброшены или усреднены члены уравнений, мало влияющие на высоту и скорость полёта. На начальном этапе проектирования ракеты допускается рассматривать её движение относительно неподвижной Земли. Учет влияния вращения Земли и географических координат старта производится на последующих этапах проектирования. Поскольку силы и моменты, вызывающие боковое движение ракеты, малы, то ими можно пренебречь и считать движение ракеты на активном участке плоским. Влиянием вращательного движения ракеты на поступательное движение центра масс также можно пренебречь.

На рис. 2.8 представлена система сил, действующих на ракету на активном участке траектории (А₀ - центр земного шара).

Рис. 2.8 - Система сил, действующих на ракету на активном участке траектории

Для приближенного решения используются упрощенные системы уравнений движения, получаемые при следующих допущениях:

- ускорение силы тяжести в диапазоне высот активного участка траектории может считаться постоянным по абсолютной величине, но направленным к центру Земли;

- углы атаки малы и поэтому:

 $\sin \alpha \approx \alpha$; $\cos \alpha \approx 1$; $X(V,h,\alpha) \approx X(V,h)$;

- программа движения ракеты на активном участке траектории задана в виде зависимости $\theta_{\rm np}(t)$, где θ - угол наклона вектора скорости к местному горизонту (см. рис. 2.8).

Тогда система уравнений движения ракеты в проекциях на оси скоростной системы координат примет вид [11, 57]:

$$m(t)\frac{dV}{dt} = P(h) - X(V,h) - m(t)g_0 \sin \vartheta;$$

$$m(t)V\frac{d\vartheta}{dt} = P(h)\alpha + Y^2(V,h) - m(t)g_0\left(1 - \frac{V^2}{g_0(R+h)}\right)\cos\vartheta;$$

$$\frac{dh}{dt} = V \sin \vartheta;$$

$$\frac{d\eta}{dt} = \frac{V}{R+h}\cos\vartheta;$$

$$\varphi = \varphi_{np}(t),$$

(2.24)

где m(t) - текущее значение массы ракеты;

P(h) - суммарная тяга двигателей, направленная по продольной оси ракеты;

X, *Y* - соответственно сила лобового сопротивления и подъемная сила ракеты;

g - текущее значение ускорения силы притяжения Земли;

 φ - угол тангажа, измеренный между продольной осью ракеты и горизонтом старта;

 $\varphi_{np}(t)$ - программное значение угла тангажа;

 α - угол атаки;

h - высота ракеты над поверхностью Земли;

52

θ - угол наклона вектора скорости к горизонту старта;

 η - полярный угол;

 $R = 6371 \,$ км - средний радиус земного шара.

Примерный характер изменения угла тангажа и угла атаки в процессе полёта двухступенчатой РН показан на рис. 2.9.

Рис. 2.9. Характер изменения угла тангажа и угла атаки по времени полёта РН

Аэродинамические коэффициенты C_x и C_y^{α} , необходимые для определения аэродинамических сил, зависят от формы и размеров корпуса ракеты. На ранних стадиях проектирования для ракетносителей с конической частью головного обтекателя, все ступени которых имеют одинаковый диаметр, могут использоваться следующие зависимости для определения C_x и C_y^{α} [11]:

$$C_{x} = \begin{cases} 0.29, & 0 \le M \le 0.8\\ M - 0.51, & 0.8 \le M \le 1.068\\ 0.091 + 0.5M^{-1} & M \ge 1.068 \end{cases}$$
(2.25)
$$C_{y}^{\alpha} = \begin{cases} 2.8 & 0 \le M \le 0.25\\ 2.8 + 0.447(M - 0.25) & 0.25 \le M \le 1.1\\ 3.18 - 0.660(M - 1.1) & 1.1 \le M \le 1.6\\ 2.85 + 0.350(M - 1.6) & 1.6 \le M \le 3.6\\ 3.55 & M \ge 3.6 \end{cases}$$
(2.26)

В этих выражениях М - число Маха.

С помощью интегрирования приведённых уравнений проверяется возможность реализации тактико-технических характеристик ракеты-носителя (высоты полета, вектора скорости в конце активного участка траектории и т.п.) при принятых проектных характеристиках ракеты (стартовой массе ракеты, количестве ступеней, компонентов топлива и их масс, масс составных частей ракетных блоков и т.д.).

Если заданные тактико-технические характеристики не достигаются, то производится коррекция проекта.

Контрольные вопросы

1. Расскажите о структуре многоступенчатой ракеты.

2. Приведите относительные характеристики масс составных частей ракеты.

3. Приведите функциональную связь между относительными характеристиками масс составных частей ракеты.

4. Какие характеристические скорости ракеты Вы знаете?

5. Что такое удельный импульс?

6. Как влияет атмосферное давление на тягу ракетного двигателя?

7. Составьте выражение для скорости ракеты с учетом реальных условий полета.

8. Приведите типовую приближенно-оптимальную программу изменения угла наклона траектории ракеты и поясните отдельные участки этой программы.

9. Для какой цели выполняются поверочные расчёты характеристик движения РН?

10. Приведите примерный график изменения угла атаки и угла тангажа по времени полёта РН.

3. ХАРАКТЕРИСТИКИ И ОСНОВНЫЕ ПРОЕКТНЫЕ ПАРАМЕТРЫ РАКЕТ-НОСИТЕЛЕЙ

3.1. Характеристики ракет-носителей

Характеристики ракет-носителей можно разделить на три группы: - летно-технические;

- массогабаритные и энергетические;

- критериальные.

К *основным летно-техническим* характеристикам ракетносителей относят:

- массу полезной нагрузки;

- высоты орбит;

- точность выведения полезной нагрузки в заданную точку пространства по высотам, вектору скорости и времени;

- время для подготовки и осуществления запуска.

К *частным летно-техническим* характеристикам ракетыносителя относят:

- программу угла наклона траектории;

- углы тангажа и углы атаки в процессе полета;

- скорость полета ракеты в произвольный момент времени;

- значение массы ракеты-носителя в произвольный момент времени;

- значения коэффициентов перегрузок.

Характеристики, связанные с динамикой полета ракетыносителя, называют также *проектно-баллистическими параметрами*.

Летно-технические характеристики задаются в техническом задании на разработку ракетно-космического комплекса.

К *основным массогабаритным и энергетическим* характеристикам ракет-носителей относят:

- стартовую массу ракеты и ее габариты;

55

- количество ступеней;

- схему соединения ступеней (тандем, пакет или смешанная схема);

- массы и габариты составных частей ракеты (отдельных ступеней или ракетных блоков);

- тягу двигателей каждой ступени;

- тип разделения ракетных блоков (холодное, горячее, смешанное);

- тип старта (со стационарных космодромов, плавучих платформ, с тяжелых самолетов).

К *частным массогабаритным и энергетическим* характеристикам ракет-носителей относят:

- энергетические возможности топлива каждой ступени (удельный импульс);

- массу окислителя и горючего каждого ракетного блока;

- массу конструкции каждого ракетного блока;

- высотность двигателей (степень расширения сопла).

При более детальном проектировании могут рассматриваться массогабаритные характеристики составных частей корпуса ракеты (приборного отсека, баков, межбаковых отсеков, хвостовой части корпуса, двигательной установки и пр.).

К обобщенным критериальным характеристикам (или показателям) ракет-носителей относят характеристики, с помощью которых производится выбор лучшего варианта из представленных альтернативных вариантов ракет-носителей, предлагаемых к разработке или модернизации. К таким характеристикам относят:

- экономическую эффективность создания ракетно-космического комплекса;

- стоимость создания ракеты-носителя;

- доход от эксплуатации ракетно-космического комплекса.

К *критериальным характеристикам* (или показателям эффективности) ракет-носителей относят:

- степень влияния используемого топлива на экологию;

- стоимость проектных работ по созданию ракеты-носителя;

- стоимость создания опытных образцов;

- стоимость проведения наземных автономных, комплексных испытаний;

- стоимость проведения летных испытаний;

- стоимость серийного производства ракет;

- стоимость постановки ракет на эксплуатацию и т.п.

К *частным критериальным характеристикам* ракетносителей можно отнести:

- массу ракеты при заданной полезной нагрузке (чем меньше масса, тем, как правило, меньше стоимость ее разработки, испытаний, производства и эксплуатации);

- плотность компоновки ракеты или ее среднюю плотность (чем больше плотность компоновки ракеты, тем меньше ее габариты и, как правило, меньше масса конструкции и ракеты в целом);

- характеристическую скорость ракеты при фиксированной стартовой массе ракеты (чем больше скорость ракеты, тем ракета совершеннее);

- энергопотребление бортовых систем (чем меньше мощность электрических систем, тем меньше масса системы электропитания) и др.

Для составных частей ракетных блоков в качестве частных критериев эффективности можно использовать массу и габариты приборного отсека, баков, межбаковых отсеков, хвостового отсека, двигательной установки и энергопотребление отдельных бортовых систем.

3.2. Основные проектные параметры ракеты

Из большого числа массогабаритных, энергетических и других проектных характеристик ракеты можно выделить ограниченное число характеристик, обеспечение которых гарантирует выполнение заданных летно-технических характеристик независимо от влияния других, менее значимых характеристик. Такие характеристики, если они варьируются в процессе поиска оптимальных характеристик, принято называть основными проектными параметрами.

Использование основных проектных параметров сводит к минимуму количество варьируемых параметров на начальных этапах проектирования и позволяет вырваться из так называемого замкнутого круга неопределенности, когда многие проектные характеристики еще не определены.

3.3. Выбор основных проектных параметров ракеты

Для выбора основных проектных параметров ракеты необходимо установить связь между летно-техническими параметрами ракеты, задаваемыми тактико-техническими требованиями, и проектнобаллистическими параметрами.

Для установления этой связи проведем анализ выражения (2.19). Это выражение можно представить в следующем виде [10, 19, 22]:

$$V = V_{u\partial} - V_G - V_A - V_R, \qquad (3.1)$$

где
$$V_{\mu\delta} = \int_{0}^{t_{k}} \frac{R_{n}}{m} dt$$
 (3.2)

- идеальная (характеристическая) скорость ракеты;

$$V_G = \int_0^t g_0 \sin\theta \, dt \tag{3.3}$$

- потеря скорости ракеты от действия гравитационных сил;

$$V_A = F_M \int_0^{t_h} \frac{c_x q}{m} dt \tag{3.4}$$

- потеря скорости ракеты от действия аэродинамических сил;

$$V_R = F_c \int_0^{t_x} \frac{p(y)}{m} dt$$
(3.5)

- потеря скорости ракеты от действия сил, возникающих при изменении давления воздуха на срезе сопла ракетного двигателя с высотой полета.

Выражение (3.5) также можно представить через другие составляющие (см. формулы (2.14) и (2.15)):

$$V_{R} = \int_{0}^{t_{1}} \frac{(R_{n} - R_{0})}{m} \cdot \frac{p(y)}{p_{0}} dt .$$
(3.5 a)

В некоторых преобразованиях иногда удобнее пользоваться именно последней формой записи.

Рассмотрим более подробно каждую составляющую скорости ракеты [10, 19].

3.3.1. Основные проектные параметры, полученные из анализа идеальной скорости ракеты

Рассмотрим первое слагаемое выражения (3.1), а именно выражение (3.2), и покажем, что оно действительно соответствует идеальной (характеристической) скорости ракеты.

Тяга двигателя в пустоте связана с удельным импульсом в пустоте $J_{y\partial n}$ и расходом топлива в единицу времени *m* следующим соотношением (полученным из выражения (2.12)):

$$R_n = J_{y\partial n} \, \dot{m} \,. \tag{3.6}$$

Тогда выражение (3.2) можно привести к следующему виду:

$$V_{uo} = \int_{0}^{t_{y}} \frac{R_{n}}{m} dt = \int_{0}^{t_{y}} \frac{J_{yon} \dot{m}}{m} dt = J_{yon} \int_{0}^{t_{y}} \frac{\dot{m}}{m} dt.$$

Проведем замену переменных. Для этого сделаем выкладки в следующей последовательности:

$$m = m_0 - \dot{m}t; \qquad (3.7)$$

$$\frac{dm}{dt} = -\dot{m};$$

$$\dot{m}dt = -dm.$$

При t = 0 $m = m_0$; при $t = t_k$ $m = m_k$.

Продолжим преобразование интеграла:

$$V_{u\partial} = J_{y\partial n} \int_{m_0}^{m_k} \frac{-dm}{m} = -J_{y\partial n} \ln \frac{m}{m_0} = -J_{y\partial n} \left(\ln m_k - \ln m_0 \right) =$$
$$= -w_n \ln \frac{m_k}{m_0} = -w_n \ln \mu_k, \qquad (3.8)$$

где m_0 и m_k - начальная и конечная массы ракеты соответственно;

 $\mu_k = \frac{m_k}{m_0}$ - отношение конечной массы ракеты к ее начальной массе.

Выражение (3.8) равносильно зависимости

$$V_{u\partial} = w_n \ln z . \tag{3.9}$$

59

Напомним, что число Циолковского связано с параметром μ_k соотношением

$$z=\frac{1}{\mu_k}.$$

Таким образом, первый член зависимости (3.1) действительно соответствует идеальной скорости ракеты.

Из выражения (3.8) также следует, что к основным проектным параметрам следует отнести удельный импульс в пустоте $J_{y\partial n}$, отношение конечной массы ракеты к ее начальной массе μ_{k} .

Вместо характеристики μ_k можно использовать число Циолковского *z*.

В качестве основных проектных параметров вместо числа Циолковского можно использовать отношение начальной массы к массе полезной нагрузки p_i и конструктивную характеристику ракетного блока s_i .

Это следует из соотношения (2.8), из которого можно получить выражение

$$z_i = p_i \frac{s_i - 1}{s_i - p_i},$$

связывающее число Циолковского с параметрами p_i и s_i .

3.3.2. Основные проектные параметры, полученные из анализа потери скорости ракеты от действия гравитационных сил

Рассмотрим выражение (3.3), которое характеризует потери скорости ракеты от действия гравитационных сил.

Введем для удобства проведения математических выкладок так называемое идеальное время работы двигателя ракеты, как бы состоящей только из одного топлива:

$$T_{u\partial} = \frac{m_0}{\dot{m}} \,. \tag{3.10}$$

60

Отношение массы ракеты в любой момент времени к начальной массе ракеты можно выразить также через идеальное время работы двигателя:

$$\mu(t) = \frac{m(t)}{m_0} = \frac{m_0 - \dot{m}t}{m_0} = 1 - \frac{\dot{m}}{m_0}t = 1 - \frac{t}{\frac{m_0}{\dot{m}}} = 1 - \frac{t}{T_{u\partial}}.$$
 (3.11)

Проведем замену переменной t в интеграле (3.3) на переменную $\mu(t)$. Для этого выразим переменную t из уравнения (3.11):

$$t = T_{\mu\nu} \left[1 - \mu(t) \right]. \tag{3.12}$$

Отсюда

$$dt = -T_{\mu\partial} d\mu . \tag{3.13}$$

Если t = 0, то $\mu = 1$; если $t = t_k$, то $\mu = \mu_k$.

Тогда выражение для определения потери скорости ракеты от действия гравитационных сил получится следующим:

$$V_{G} = \int_{0}^{t_{k}} g_{0} \sin \theta \, dt = -T_{u\partial} g_{0} \int_{1}^{\mu_{k}} \sin \theta \, d\mu = T_{u\partial} g_{0} \int_{\mu_{k}}^{1} \sin \theta \, d\mu \,. \tag{3.14}$$

Идеальное время работы ступени (см. выражение (3.10)) можно выразить через другие параметры:

$$T_{\nu\partial} = \frac{m_0}{\dot{m}} = \frac{m_0 g_0}{\dot{m} g_0} = \frac{G_0 R_0}{\dot{m} g_0 R_0} = \frac{\frac{R_0}{\dot{m}}}{g_0 \frac{R_0}{G_0}} = \frac{J_{\nu\partial0}}{g_0 n_0}, \qquad (3.15)$$

где $n_0 = R_0/G_0$ - начальное значение перегрузки ракеты.

Тогда выражение (3.14) можно получить в следующем виде:

$$V_{G} = \frac{J_{y\partial 0}}{g_{0} n_{0}} g_{0} \int_{\mu_{t}}^{1} \sin \theta \, d\mu = \frac{J_{y\partial 0}}{n_{0}} \int_{\mu_{t}}^{1} \sin \theta \, d\mu \,.$$
(3.16)

Из выражения (3.16) следует, что к основным проектным параметрам, кроме названных ранее J_{yon} и μ_k (или z), следует отнести еще удельный импульс на поверхности Земли J_{y00} и начальную перегрузку n_0 .

Вместо начальной перегрузки можно использовать обратную ей величину - отношение стартового веса ракеты к силе тяги двигателя:

$$\nu_0 = \frac{G_0}{R_0} = \frac{1}{n_0}.$$
(3.17).

Следует отметить, что в различных источниках используют разные термины применительно к начальной перегрузке ракеты n_0 и обратной ей величине v_0 . Так, в работе [11] отношение стартового веса ракеты к тяге двигателей называют коэффициентом начальной тяговооружённости. В работе [15] это же отношение называют стартовой нагрузкой, а величину, обратную стартовой нагрузке (то есть фактически начальную перегрузку в принятой терминологии в настоящем учебном пособии), называют тяговооружённостью. Поэтому при использовании различных источников и анализе данных, касающихся начальной перегрузки или обратной ей величины, рекомендуется прежде всего обращать внимание на формулы, а не на термины.

Влияние начальной перегрузки на скорость ракеты объясняется следующими причинами. Увеличение начальной перегрузки связано с необходимостью создания более мощных двигателей. Ракета с более мощными двигателями быстрее достигает заданной высоты полета и скорости и, следовательно, время действия гравитационных сил будет меньшим.

Однако беспредельно увеличивать тягу двигателя нецелесообразно, так как при этом возрастает масса двигателя и конструкция ракеты в целом. Следовательно, значение относительной конечной массы ракеты (характеристики μ_k) увеличивается (соответственно число Циолковского уменьшается) и ракета может иметь в конце активного участка меньшую скорость при заданной стартовой массе.

Кроме того, при более мощных двигателях возрастает скоростной напор и увеличивается аэродинамическое сопротивление. В этом случае массу ракеты приходится увеличивать для обеспечения прочности ракеты, что также приводит к уменьшению скорости ракеты в конце активного участка траектории. Для определения оптимальной начальной перегрузки необходимо решать оптимизационные задачи. В настоящем учебном пособии этот вопрос не рассматривается, а значения начальных перегрузок выбирается на основе статистических данных.

3.3.3. Основные проектные параметры, полученные из анализа потери скорости ракеты от действия аэродинамических сил

Перейдем к анализу выражения (3.4), которое характеризует потери скорости ракеты от действия аэродинамических сил.

Выразим эту зависимость через текущее значение относительной массы ракеты μ :

$$V_{A} = F_{M} \int_{0}^{t_{k}} \frac{c_{x} q}{m} dt = \frac{F_{M}}{m_{0}} \int_{0}^{t_{k}} \frac{c_{x} q}{m_{0}} dt = \frac{F_{M}}{m_{0}} \int_{0}^{t_{k}} \frac{c_{x} q}{\mu} dt .$$
(3.18)

Проведем замену переменных в этом интеграле, учитывая выкладки (3.11) - (3.13):

$$V_{A} = \frac{F_{M}}{m_{0}} \int_{-1}^{\mu_{k}} \frac{c_{x} q}{\mu} \left(-T_{Ho} d \mu \right) = \frac{F_{M} T_{Ho}}{m_{0}} \int_{\mu_{k}}^{1} \frac{c_{x} q}{\mu} d \mu .$$

Учитывая (3.15), можно прийти к следующему выражению:

$$V_{A} = \frac{F_{M}J_{y\partial 0}}{m_{0}g_{0}n_{0}}\int_{\mu_{k}}^{1}\frac{c_{x}q}{\mu}d\mu = \frac{J_{y\partial 0}}{\frac{m_{0}}{F_{M}}g_{0}n_{0}}\int_{\mu_{k}}^{1}\frac{c_{x}q}{\mu}d\mu.$$

Окончательно имеем

$$V_{A} = \frac{J_{y00}}{P_{M}g_{0}n_{0}} \int_{\mu_{k}}^{1} \frac{c_{x}q}{\mu} d\mu, \qquad (3.19)$$

где $P_{_{M}} = \frac{m_{_{0}}}{F_{_{M}}}$ - параметр, который называется "нагрузка на мидель" ракеты.

Этот параметр характеризует потери скорости ракеты в зависимости от площади ее миделя. Чем больше нагрузка на мидель (чем меньше площадь миделя) при фиксированном стартовом весе ракеты, тем меньше потеря скорости ракеты от действия аэродинамических сил.

Однако уменьшение площади миделя ракеты приводит к возрастанию амплитуды поперечных колебаний ракеты и к увеличению нагрузок в ее корпусе. Обеспечение прочности ракеты в этом случае требует дополнительной массы корпуса, что, в свою очередь, может привести к потере скорости ракеты. Выбор нагрузки на мидель ракеты также следует проводить в рамках решения оптимизационной задачи проектирования.

Таким образом, к уже известным основным проектным параметрам добавляется параметр "нагрузка на мидель" ракеты *P*_u.

Вместо параметра P_{M} при проектировании ракет иногда используют другой параметр – относительное удлинение корпуса ракеты $\lambda = L/D$, где L - длина ракеты; D - диаметр ракеты.

Связь между параметрами λ и P_{M} можно получить, проведя следующие выкладки:

$$\lambda = \frac{L}{D} = \sqrt{\frac{L^2}{D^2}} = \sqrt{\frac{4\pi}{4\pi} \cdot \frac{L^2}{D^2} \cdot \frac{P_M^3}{P_M^3}} = \sqrt{\frac{\pi L^2}{4F_M} \cdot \frac{P_M^3}{(m_0/F_M)^3}} = \sqrt{\frac{\pi L^2 F_M^2}{4} \cdot \frac{P_M^3}{m_0^3}} = \sqrt{\frac{\pi L^2 F_M^2}{4} \cdot \frac{P_M^3}{m_0^3}} = \sqrt{\frac{\pi W_p^2}{4} \cdot \frac{P_M^3}{$$

где $W_p = L F_{M}$ - объем ракеты.

Окончательно получаем

$$\lambda = \sqrt{\frac{\pi P_M^{3}}{4 m_0 \cdot \rho_{cp}^2}}.$$
(3.21)

где ho_{cp} - средняя плотность ракеты, то есть

$$\rho_{cp} = m_0 / W_p \tag{3.22}$$

Разрешая уравнение (3.21) относительно параметра Р_м, находим

$$P_{M} = \sqrt[3]{\frac{4\lambda^2 m_0 \rho_{cp}^2}{\pi}}.$$
 (3.23)

Таким образом, если вместо проектного параметра «нагрузка на мидель» P_{M} использовать параметр «относительное удлинение» λ , то необходимо учитывать еще стартовую массу ракеты m_0 и её среднюю плотность ρ_{cn} .

Следует отметить, что в проектных расчетах часто используют параметр λ без учета влияния стартовой массы m_0 и средней плотности ρ_{cp} , так как потери скорости ракеты-носителя от действия азродинамических сил составляют единицы и даже доли процента от характеристической скорости ракеты.

3.3.4. Основные проектные параметры, полученные из анализа потери скорости ракеты от действия сил, возникающих при изменении давления воздуха на срезе сопла ракетного двигателя

Наконец, перейдем к анализу последнего, четвертого слагаемого выражения (3.1), а именно, выражения (3.5)которое характеризует потери скорости ракеты от действия сил, возникающих при изменении давления воздуха на срезе сопла ракетного двигателя от высоты полета.

Проведем замену переменных в этом интеграле аналогично случаю анализа потери скорости ракеты от действия аэродинамических сил.

$$V_{R} = F_{c} \int_{0}^{t_{k}} \frac{p(y)}{m} dt = F_{c} \int_{1}^{\mu_{k}} \frac{p(y)}{m} (-T_{u\partial} d\mu) =$$
$$= \frac{F_{c} T_{u\partial}}{m_{0}} \int_{\mu_{k}}^{1} \frac{p(y)}{m/m_{0}} d\mu = \frac{F_{c} T_{u\partial}}{m_{0}} \int_{\mu_{k}}^{1} \frac{p(y)}{\mu} d\mu .$$

Учитывая (3.15), можно прийти к следующему выражению:

$$V_{R} = \frac{F_{c} J_{y \partial 0}}{m_{0} g_{0} n_{0}} \int_{\mu_{k}}^{1} \frac{p(y)}{\mu} d\mu = \frac{F_{c} J_{y \partial 0}}{R_{0}} \int_{\mu_{k}}^{1} \frac{p(y)}{\mu} d\mu, \qquad (3.24)$$

где $R_0 = m_0 g_0 n_0$ - тяга ракетного двигателя на поверхности Земли.

65

Таким образом, к уже известным основным проектным параметрам добавляются параметр «площадь среза сопла двигателя» F_c и тяга двигателя на поверхности Земли R_0 .

На первый взгляд может показаться, что для уменьшения потерь характеристической скорости следует уменьшать площадь среза сопла ракетного двигателя. Однако при этом ракетный двигатель будет работать не в оптимальном режиме и тяга его уменьшится. Дело в том, что одним из условий оптимального рабочего режима ракетного двигателя является равенство давления газов на срезе ракетного двигателя и атмосферного давления. Для оптимального рабочего процесса вблизи поверхности Земли давление газов на срезе сопла ракетного двигателя должно быть примерно равным одной атмосфере, а в космосе - нулю. Для ракетных двигателей обеспечить оптимальные режимы работы невозможно. Двигатели первой ступени начинают работать на Земле, а заканчивают - в безвоздушном пространстве. Двигатели, которые запускаются и постоянно работают в безвоздушном пространстве, для оптимального режима работы требуют бесконечной площади среза сопла двигателя, что нереализуемо.

На практике в результате компромиссных решений выбирают в первом приближении площади сечений среза сопла ракетных двигателей, исходя из следующих условий:

- для двигателей, запускаемых на поверхности Земли, давление на срезе сопла должно быть в пределах 0,06...,08 МПа (0,7±0,1 от давления атмосферы на уровне моря);

- для двигателей, запускаемых в пустоте, давление на срезе сопла должно быть в пределах 0,02...0,03 МПа (0,2...0,3 от давления атмосферы на уровне моря).

Вместо основных проектных параметров «площадь среза сопла двигателя» F_c и тяга двигателя на поверхности Земли R_0 можно использовать коэффициент высотности двигателя. Покажем это.

Проведем анализ потери скорости ракеты от действия аэродинамических сил, основываясь на зависимости (3.5 *a*). Сделаем преобразования в следующей последовательности:

$$V_{R} = \int_{0}^{t_{k}} \frac{(R_{n} - R_{0})}{m} \cdot \frac{p(y)}{p_{0}} dt = \frac{(R_{n} - R_{0})}{p_{0} m_{0}} \int_{0}^{t_{k}} \frac{p(y)}{m/m_{0}} dt =$$

$$= \frac{\left(R_{n} - R_{0}\right)}{p_{0} m_{0}} \int_{0}^{t_{k}} \frac{p(y)}{\mu} dt = \frac{\left(R_{n} - R_{0}\right)}{p_{0} m_{0}} \int_{1}^{t_{k}} \frac{p(y)}{\mu} \left(-T_{u\delta}\right) d\mu =$$

$$= -T_{u\delta} \frac{\left(R_{n} - R_{0}\right)}{p_{0} m_{0}} \int_{1}^{\mu_{k}} \frac{p(y)}{\mu} d\mu = \frac{J_{y\delta0}}{g_{0} n_{0}} \cdot \frac{\left(R_{n} - R_{0}\right)}{p_{0} m_{0}} \int_{\mu_{k}}^{1} \frac{p(y)}{\mu} d\mu =$$

$$= \frac{J_{y\delta0}}{p_{0}} \cdot \frac{\left(R_{n} - R_{0}\right)}{m_{0} g_{0} n_{0}} \int_{\mu_{k}}^{1} \frac{p(y)}{\mu} d\mu = \frac{J_{y\delta0}}{p_{0}} \cdot \frac{\left(R_{n} - R_{0}\right)}{R_{0}} \int_{\mu_{k}}^{1} \frac{p(y)}{\mu} d\mu .$$
Учитывая, что $\frac{\left(R_{n} - R_{0}\right)}{R_{0}} = \left(\frac{R_{n}}{R_{0}} - 1\right) = \left(k_{s} - 1\right),$

где $k_{\sigma} = R_n/R_0$ - коэффициент высотности двигателя, окончательно получаем

$$V_{R} = \frac{J_{y\partial 0}}{p_{0}} (k_{\sigma} - 1) \int_{\mu_{k}}^{1} \frac{p(y)}{\mu} d\mu .$$
(3.25)

Таким образом, вместо основных проектных параметров F_c и R_0 можно пользоваться коэффициентом высотности двигателя k_s .

3.3.5. Основные проектные параметры многоступенчатых ракет-носителей

Отметим, что все рассмотренные выше основные проектные параметры одноступенчатых ракет являются также основными проектными параметрами и многоступенчатых ракет с поправкой на то обстоятельство, что некоторые из них относятся к конкретным ступеням или ракетным блокам различных ступеней.

Очевидно, что для многоступенчатых ракет следует добавить такие проектные параметры, как: количество ступеней N и соотношение масс ступеней $\chi_i = \mu_{k(i+1)} / \mu_{k(i)}$ (или соотношение чисел Циолковского ступеней ракеты, где *i* - номер ступени $\chi_i = z_i / z_{i+1}$).

Однако вместо соотношения масс ступеней чаще используются отношение начальной массы ступени к массе полезной нагрузки $p_i = m_{0i}/m_{\Pi H i}$ и конструктивные характеристики ракетных блоков S_i .

Напомним, что полезной нагрузкой первой ступени является вторая ступень, полезной нагрузкой второй ступени является третья ступень и т.д. Полезной нагрузкой последней ступени ракетыносителя является космический аппарат (космическая головная часть, комплекс для полетов к Луне с ракетными блоками для проведения маневров, межпланетный комплекс и т.п.).

Для ракет-носителей с пакетной схемой используют еще один основной проектный параметр - отношение тяги двигателя центрального блока к тяге двигателей боковых блоков $\alpha = R_2/R_1$. Использование этого основного проектного параметра подробнее обсуждается в подразделе 8.3.

На массу выводимой полезной нагрузки ракеты-носителя, как было показано ранее, влияет программа угла наклона траектории $\theta(t)$ и углы наклона траектории в конце работы отдельных ступеней ракеты $\theta_{1k}(t), \theta_{2k}(t)...$

Особо отметим один интересный факт. В основные проектные характеристики в явном виде не вошли масса полезной нагрузки, стартовая масса ракеты, характеристическая скорость. В этой связи, как упоминалось, уместно говорить о семействе подобных ракетносителей (с одинаковым количеством ступеней и схемой соединения ракетных блоков), запускаемых по типовой приближеннооптимальной траектории, у которых одинаковы значения основных проектных характеристик. Некоторые из таких основных проектных характеристик выражаются натуральными значениями, например, удельные импульсы топлива и двигателей, другие выражаются в относительном виде, например, конструктивные характеристики, соотношения тяги двигателей РБ, начальные перегрузки.

Конечно же, наибольшее влияние на стартовую массу ракеты носителя оказывают масса полезной нагрузки и характеристическая скорость ракеты и мы должны их рассматривать в качестве основных проектных характеристик, несмотря на то что они в явном виде не присутствовали в анализируемых зависимостях.

Перечень основных проектных параметров многоступенчатых ракет-носителей приведен в табл. 3.1.

Таблица 3.1. Перечень основных проектных параметров многоступенчатых РН

Название	Обозначение
Масса полезной нагрузки, кг или т	т _{лн}
Потребная характеристическая скорость РН, м/с	V ^{nomp} X uð
Количество ступеней	N
Удельные импульсы двигателей РБ в пустоте, <i>м/с</i> (или скорости истечения газов из сопел двигателей РБ в пустоте, <i>м/с</i>)	J _{yoni} W _{ni}
Удельные импульсы двигателей РБ на Земле, <i>м/с</i> (или скорости истечения газов из соцел двигателей на	$J_{y\partial 0i}$
поверхности Земли, м/с)	W _{0i}
Отношения начальных масс ступеней к массе полез-	$p_i = m_{0i} / m_{\Pi H i}$
ной нагрузки этих же ступеней + конструктивные характеристики РБ	$S_i = m_E / m_K$
(или соотношение чисел Циолковского ступеней) (или соотношение масс ступеней)	$\chi_i = z_i / z_{i+1} ,$
	$\chi_i = \mu_{k(i+1)} / \mu_{k(i)}$
Начальная (стартовая) перегрузка	n ₀ ,
(или обратная си величина, коэффициент начальной тяговооружённости, стартовая нагрузка)	$v_0 = 1/n_0$
Нагрузка на мидель ступеней, <i>т/м²</i>	P _{MĪ}
(или относительное удлинение ступеней	λ_i
+ начальные массы ступеней, кг или т,	m _{0i}
+ средние плотности ступеней, кг/м ³)	$ ho_{cpi}$
Коэффициенты высотности двигателей РБ	k _{ei}
нлы тяги двигателей на Земле, kH	S_{ci} и R_{0i}
Отношение тяги двигателя центрального блока к тяге двигателей боковых блоков	$\alpha = R_2/R_1$
Программа угла наклона траектории, град	$\theta(t)$
Углы наклона траектории в конце работы отдельных ступеней ракеты, град.	$\theta_{_{1k}}(t), \theta_{_{2k}}(t)$

¹ Проектные параметры α_y для пакетных схем с дополнительными ускорителями обсуждаются далее при рассмотрении вопросов оптимизации масс ракетных блоков.

3.4. Сопоставление значений потерь скорости ракеты

Приведенные в табл. 3.1 основные проектные параметры многоступенчатых РН в различной степени влияют на конечную скорость ракеты при заданной массе полезной нагрузки (или на массу полезной нагрузки при заданной характеристической скорости). Сопоставление значений потерь скорости ракеты проведем на примере ракетыносителя "Сатурн-V". Данные приведены в табл. 3.2 [57].

Параметры (в конце работы ступе- ни)	Ступени			Суммарные потери скоро-
	1	2	3	сти, %
Время окончания рабо- ты ступени, с	158	390	479	
Скорость, м/с	2162	5321	7790	
Угол наклона траектории, град	30	3	0	
<i>V_{и∂}</i> , м/с	3625	4120	2674	
<i>V_G</i> , м/с	1280	611	-36	17,8
V _R , м/с	126	0	0	1,2
<i>V_A</i> , м/с	57	0	0	0,5
V _{ynp} , M/C	0	350	241	5,7
Суммарные потери ско- рости, м/с	1463	961	205	25,2

Таблица 3.2. Сопоставление значений потерь скорости РН "Сатурн V" при выводе полезной нагрузки на круговую орбиту высотой 200 км

В этой таблице, кроме анализируемых выше составляющих потерь скорости ракеты-носителя, приведены данные по потерям скорости ракеты на управление $V_{y_{np}}$ (в таблице - 5,7 %). Эта потеря связана с изменением направления вектора скорости ракеты на активном участке траектории, а также с воздействием возмущающих факторов на ориентацию ракеты в полете и восстановление ориентации для реализации заданной программы тангажа. Данный вопрос не рассматривался при анализе основных проектных характеристик ракеты, так как учет потерь скорости на управление требует задания дифференциальных уравнений работы автомата стабилизации, в которые входят, в частности, моменты инерции ракеты, характеристики управляющих двигателей и исполнительных устройств. Поэтому на начальных этапах проектирования потерю скорости РН на реализацию управления вектором скорости принимают по статистике 5...6 %.

Анализ данных табл. 3.2 показывает, что при расчете скорости ракеты-носителя в первом приближении можно не учитывать потери скорости от действия аэродинамических сил и от сил, возникающих от изменения давления на срезе сопла двигателя.

Таким образом, в первом приближении в качестве основных проектных параметров могут быть использованы:

- масса полезной нагрузки;

- потребная характеристическая скорость ракеты;

- количество ступеней;

- удельные импульсы двигателей в пустоте;

- удельные импульсы двигателей на поверхности Земли;

- конструктивные характеристики ракетных блоков;

- начальные значения перегрузок ступеней ракеты;

- углы наклона траектории в конце работы ступеней ракеты.

Кроме того должна быть выбрана схема соединения ракетных блоков и использована типовая приближенно-оптимальная программа угла наклона траектории.

Контрольные вопросы

1. Расскажите подробнее о лётно-технических, массогабаритных, энергетических и критериальных характеристиках ракет-носителей.

2. Что такое основные проектные параметры ракеты и на основе каких выражений они определяются?

4. Приведите перечень основных проектных параметров многоступенчатых ракет-носителей.

5. Как выделяются основные проектные параметры, полученные из анализа идеальной скорости ракеты, а также из анализа потери скоростей:

- от действия гравитационных сил;

- от действия аэродинамических сил;

- от изменения давления воздуха на срезе сопла двигателя.

6. Сопоставьте значения потерь скорости ракеты в зависимости от их происхождения.

4. СБОР И ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ ПО РАКЕТАМ-НОСИТЕЛЯМ

Сбор и обработка статистических данных – первый этап в проектировании нового изделия. Статистические данные позволяют выделить из всех существующих РН и баллистических ракет небольшую их часть с летно-тактическими и проектно-техническими характеристиками, близкими к проектируемому изделию. Анализ различных характеристик этой части РН и баллистических ракет дает возможность выбора наиболее прогрессивных технических решений в проектируемом изделии в соответствии с современной технической базой, технологиями, требованиями по экологии.

Схемы основных ракет-носителей показаны на рис. 4.1.

Статистические данные представляются в виде двух таблиц.

Первая представляет собой таблицу, в которой собран фактический материал из описаний изделий и из других источников. Как правило, характеристики в первой части имеют размерность, например, скорость в м/с, масса в кг и т. п.

Вторая таблица, по существу, представляет собой обработанную первую таблицу, в которой присутствуют безразмерные характеристики, например, число Циолковского, относительная масса полезного груза и т.п.

В табл. 4.1 и 4.2 представлены формы для сбора статистических данных.

В этих таблицах приняты следующие обозначения:

 H_{α} - высота в апогее, км;

Н_π - высота в перигее, км;

w_i - эффективная скорость истечения в двигателе *i*-й ступени, м/с;

 $S_{mi} = \frac{m_{Ki}}{m_{Ei} - m_{Ti}} = \frac{m_{Ei}}{m_{Ki}} = \frac{m_{Ki} + m_{Ti}}{m_{Ki}} = 1 + \frac{m_{Ti}}{m_{Ki}}$ - теоретическая конст-

руктивная характеристика блока *i*-й ступени; 72

кwadg	paborы.										168	500	500						140	450					60	100	390	530
	NT W		4,4	1,1	0,45		7,68	0,8	0,2		39,3	7,8	1,5		40,5	20,8	5,4		26,12	13,9		6,53	0,7					
HME, T	m_T		160.8	90,3	22,3			143,8	46,6		2150	453	107		2853	526,8	170,3	ĺ	1300	200		318,8	80,6		26,2	130	100	16,0
ane dan	ш		182	100	25,4			151	49,4		2284,6	488,4	218,5		1962	579	184	ŕ	1440	855		353	80,8		31	150	114	20
Macco	mo	317				670				3030				2820				2400			495			320,5				
	ш	6,8			-	20,6			2	138	Ē			95				105			13,7			4,1				
CEKA	w , M/c		2600	3000	3237		3115	3290	3290		2649	4169	4218		2920	3188	3062		3310	4464		3310	3435		2820	2800	4400	4470
mereteda yomate	Тотиво		Kepoc./02	Kepoc./02	Kepoc./02		HIMT/N204	HITMT/N204	HITMT/N204		Kepoc.102	H2.102	H2.101		Kepoc./O2	Kepoc./O2	Kepoc. 102		Kepoc.102	H2/02		Kepoc.iO2	Kepoc./O2		Tsepàoe	Tsepdoe	O_2 / H_2	O_2/H_2
H-mea	R _H , KH		4032	1079	299		8844	2400	600		33845	5199	1020		43262	13185	1766	6	29038	7848		72.59	912		1490	4520	1100	137
UNME UN	H_{α}	380	9			200				180				220				180			200			36000				
Лет даннь	Ня	330				200				180				220			4	180	0		200			200				
M. 'MILL	d én		2,68	2,95	2,66		7,4	4,1	4,1		10,06	10,06	6,6		16	10	80		4,5	7,8		3,9	3,9		1,0	2,5	4,0	4,0
Габари	L (43,7	19.2	27,1	6,7	60	21	16	7	110,7	42	24,8	18,1	101	32	23	23	60	42	60	57,1	33	10,4	53	25	15	37	11
Назначе-	нив ступени	Hd	Enok B-II	BROK A	BROK M	Hd	I cm.	2 cm.	3 cm	Hd	1 cm.	2 cm.	3 cm.	Hď	1 cm.	2 cm.	3 cm.	PH	1 cm.	2 cm.	Hd	1 cm	2 cm.	Hd	Vck l cm	Vck 2 cm	3 cm	4 cm
Manka	страна		C0103,	4000	ውፈ		Протон,	CCCP			Сатури-	V. CILLA			H-I	CCCP		-	Shepeus,	CCCF		Sentum,	1000			«H 11 H»	клония	

Таблица 4.1. Статистические данные по РН

Окончание табл. 4.1

Mapra,	Назкаче	I abapu	MIN, M	Леп	NN 'SH	Aau.	COTTO-TENAGE PC MAN	Dexa		Mance	oose dan	INME, M		Bpewa
страна	ступени	10 ; Ou	$d_{\delta n}$	11	H_{α}	R _H , KH	Топпиво	H X	ш	mo	w	mT	m AY	работы
	Ηď	23,5		500	500				0.13	24.6				
ALLANDAN B,	I cm.	14,2	1,4			345	HEMT'IN2Os	2379	2		20.05	170	00	108
Франция	2 cm.	<i>5</i> ,5	0,8			153	Teepd.mon.	2541			3.02	2 8	760	44
	3 cm	1,6	0,8			51	Teepd.mon.	2678			0.775	0.7		45
Amnac-	Ηd	36,0		550	550				0.34	125				2
Аджевна-В,	1 cm.	20,2	3,05			1373	Kapoc./02	2600	2		117.3	212		140
CILLA	2 cm.	7,6	1,5			67	HIMT/N2O4	2796			2	6.15	0.133	370
American 7 200	Ηd	47,38		400	400				~	215				
ALTOO IS	l cm.	18,4	3,8			236,6	HIMT/N2O4	2536			165	150	6.27	150
Cana l	2 cm.	11,47	2,8			592	HIMT/N204	2796			35	30	181	227
DVIO-	3 cm	8,86	2,8	0		59	H2102	4218			1	2 10	0.75	543
	Hd	38		300	300				11.3	635		,	240	
Tuman III	cm. yckop.	26,2	3,05			10673	Tsepo.mon.	2433			464	3.84		120
C CIIIA	I cm.	21,6	3,05			2258	Aspod - SOLN POA	2884			120	113.9	0.80	158
	2 cm.	8,25	3,05			445	A3pod50/ N2O4	3080			31.8	20.6	0 57	204
	3 cm.	\$ 9	3,05			11	A3pod -50/ N;O4	3100	ſ		8.3	5.4	0.104	300
Turner AD	Hd	62,2	5,31	5500	36000				5.7	939.3				
"ITanuara	VCK SRMU	34,28	3,2			2*6361	88%H7"PB				2*3157			127
-deministrum	7	24	ŝ			2*1214	A-50/AT				162.8			146
VIII.	2	40	ŝ	_		463	A-50/AT				39.3			200
STH2	Llenmaep PE					2*73,4	0yH2				23,5			2024

	x		777	, m(m			2,12				2,27	4,5	4,5		2,27				2,27	4,5								
	Pap		1100	0.01	0,015		0,009	0,003	0,003		0,011	0,015	0,014		0,009	0,008	0,03		0,000	0,017		0,000	0,008					
	Ŋ		7 60	9.43	7,64		8,05	16,83	14,91		14,3	12,23	9,43		13,69	10,08	11,95		9,41	5,28		8,96	8,97	6,46	7,07	8,14	5,88	
	Sm		8 5 8	10.31	8,19		10,29	22,18	18,93		16,97	13,8	10,3		18	11,09	13,43		10.29	5,52		10,32	9,76					
	no		12	0.81	0,66		1,61	1,08	0,93		2,14	0,71	0,41		1,56	1,57	0,65		1,23	0,75		1,5	0,86		2,26	1,976	0,809	0,576
	Paduni, MA	1107	1400			42,4				38,12				35,91				50,23			41,44			25,5	2,47	11,94	9,08	1.50
	ы		2.02	3.02	2,76		2,169	2,880	3,009		3,44	2,45	1,73		2,92	2,59	2,57		2,18	2,94		2,81	2,31	22,324	1,587	1,414	3,097	3.213
	đ	68 83	7 4	\$ 07	3,76	27.18	2,54	3,16	3,39	22,28	4,21	2,96	1,89	29,68	3,44	3,14	3	22,86	2,54	5,38	36,13	3,64	2,76	78,25	78,25	70,78	33,81	5.92
100	idy 1	1402	7 16	010	2,52	14,63	2,84	3,9	1,71	11	4,18	2,47	2,74	6,31	1,94	2,3	2,88	7,69	9,33	7,69	14,64	8,46	2,67	13,25	15,0	6,0	9,25	2.75
	Назначение	CHEVINCIAL	LU LU	Fann A	Enox M	Hd	l cm.	2 cm.	3 cm	Ηd	l cm.	2 cm.	3 cm.	Hd	I cm.	2 cm.	3 cm.	ΡH	I cm.	2 cm.	PH	I cm.	2 cm.	Ηd	Vck l cm	Vck 2 cm	3 cm.	4 cm
	Mapra,	cmpana	(600)	1		Протон.	cccP			Сатурн-V,	CILLA			H-I,	CCCP			Энергия,	CCCP		Sekum,	cccp		«H II A»	Япония			
		_								_		_		-	-	_	_	_	_		-					_		-

Таблица 4.2. Безразмерные статистические данные по РН

Окончание табл. 4.2

ing and	rtanuaruue cimpnenu	r and	<i>ti</i>	7	Pad Iminel	n_o	S.	\$3	T_{thy}	x
Audwarm B.	Hd	16,79	186,36		15,98					
Pparents	I CM	10.14	5,75	3,67		1.43	9.33	0.30	0.006	25
	2 CM.	6,83	3,03	2,02		3,43	4.19	4.06		
	3 cm	2	2,04	1,84		3.4	10.33	945		
AMDIGC+	Hd	12	367,65		17.11					
Adokawa-B,	I CM.	6,23	21,09	9,62		1.12	22.13	1685		2 2 7
CILLA	2 cm.	5,07	12,25	4,97		0,89	8.24	7.68	0100	1 87
Apuan L-35	PH	12,47	26,88		18.96					10.84
ELDO, ESRO	I cm	4,84	4,50	3,31		1,12	11	9.43	0.026	1.87
	2 cm.	1'5	3,41	2.5		1,21	7	00	0.03	187
	3 cm	3,26	1.9	1.67		0.4	2	10	0.025	4.5
Титан-Ш С,	Hd	12,40	56,2		86.91				1206	
CILLA	cm. yexop.	8,59	3,83	2,53		1.71	5,8	5.5		
	I cm.	7,08	3,44	50		1.35	19.67	16.50	0.004	10
	2 cm.	2,71	2,7	2,38		0,89	14,46	12.74	0.013	8 2
	3 cm.	1,51	1,77	1,39		0,38	2,86	2.81	0.014	2
Tuman 4B	Hd	11,705			26,746		14:21			
«Цантаер-С»	VCK SRMU	10,713					14.69			
CULA	2	7,417					13.58			
	2	3,13					2,85			
	Lieuman PB							*		

m_{гі} - масса топлива ракетного блока *і*-й ступени;

m_{кi} - масса конструкции ракетного блока *i*-й ступени (без тоглива);

 $S_1 = \frac{m_{E1} + m_{IO}}{m_{E1} + m_{IO} - (1 - k_n)m_{T1}}$ - расчетная конструктивная харак-

теристика блока 1-й ступени (головной обтекатель условно относится к массе ракетного блока первой ступени потому, что он сбрасывается, как правило, сразу же после отделения ракетных блоков первой ступени; если ракетных блоков первой ступени несколько, то масса ГО распределяется на них поровну);

m_{го} - масса головного обтекателя;

n

$$n_{0i} = \frac{K_i}{m_{0i}g}$$
 - начальная перегрузка *i*-й ступени;

R_i - тяга двигателя *i*-й ступени, кН;

*m*_{0*i*} - начальная масса *i*-й ступени;

g - ускорение силы тяжести, м/с;

*m*_{Бі} - масса блока *і*-й ступени (заполненной топливом);

 $P_0 = \frac{m_0}{m_{\Pi H}}$ - относительная масса полезной нагрузки ракеты;

*m*₀ (или *m*₁)- начальная масса 1-й ступени (стартовая масса);

*m*_{пн} - масса полезной нагрузки;

$$z_i = \frac{m_{0_i}}{m_{0_i} - m_{T_i}}$$
 - число Циолковского *i*-й ступени:

 $p_i = \frac{m_{0i}}{m_{\Pi H i}}$ - отношение массы *i*-й ступени ракеты к массе ее по-

лезной нагрузки;

$$P_{_{M}} = \frac{m_0}{F_{_{M}}}$$
 - нагрузка на мидель, кг/м²;
 $F_{_{M}}$ - площадь миделя ракеты, м²;
 $m_{_{RRi}}$ - масса двигателя *i*-й ступени;

 $\gamma_{AB_i} = \frac{m_{AB_i} g}{R_i}$ - относительная масса двигателя *i*-й ступени;

 $\kappa_i = \frac{m_{OK}}{m_{\Gamma}}$ - относительная масса окислителя в блоке *i*-й ступени;

*m*_{OK} - масса окислителя ракетного блока *i*-й ступени;

m_г - масса горючего ракетного блока *i*-й ступени;

 $\xi_{\Pi P i} = \frac{m_{\Pi P i}}{m_{\Sigma i}}$ - относительная масса приборов в блоке *i*-й ступени;

*m*_{ПРі} - масса приборов в блоке *і*-й ступени;

$$\lambda_{p} = \frac{l_{0}}{d_{0}}$$
 - удлинение ракеты;

L₀ - полная длина ракеты, м;

 D_0 - диаметр ракеты, м;

$$\lambda_{E_i} = \frac{l_{E_i}}{d_{E_i}}$$
 - удлинение блока *i*-й ступени;

*l*_{Бі} - длина ракетного блока *i*-й ступени;

*d*_{Бі} - диаметр блока *і*-й ступени, м.

Связь между относительной массой ступени, числом Циолковского и конструктивной характеристикой представлена следующей зависимостью:

$$p_i = z_i \frac{(S_i - 1)}{(S_i - z_i)}$$
.

Если статистические данные имеют тенденцию изменения в зависимости от времени (года) начала проектирования, то для них с помощью Microsoft Excel строят графики изменения этих характеристик от времени и с помощью опций «тренда» получают уравнения регрессионной зависимости.

Статистические данные по отдельным составным частям PH могут представляться в произвольной форме. В разделе 10 представлены статистические данные и расчётные значения некоторых характеристик твёрдотопливных ускорителей (см. табл. 10.2). Рекомендуемая литература, для поиска аналогов проектируемых ракет приведена в списке использованных источников под номерами [2-6, 11, 13, 15-20, 24-25, 29, 38, 39]. Можно использовать некоторые данные, публикуемые в периодических изданиях, например, в ежемесячном журнале «Новости космонавтики», а также данные, полученные с помощью Internet.

Следует отметить, что поиск аналогов является творческим процессом, так как в технической литературе относительно редко приводятся все данные, необходимые проектанту для изучения аналогов. В некоторых источниках могут быть одни типы характеристик, а в некоторых - другие, причем отдельные характеристики могут относиться к различным этапам развития ракетно-космической техники. Например, характеристики ракеты Р7 могут существенно отличаться от ракеты «Союз», которая является модификацией ракеты Р7.

Корректировка конструктивных характеристик ракетных блоков РН, предназначенных для запуска пилотируемых КА

Особенностью запуска на орбиту пилотируемых космических аппаратов является наличие системы аварийного спасения (САС). С помощью САС осуществляется увод спускаемого аппарата (или отдельных спасаемых капсул с космонавтами) от аварийной ракеты. Система аварийного спасения также может включать катапультируемые кресла космонавтов.

Увод космического аппарата от аварийной ракеты может осуществляться как с помощью штатных двигателей космического корабля, так и с помощью специальных ракетных двигателей САС. Штатные двигатели космического корабля могут при безаварийном пуске использоваться в орбитальном полете для маневрирования или для торможения перед спуском с орбиты. Специальные ракетные двигатели САС могут устанавливаться на головном обтекателе ракеты космического назначения.

Если увод космического аппарата от аварийной РН осуществляется с помощью штатных двигателей космического корабля, то корректировать массу полезной нагрузки нет необходимости.

Если увод космического аппарата от аварийной PH осуществляется с помощью специальных ракетных двигателей САС, установленных на головном обтекателе, то следует скорректировать либо 80 конструктивные характеристики ракетных блоков первой или второй ступеней РН, либо расчетную массу полезной нагрузки.

Корректировка конструктивных характеристик ракетных блоков осуществляется в зависимости от циклограммы запуска ракетыносителя и проводится по методике, изложенной ниже.

1. Если сброс двигателей САС, установленных на головном обтекателе РН, осуществляется сразу после отделения ракетного блока (ракетных блоков) первой ступени, то массу двигателей САС следует отнести к конструкции ракетного блока первой ступени:

$$S_1 = \frac{m_{E1} + m_{FO} + m_{CAC}}{m_{E1} + m_{FO} + m_{CAC} - (1 - k_n)m_{T1}},$$

где *m_{CAC}* - масса двигателей системы аварийного спасения.

В случае наличия нескольких ракетных блоков первой ступени массу ракетных блоков САС следует распределить равномерно по ракетным блокам первой ступени.

2. Если сброс двигателей САС осуществляется примерно в середине временного интервала работы двигателей ракетного блока второй ступени или перед его отделением, то массу двигателей САС следует отнести к конструкции ракетного блока второй ступени:

$$S_2 = \frac{m_{52} + m_{FO} + m_{CAC}}{m_{522} + m_{FO} + m_{CAC} - (1 - k_{\mu})m_{T2}}$$

В этом случае мы как бы будем проектировать ракету-носитель с некоторым запасом по грузоподъемности. Так обычно и поступают при предварительных расчетах.

Возможен и другой вариант. Ракету-носитель проектируют для вывода на орбигу так называемой приведенной полезной нагрузки, которая равна сумме массы космического аппарата и массы ракетного блока САС. В этом случае запас по грузоподъемности будет ещё больше по отношению к случаю, когда массу двигателя САС относят к ракетному блоку второй ступени.

Контрольные вопросы

1. Расскажите о компоновочных схемах ракет, которые Вы используете в качестве аналогов.

2. Какие летно-технические характеристики ракет Вы знаете?

3. Какие массогабаритные и энергетические характеристики ракет Вы знаете?

4. Какие критериальные характеристики ракет Вы знаете?

5. Что такое основные проектные характеристики и какие из них Вы знаете?

6. Для какой цели проводится сбор и обработка статистических данных по характеристикам ракет-носителей?

7. Какие характеристики размерного типа используются при сборе статистических данных?

8. Какие характеристики безразмерного типа используются при обработке статистических данных?

9. Дайте определение следующих характеристик, используемых для сбора и анализа статистических данных:

- теоретическая конструктивная характеристика блока і-й ступени;

- расчетная конструктивная характеристика блока і-й ступени;

- начальная перегрузка і-й ступени;
- относительная масса ракеты;
- число Циолковского *і*-й ступени;
- относительная масса і-й ступени;
- нагрузка на мидель, кг/м²;
- относительная масса двигателя і-й ступени;
- относительная масса окислителя в блоке і-й ступени;
- относительная масса приборов в блоке і-й ступени;

- удлинение блока *i*-й ступени и ракеты.

5. ТАКТИКО-ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Тактико-технические требования приводятся в тактикотехническом задании на разработку ракеты-носителя. Разработка ТТТ к конкретной проектируемой ракете-носителю базируется на общих технических требованиях, предъявляемых к разрабатываемым PH.

5.1. Структура тактико-технических требований на создаваемые ракеты-носители

Структура тактико-технических требований на конкретную разрабатываемую ракету-носитель должна соответствовать документу «Общие технические требования». Этот документ представлен в специальной нормативной документации ракетно-космической отрасли.

Ниже приведен перечень основных вопросов, которые в соответствии с ОТТ должны быть отражены при составлении ТТТ на конкретную разрабатываемую ракету-носитель.

1. Требования по назначению.

- 2. Требования по радиоэлектронной защите.
- 3. Требования по живучести и стойкости к внешним воздействиям.
- 4. Требования к надежности.
- 5. Требования к эргономике и технической эстетике.

6. Требования к эксплуатации, удобству технического обслуживания, ремонту и хранению.

7. Требования к транспортабельности.

- 8. Требования к безопасности
- 9. Требования к стандартизации и унификации.
- 10. Требования к технологичности.
- 11. Конструктивные требования.
- 12. Технико-экономические требования.
- 13. Требования по видам обеспечения.
- 14. Требования к составным частям РН.

15. Требования к сырью, материалам и комплектующим.

16. Требования к консервации и упаковке ракетных блоков.

Кроме того, в ТТТ приводятся ссылки на конкретные документы (с номерами и датами), подтверждающие те или иные требования или решения.

5.2. Обзор общих технических требований, предъявляемых к ракетам-носителям

Достаточно большой опыт, накопленный в области проектирования, производства и эксплуатации РН, отражён в нормативных документах ракетно-космической отрасли, справочной, монографической литературе, учебниках и учебных пособиях. Эти требования излагают положительный опыт создания ракет-носителей и имеют своей целью помочь разработчикам ракетной техники избежать ошибок, которые были совершены более ранним поколением создателей ракетной техники.

Ниже приведен обзор некоторых основных разделов ОТТ, предъявляемых к ракетам-носителям, и комментарии к материалам этих разделов.

5.2.1. Требования по назначению

Требования к ракетам-носителям

В этом разделе должны быть освещены следующие вопросы:

- назначение РН (должно быть по возможности универсальным);

- грузоподъемность;

- параметры орбиты;

- точность выведения.

Требования к стартовым устройствам

Классификация видов стартовых устройств приведена на рис. 5.1.

Наиболее распространены наземные открытые стартовые устройства, например, для РН «Протон», «Энергия» и др. К наземным полузаглублённым можно отнести стартовые устройства для РН типа «Союз», часть которой располагается ниже уровня опорного кольца.

Рис. 5.1. Классификация стартовых устройств ракет-носителей

Надводный стартовый комплекс может располагаться вблизи экватора, что важно для запуска КА на геостационарные орбиты. Кроме того, можно выбрать координаты точки старта, при которых не нужно отчуждать территории для падения ракетных блоков РН. В настоящее время надводный старт используется международной компанией «Sea Launch», в которой часть акций принадлежит РКК "Энергия", поставляющей разгонный блок ДМ-SL для РН "Зенит-SSL" (которая, в свою очередь, производится в Украине).

Старт из шахт используется для конверсионных РН, созданных на основе баллистических ракет, стартующих из шахт.

При использовании стартов с самолетов-носителей имеется возможность выбора таких районов старта, при использовании которых отсутствует необходимость отчуждения территорий для падения отработавших ракетных блоков. К недостаткам воздушных стартов относится высокая стоимость самолётных стартовых комплексов.

5.2.2. Требования к надежности

В этом разделе должны быть приведены номенклатура используемых показателей надежности и их количественные значения, которые необходимо обеспечить в процессе создания PH.

Напомним, что надежность, согласно ГОСТ 27.002-95 «Надежность в технике. Термины и определения», - это свойство объекта (системы) сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуе-

мые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенное сочетание этих свойств.

Показатели надежности проектируемой РН должны назначаться не ниже показателей надежности прототипов.

Сравнительные характеристики надежности современных отечественных и зарубежных ракет-носителей с учетом нижних доверительных границ приведены в табл. 5.1 [43]. Следует отметить, что точечная оценка надежности в этой таблице (не путать с термином «точная») означает математическое ожидание этого показателя.

		Вероя	тность безо	тказной р	аботы
Страна	Тип РН	за весь эксплу	период /атации	за послед	ние 10 лет
		точечная оценка	нижняя граница с γ =0,9	точечная оценка	нижняя граница с γ=0,9
DOGGU	«Союз»	0,97	0,965	0,99	0,983
РОССИЯ	«Молния»	0,9	0,869	0,98	0,931
	«Протон»	0,92	0,893	0,98	0,94
УКРАИНА	«Зенит»	0,8	0,677	0,72	0,545
	«Циклон»	0,97	0,949	0,966	0,912
ФРАНЦИЯ	«Ариан»	0,93	0,888	0,95	0.910
	«Дельта»	0,941	0,906	0,952	0,925
США	«Атлас»	0,879	0,816	0,949	0,890
	«Титан»	0,930	0,9	0,914	0,819
КИТАЙ	«CZ»	0,942	0,868	0,969	0,884
ЯПОНИЯ	«H»	0,936	0,837	0,91	0,69

Таблица 5.1.	Сравнительные х	карактеристики надежности
отечественні	ых и зарубежных	ракет-носителей

Дополнительные сведения по показателям надежности РН можно почерпнуть в работах [35, 43].

5.2.3. Требования к эксплуатации, удобству технического обслуживания, ремонту и хранению

В этом разделе должны быть конкретизированы следующие требования:

- к космодрому, с которого осуществляется запуск (Байконур, Плесецк, Куру, с плавучей платформы);

- к сборке крупногабаритных составных частей ракет-носителей.

На рис. 5.2. приведены виды (классификация) сборки ракет из отдельных блоков.

Каждый из видов сборки имеет свои достоинства и недостатки по затратам, по необходимости иметь специальные помещения для сборки и испытаний, по времени подготовки к пуску.

Рис. 5.2. Виды сборки ракет

Напомним, что горизонтальная сборка используется на ракетахносителях, произведенных в СССР (России). Вертикальная сборка характерна для тяжелых ракет-носителей США, Франции.

Кроме того, в этом разделе технических требований должны быть освещены вопросы:

-по минимальным затратам времени на приведение PH в готовность к запуску на техническом и стартовом комплексах;

- по температуре и влажности при хранении и транспортировке РН и составных частей и др.;

- по удобству доступа к технологическим разъемам и приборам, возможности замены приборов и агрегатов в процессе наземной подготовки ракет-носителей.

5.2.4. Требования к транспортабельности

Требования по транспортировке РН на космодром

Транспортировка может осуществляться морским (речным), железнодорожным, автомобильным и воздушным транспортом (дирижаблями, самолётами, вертолётами) в зависимости от габаритов ракетных блоков и расположения космодромов. У каждого вида транспортировки имеются свои преимущества и недостатки. Более подробные сведения по различным видам транспортировки и ограничениям по габаритам ракетных блоков приведены в разделе 18.

Следует отметить, что теоретически существует возможность расположения заводов-изготовителей прямо на космодроме. При этом надобность в дальней транспортировке крупногабаритных блоков на космодром отпадает. Однако появляются трудности другого рода, связанные с наличием трудовых ресурсов и строительством новых заводов. Практически задачи создания ракет больших габаритов и доставки отдельных блоков на космодром решаются комбинированными способами. Так, например, для изготовления и сборки отдельных блоков ракеты H-1 на космодроме Байконур был построен монтажноиспытательный корпус и комплекс вспомогательных цехов под общим названием «филиал завода «Прогресс» - цех 80», в котором были оборудованы универсальные сборочные стенды для сварки баков, для их гидро- и пневмоиспытаний, сборки всех блоков и общей сборки и прочее оборудование.

Требования к транспортировке РН от монтажноиспытательного корпуса к стартовой позиции

Классификация видов транспортировки приведена на рис. 5.3.

Например, транспортировка ракет космического назначения «Союз», «Протон», Н-1, «Энергия» (Россия) осуществляется (или осуществлялась) в горизонтальном положении на специальном транспортировщике на базе железнодорожных платформ с последующей установкой РН в вертикальное положение на стартовом комплексе.

Транспортировка ракеты космического назначения «Сатурн-V» (США) осуществлялась в вертикальном положении на специальной платформе. Эта платформа устанавливалась на тягаче, который имеет четыре гусеничных тракта (по углам платформы). Транспортировка РН

типа «Великий поход» (КНР) также осуществляется в вертикальном положении на железнодорожной платформе.

Рис. 5.3. Виды транспортировки собранной ракеты-носителя

Транспортировка ракеты космического назначения «Союз-СТ» (тропический вариант) осуществляется по комбинированной схеме. Собранная РН транспортируется в горизонтальном положении и устанавливается в вертикальное положение без космической головной части. КГЧ транспортируется отдельно в вертикальном положении и в таком же положении пристыковывается к РН.

Каждый из видов транспортировки имеет свои достоинства и недостатки по затратам, по необходимости иметь специальные помещения и оборудование для сборки, транспортировки и испытаний, по времени подготовки к пуску.

Следует отметить, что теоретически имеется возможность проводить сборку и испытания ракет-носителей тяжелого класса непосредственно на стартовом комплексе.

5.2.5. Требования к безопасности

Требования по безопасности жизнедеятельности

В этом разделе должны быть отражены следующие вопросы:

- взрывобезопасность РН на стартовой позиции;

- наличие системы аварийного спасения на ракетах космического назначения, предназначенных для пилотируемых полётов, и на стартовых комплексах;

- наличие системы пожаротушения, как элементов стартового комплекса, так и отдельных зон двигательных отсеков PH.

В этих пунктах ТТТ приводятся также требования по безопасным условиям труда производственного и обслуживающего персонала, организации рабочих мест, помещений.

Требования по экологии

Требования по экологии в основном сводятся к рекомендации не применять токсичные компоненты топлива на первых ступенях РН. Токсичные компоненты топлива применяются только тогда, когда невозможно другими средствами обеспечить длительность хранения топлива, например для межпланетных полетов.

Требования к стандартизации и унификации

Основные требования этого раздела ОТТ сводятся к следующим пунктам:

- максимальное заимствование ранее изготовленных и отработанных узлов, агрегатов, приборов, механизмов, материалов, технологических решений;

- унификация узлов и оборудования.

Требования к технологичности

Эти требования в основном сводятся к использованию отработанных (относительно дешевых) технологий и внедрению и отработке прогрессивных технологий при изготовлении составных частей PH.

5.2.6. Конструктивные требования

Габаритные ограничения РН определяются сначала по изделияманалогам, затем угочняются по результатам расчета с учетом ограничений по размерам составных частей стартового комплекса.

Требования прочности

Требования по прочности обусловливаются тем, что силовые элементы конструкции должны иметь достаточную прочность и выдерживать нагрузки при всех предусмотренных расчетных случаях:

- по механическим воздействиям на PH во время наземной эксплуатации;

- по механическим воздействиям на PH во время вывода полезного груза (и приземления для возвращаемых блоков).

В табл. 5.2 представлены значения перегрузок, действующих на корпусные элементы конструкции в наземных расчетных случаях, а в табл. 5.3 - значения перегрузок, действующих на корпусные элементы конструкций КА в полетных расчетных случаях для РН типа «Союз».

Расчетный	Экспл значен	уатацио ия перег	нные рузок	Коэффи- циент	Расчет пе	ные знач регрузо	нения к
случаи	n_x^3	n_y^3	n_z°	оезопасно- сти f	n_x^p	n_y^p	n_z^p
Транспортирова- ние автотранс- портом	±2,0	1±2,0	±1,25	$f_{cmam} = 1.5$ $f_{\partial u H} = 2.0$	±4,0	1,5±4,0	±2,5
Вертикальный перенос	-1,0±0,5	±0,3	±0,3	1,5	·1,5±0,75	±0,45	±0,45
Транспортирова- ние по железной дороге:							
- режим соударе- ний	±3,0	-1,0±1,0	±0,8	$f_{cmam} = 1,5$	±6,0	-1,5±2,0	±1,6
- режим устано- вившегося дви- жения	±1,0	-1±1,25	±1	<i>f_{дин}</i> = 2,0	±2,0	-1,5±2,5	±2
Транспортирова- ние в составе РН	±0,5	-1±0,7	·····	1,5	±0,75	-1,5±1,05	

Таблица 5.2. Перегрузки, действующие на корпусные элементы конструкции в некоторых наземных расчетных случаях

Для обеспечения требований по прочности необходимо:

- провести анализ эксплуатации РН на всех этапах жизненного цикла и выбрать расчетные случаи;

- провести назначение коэффициентов безопасности;

- использовать адекватные методы расчета;

- использовать современное программное обеспечение такого рода расчетов.

Таблица 5.3. Перегрузки, действующие на корпусные элементы конструкций КА в полётных расчетных случаях для РН типа «Союз»

Расчетный	Эксплуат значения в	ационные перегрузок	Коэф. безопас-	Расчетны перет	е значения рузок
случай	продоль- ная	попереч- ная	ности f	продоль- ная	попереч- ная
Старт	1,6	3,0	1,3	2,08	3,9
max q	2,5	1,5	1,3	3,25	1,95
$\max n_{xI}$	4,7	0,7	1,3	6,11	0,91
Разделение I-II	4,1	1,4	1,3	5,33	1,82
min n_{xll}	1,5	1,4	1,3	1,95	1,82
Разделение II-III	3,0	1,0	1,3	3,9	1,3
min n _{xlll}	-1,5	1,2	1,3	-1,95	1,56
Отсечка ДУ III ступени	-2,5	0,5	1,3	-3,25	0,65

В частности, при проектировании отдельных составных частей РН приняты следующие значения коэффициентов безопасности:

для сухих отсеков – 1,3;

- для баков 1,5;
- для шаров-баллонов 2,0;

- для ответственных элементов – 2,0.

В обоснованных случаях могут устанавливаться меньшие значения коэффициентов безопасности, как это было сделано на PH «Энергия».

Кроме того, необходимо стремиться по возможности к равнопрочности конструкции. Равнопрочная конструкция при прочих равных условиях обладает минимальной массой.

Требования жесткости

Требования по жесткости обусловливаются необходимостью сохранения требуемых форм, предельных значений прогибов, углов по-92 ворота сечений отдельных элементов конструкции. Например, если приборный отсек PH расположен в носовой или хвостовой части корпуса ракеты, то гироскопические приборы могут быть чувствительны к низкочастотным поперечным колебаниям корпуса ракеты.

Другой пример. Ракета "Атлас" имеет малые толщины оболочек баков, что накладывает дополнительные требования при эксплуатации ракеты. В частности, транспортировка ракеты предусмотрена только при наличии определенного давления в баках, иначе они просто потеряют свою форму (устойчивость).

Для РН «Энергия» при всяких эволюциях на земле также требуется иметь определённое давление наддува внутри баков.

Требования наименьшей массы и наибольшей плотности компоновки

Одним из ключевых требований при проектировании PH и разработке конструкции является вопрос об обеспечении минимальных значений массы и максимальной плогности компоновки. Малая масса элементов при прочих равных условиях характеризует степень их конструктивного совершенства. Увеличение плотности компоновки, как правило, ведет к уменьшению массы любого агрегата, узла, блока.

На массу конструкции PH оказывают влияние используемые конструкционные материалы. Рекомендуется использовать материалы с малой плотностью при достаточной прочности, в том числе и композиционные материалы. При этом необходимо учитывать производственную базу этих материалов.

На массу конструкции РН оказывает влияние точность определения действующих нагрузок и назначение коэффициентов безопасности.

Требования по аэродинамике

Требования по аэродинамике в основном сводятся к следующим.

На внешних поверхностях корпуса РН должно быть как можно меньше выступающих устройств. А если без них обойтись нельзя, то их необходимо закрывать обтекателями.

Кроме того, вводятся ограничения:

- по скорости РН в плотных слоях атмосферы;

- по углам атаки в момент достижения ракетой скорости звука;

- по углам атаки в момент прохождения максимальных скоростных напоров.

Требования по герметичности

Требования по герметичности обусловлены наличием в ракетах герметичных топливных баков и шаров-баллонов высокого давления, предназначенных для наддува баков, а также наличием герметичных приборных отсеков в разгонных блоках, которые представляют собой нечто среднее между ракетными блоками и космическими аппаратами.

К этим требованиям относятся:

- требования по показателям герметичности (натеканию);

- по сварке герметичных неразъемных элементов;

- по конструктивному исполнению герметичных разъемов;

- по проведению испытаний на герметичность в процессе производства;

- по контролю герметичности в процессе эксплуатации РН.

Требования по минимальному потреблению энергии

Эти требования обусловлены тем обстоятельством, что уменьшение электрической мощности аппаратуры приводит к уменьшению массы как самих элементов, так и системы электропитания. Например, турбогенераторный источник электропитания блока второй ступени ракеты-носителя «Энергия» имел мощность 24 кВт и массу 330 кг.

Требования по обеспечению теплового режима

Допустимо использование теплозащиты, теплоизоляции и термостатирования на отдельных составных частях конструкции РН для обеспечения теплового режима при подготовке к пуску, а также при прохождении максимальных скоростных напоров.

На внешней стороне баков с жидким кислородом теплозащитного покрытия может и не быть, так как баки покрываются толстым слоем конденсата воздуха (инея, снега со льдом), который и играет роль теплозащитного покрытия. При запуске двигательной установки конденсат разрушается и осыпается. Однако если полезная нагрузка находятся ниже бака жидкого кислорода, то она должна либо иметь теплозащитное покрытие, как это было сделано на «Буране», либо находиться в специальном контейнере, как это предполагалось сделать на ракетеносителе «Энергия» в дальнейших пусках.

Баки с жидким водородом должны обязательно иметь теплозащитное покрытие. При предстартовой подготовке теплозащита понижает скорость выкипания горючего, сохраняет по времени его плотность, повышает точность заправки, поддерживает заданную температуру для нормальной работы двигателей, сводит к минимуму сжижение воздуха на поверхности бака и образование льда. На участке выведения на орбиту теплозащита поддерживает температуру конструкции в расчетном диапазоне и уменьшает остаток жидкого водорода в баках.

5.2.7. Технико-экономические требования

В этом разделе тактико-технических требований к создаваемой РН должны быть освещены вопросы:

- стоимость затрат на разработку с учетом затрат на наземный комплекс;

- стоимость изготовления опытного образца, предназначенного для лётно-конструкторских испытаний;

- затраты на обеспечение пуска;

- сетевой план-график разработки;
- состав кооперации всех исполнителей;
- предполагаемые объёмы изготовления РН и др.

Эти требования на ранних стадиях разработки устанавливаются на основе предварительного проектного технико-экономического анализа, основные результаты которого затем ложатся в основу бизнес-плана.

Более подробные сведения по этому вопросу приведены в [44]. Из этого же источника в табл. 5.4 приведены данные по стоимости отечественных ракет-носителей в масштабе цен 1992 года. Естественно, что сейчас эти цены изменились, однако пропорции, по-видимому, остались неизменными.

В процессе серийного производства должна отслеживаться динамика изменения стоимости изготовления РН.

5.2.8. Другие требования

Требования по видам обеспечения

В этом разделе ТТТ рассматриваются следующие вопросы:

- метрологическое обеспечение;

- математическое (программное) обеспечение.

Ракета- носитель	М ₀ , т	М _{ПН} , т (на опорной орбите)	М _{ПН} , т (на геостацио- нарной орбите)	Стоимость млн. руб.
Циклон -М	181	2,8		2.2-2.5
Циклон	188	4.0		2.3-2.8
Нева	220	5.0		2.5-3.0
Союз	300	7,0		19-2.1 •
Русь	309	7,0		3.0 - 4.0
Зенит	460	14,0		4.0-5.0
Протон	690	20,6	2,4	5.0 - 6.0
Ангара	700	22,0	3,0	8-10
Энергия - М	1060	35,0	7,0	30-40
Энергия	2850	105,0	20,0	140-180

Таблица 5.4. Данные по отечественным ракетам-носителям

Требования к составным частям РН

В этом разделе рассматриваются такие вопросы, как:

- требования к системе управления;
- требования к системе разделения ступеней;
- требования к системе отделения разгонного блока, КА и др.

Требования к сырью, материалам и комплектующим

Основные требования этого раздела сводятся к использованию отечественного сырья, материалов и комплектующих. Импортные составляющие допускаются лишь в обоснованных случаях, когда эффект от применения увеличивается многократно.

В табл. 5.5 и 5.6 в качестве примера представлены алюминиевые сплавы, рекомендуемые для конструкций РН, работающих при температурах кипения жидкого водорода.

Контрольные вопросы

1. Что такое общие технические требования к создаваемым РН? Чем обусловлена необходимость разрабатывать тактико-технические требования на основе ОТТ?

2. Приведите структуру ТТТ на создаваемые ракеты-носители.

		Плот-	Полуфаб-	Состояние	Мех свойс	аничества при	кие 20°С
Сплав	Система	ность, кг/м ³	рикат	по ТО	$σ_{\epsilon},$ ΜΠα	σ ₀₂ , МПа	δ, %
AMr2	AL-Mg	2680	Лист от 1 до 10,5 мм	Отож- женное	170	-	18
AMr3	AL-Mg	2670	Лист от 4,5 до 10,5 мм	То же	190	80	15
AMr5	AL-Mg	2650	Лист от 4,5 до мм	То же	280	130	5
01545К	AL-Mg- Sc	2650	Лист катанный от 1,0 до 3 мм	То же	380	240	10
1201	AL-Cu- Mn	2850	Лист от 2 до 8 мм	Закаленное и искусств. состар.	410	320,0	6
Д16	AL-Cu- Mg	2780	Лист от 1,5 до 10,5 мм	То же	450	295	10
AB	AL-Mg-Si	2700	Лист от 5 до 10,5 мм	То же	300	-	8,0
АКб	AL-Cu- Mg-Si	2750	Штамповка до 350 кг, долевое направление	То же	390	280	10,0
AK8	AL-Cu- Mg-Si	28 00	Штамповка от 30 до 200 кг, доле- вое направление	То же	420	300	8
1911	AL-Zn- Mg	2780	Лист от 2,5 до 6,0 мм	То же	370	300	10
1245	AL-Cu-Li	2500	Лист 2,5 мм	То же	550	450	5
1460	AL-Cu-Li	2600	Лист от 1,5 до 10,0 мм	То же	500	440	4

Таблица 5.5. Алюминиевые сплавы для работы при минус 253°С

3. Осветите вкратце составные части ОТТ:

- требования по назначению;

- требования к надежности;

- требования к эксплуатации, удобству технического обслуживания, ремонту и хранению;

- требования к транспортабельности;

- требования к безопасности;

- конструктивные требования;

- технико-экономические требования.

Сплав	Свариваемость	Мех сво	аниче йства 253°С	ские при	Цена \$
		$\sigma_{_{ extsf{ heta}}}$, МПа	$\sigma_{_{02}}$, МПа	δ, %	за 1 кг
АМг2	Хорошо сваривается аргонно- дуговой сваркой с присадочной проволокой из сплава АМгЗ, а так- же контак гной, точечной и ролико- вой сваркой	480	-	60	
АМгЗ	Сплав хорошо сваривается газовой, аргонно-дуговой, точечной и роли- ковой сваркой	450	125	40	
АМг5	Сваривается точечной, роликовой, аргонно-дуговой сваркой	530	170	33	5-7
01545K	Сплав хорошо сваривается аргонно- дуговой и контактной сваркой	632	420	28,2	20- 25
1201	Сплав удовлетворительно сварива- ется всеми видами сварки. Приса- дочный материал - проволока св. 1201	600	430	17	15
Д16	Сплав хорошо сваривается точечной и роликовой сваркой, не сваривает- ся газовой и аргонно-дуговой свар- кой	660	450	19	
AB	Удовлетворительно паяется, воз- можна сварка для неответственных деталей	500	260	28	
AK6	Сварка не применяется	630	500	6	
AK8	Сварка не применяется	580	490	14	
1911	Свариваемость удовлетворительная	660	460	15	
1245	Коэффициент трещинообразования 5%	760	560	6	20
1460	Склонен к образованию пористости в сварных соединениях, коэффици- ент трещинообразования 20-40%	660	580	5	40

Таблица 5.6. Алюминиевые сплавы для работы при минус 253°С

6. ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИЧЕСКОЙ СКОРОСТИ РАКЕТЫ-НОСИТЕЛЯ

6.1. Методы расчета характеристической скорости ракет-носителей

6.1.1. Статистические данные по характеристической скорости ракет-носителей

В <u>первом приближении</u> потребную характеристическую скорость ракет-носителей, необходимую для осуществления околоземных и межпланетных космических полетов различного назначения, можно выбирать по статистике из табл. 6.1.

Виды полетов	V ^{nomp} , KM/C
1. Выведение на низкую круговую орбиту	9,2-10
2. Выведение КА на эллиптическую орбиту с апогеем 40- 60 тыс. км	12,3-12,8
3. Выведение КА на стационарную орбиту	13,7-14,6
 Выведение КА за пределы сферы действия Земли (ис- кусственная планета) 	12,5-13
5. Облет Луны	12,5-13,5
 Выведение КА на селеноцентрическую орбиту (спутник Луны) 	13,8-14,5
7. Полет КА к Луне с посадкой на ее поверхность	15,5-16,5
 Осуществление Лунной экспедиции с возвращением на Землю (с торможением атмосферой) 	18,5-19,5
9. Пролет КА вблизи Марса (Венеры) или полет с посад- кой на Марс (Венеру) с торможением атмосферой	13,5-14,5
 Осуществление Марсианской экспедиции с возвраще- нием к Земле (с торможением атмосферой) 	22-24
11. Выход КА за пределы Солнечной системы	18,5-19

Таблица 6.1. Характеристическая скорость ракет-носителей для различных видов космических полетов с Земли [42]

6.1.2. Структура формулы для расчета характеристической скорости ракет-носителей

Во втором приближении потребную характеристическую скорость ракет-носителей рассчитывают с учетом потерь и маневров различного рода. Приведем методику такого расчета применительно к орбитам Земли.

Потребная характеристическая скорость ракеты-носителя определяется по следующей зависимости:

$$V_X^{nomp} = V_{X_{u\partial}}^{nomp} + \Delta V_G + \Delta V_A + \Delta V_P + \sum_{i=1}^n \Delta V_i + \Delta V_{ynp}, \qquad (6.1)$$

где V^{nomp}_{Xud} - идеальная потребная характеристическая скорость;

 ΔV_{G} - потери скорости на преодоление силы тяжести Земли;

 ΔV_A - потери скорости на преодоление аэродинамических сил сопротивления;

 ΔV_p - потери скорости от противодавления на срезе сопла двигателя;

 ΔV_i - приращение характеристической скорости на проведение іго маневра;

 $\Delta V_{_{ynp}}$ - потери скорости на управление ракетой-носителем;

n - количество маневров.

На первых этапах приближения можно принять

$$\Delta V_G + \Delta V_A + \Delta V_P + \Delta V_{ynp} = 1350...1650 \ m/c .$$
 (6.2)

Пример 1. Определить потребную характеристическую скорость РН, необходимую для вывода КА на круговую опорную орбиту высотой 200 км.

Решение. Как упоминалось ранее, идеальная потребная характеристическая скорость $V_{X\mu\partial}^{nomp}$ определяется выражением (2.8):

$$V_{X u \partial}^{nomp} = \sqrt{\frac{\mu_3}{r_{oo}} \left(\frac{2r_{OO}}{R_3} - 1\right)} =$$

$$= \sqrt{\frac{3,986 \cdot 10^5}{6371 + 200}} \left(\frac{2 \cdot (6371 + 200)}{6371} - 1\right) = 8029 \text{ m/c},$$

где $\mu_3 = 3,986 \cdot 10^5 \ \kappa m^3 / c^2$ - гравитационная постоянная Земли;

R₃ = 6371,4 км - средний радиус Земли.

По формуле (6.1) с учетом (6.2) получаем

 $V_{X}^{nomp} = V_{Xu\partial}^{nomp} + \Delta V_{G} + \Delta V_{A} + \Delta V_{P} + \Delta V_{ynp} = 8029 + 1650 \approx 9680 \text{ m/c}.$

В этом примере использовалась верхняя граница потерь скорости (см. выражение (6.2)).

6.1.3. Расчет скорости на опорной орбите

Схема выведения представлена на рис. 6.1, где введены следующие обозначения: R_3 – радиус Земли; r_{oo} – радиус-вектор опорной круговой орбиты; H – высота орбиты.

Проектный расчет характеристической скорости ракетносителей или разгонных блоков, связанный с выводом верхних ступеней РН или КА на круговые и эллиптические орбиты, основывает-

Рис. 6.1. Схема выведения полезного груза на опорную орбиту

ся на законе сохранения энергии, который для центрального поля тяготения выглядит следующим образом:

$$V^2 = \mu \left(\frac{2}{r} - \frac{1}{a}\right), \qquad (6.3)$$

где μ - гравитационная постоянная притягивающего центра;

r – радиус-вектор КА на орбите;

а – большая полуось орбиты.

Параметр а по определению

равен $a = \frac{r_{\pi} + r_{\alpha}}{2}$, где r_{π} и r_{α} радиусы апогея и перигея орбиты. Для проектного расчета характеристической скорости удобнее пользоваться следующей формулой, полученной из зависимости (6.3):

$$V = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a}\right)}.$$
(6.4)

Для расчета характеристической скорости PH, стартующей с Земли, часто используют расчетную формулу, в которой присутствует первая космическая скорость. Преобразуем формулу (6.4) к виду

$$V = \sqrt{\mu_3 \frac{R_3}{R_3} \left(\frac{2}{r} - \frac{1}{a}\right)} = \sqrt{\frac{\mu_3}{R_3}} \sqrt{R_3 \left(\frac{2}{r} - \frac{1}{a}\right)} = V_I \sqrt{R_3 \left(\frac{2}{r} - \frac{1}{a}\right)}.$$
 (6.5)

В этом выражении

 $V_I = \sqrt{\mu_3 / R_3}$ - первая космическая скорость. (6.6)

Первая космическая скорость для Земли составляет 7910 м/с.

Из (6.5) можно получить формулы для расчета скорости КА на опорной орбите:

$$V_{oo} = V_1 \sqrt{R_3 \left(\frac{2}{r} - \frac{1}{a}\right)} = V_1 \sqrt{R_3 \left(\frac{2}{r_{oo}} - \frac{1}{r_{oo}}\right)} = V_1 \sqrt{\frac{R_3}{r_{oo}}}.$$
 (6.7)

Пример 2. Определить скорость КА на круговой опорной орбите высотой 200 км.

Решение. По формуле (6.7) имеем

$$V_{oo} = 7.91 \cdot \sqrt{\frac{6371}{(6371 + 200)}} = 7,79 \text{ km/c}.$$

6.1.4. Определение недобора характеристической скорости для затопления ракетного блока верхней ступени РН в акватории мирового океана

Проектанты могут выбрать схему полета, когда ракета-носитель сообщает полезной нагрузке лишь суборбитальную скорость. Довывод полезных нагрузок на низкую опорную орбиту в этом случае осуществляется с помощью разгонных блоков, установленных 102 в составе полезной нагрузки или с помощью корректирующей двигательной установки выводимого космического аппарата. При этом затраты характеристической скорости на довывод полезной нагрузки равны недобору характеристической скорости ракетыносителя. В этом случае не происходит засорения космического пространства, так как ракетные блоки верхних ступеней затапливают в акватории мирового океана.

Схема, иллюстрирующая траекторию полета ракетного блока последней ступени ракеты-носителя на пассивном участке траектории с некоторыми необходимыми для расчета дальности полета параметрами, представлена на рис. 6.2. Пунктиром нарисована расчетная орбита, часть которой пересекает тело Земли (псевдоорбита).

Рис. 6.2. Схема для определения недобора характеристической скорости для затопления ракетного блока верхней ступени

На этом рисунке введены следующие обозначения: A — точка начала пассивного полёта ракетного блока, которая соответствует апогею орбиты; C' и C - точки пересечения траектории полета ракетного блока с поверхностью Земли соответственно с учётом влияния торможения атмосферой и без учёта этого влияния; ϑ - угол истинной аномалии; β_C - центральный угол, соответствующий дальности полета ракетного блока без учёта влияния торможения атмосферой; r - радиус-вектор орбиты (траектории); L'_C - заданная дальность полета РБ; L_C - расчетная дальность полета ракетного блока без учета влияния торможения атмосферой.

Недобор характеристической скорости для затопления ракетного блока определяется по следующей методике (в которой также показан вывод некоторых расчетных зависимостей):

1. Задается дальность до района затопления L_C' .

2. Рассчитывается параметр L_C :

$$L_C = k_L L'_C$$
,

где k_L – поправочный коэффициент, учитывающий влияние атмосферы. В первом приближении можно принять k_L =1,05...1,10.

3. Центральный угол β_{C} рассчитывается следующим образом:

$$\beta_C = \frac{L'_C}{R_3}$$

4. Определяется эксцентриситет псевдоорбиты.

В качестве исходного выражения для определения эксцентриситета орбиты используем уравнение движения материальной точки в центральном поле тяготения:

$$r = \frac{p}{1 + e\cos\vartheta},\tag{6.8}$$

где *р* - фокальный параметр орбиты;

е — эксцентриситет орбиты.

Для точек A и C (см. рис. 6.2) составим уравнения типа (6.8):

$$r_{\alpha} = (R_3 + H_A) = \frac{p}{1 + e \cos \pi} = \frac{p}{1 - e};$$
(6.9)

$$r_{\rm C} = R_3 = \frac{p}{1 + e\cos(\pi - \beta_{\rm C})} = \frac{p}{1 - e\cos\beta_{\rm C}}$$

Из этих уравнений по отдельности находим параметры *р* и приравниваем между собой правые части:

$$(R_3 + H_A)(1-e) = R_3(1-e\cos\beta_C).$$

Откуда определяем эксцентриситет

$$e = \frac{H_A}{H_A + R_3 (1 - \cos \beta_C)}.$$

5. Определяется радиус перигея псевдоорбиты.

Из уравнения (6.8) для точки D (см. рис. 6.2) можно получить

$$r_{\pi} = \frac{p}{1+e}.$$

Выражая параметр *p* из уравнения (6.9) и подставляя в последнее выражение, можно получить

$$r_{\pi}=r_{\alpha}\,\frac{1-e}{1+e}\,.$$

6. Определяется большая полуось псевдоорбиты

$$a = \frac{r_{\alpha} + r_{\pi}}{2} = \frac{1}{2} \left(r_{\alpha} + r_{\alpha} \frac{1 - e}{1 + e} \right) = \frac{r_{\alpha}}{2} \left(1 + \frac{1 - e}{1 + e} \right) = \frac{r_{\alpha}}{1 + e} \,.$$

7. Определяется скорость ракетного блока, необходимая для его затопления (скорость в точке *A*, см. рис. 6.2).

Воспользовавшись уравнением (6.5), можно получить

$$V_{A} = V_{1} \sqrt{\frac{R_{3}}{R_{3} + H_{A}} (1 - e)} .$$
(6.10)

8. Рассчитывается недобор скорости ракетного блока для обеспечения его затопления.

Расчет производится по зависимости

$$\Delta V_{aam} = V_{oo} - V_A, \tag{6.11}$$

где V₂₀ - скорость объекта на опорной круговой орбите.

Пример 3. Пусть $H_A = 200$ км. Тогда для $\beta_C = 120^\circ \Delta V_{sam} = 321$ м/с, а для $\beta_C = 180^\circ \Delta V_{sam} = 301$ м/с.

6.1.5. Расчет приращения скорости для перевода КА с опорной орбиты на эллиптическую орбиту

Расчет производится с использованием той же зависимости (6.5), но с учетом допущений, что приращение скорости происходит мгновенно в точке перигея будущей эллиптической орбиты. При расчете в формулу подставляются соответствующие параметры эллиптической орбиты.

Пример 4. Определить приращение скорости ΔV_1 , необходимой для перевода КА с опорной орбиты высотой 200 км на эллиптическую орбиту высотой 35786 км (см. схему, представленную на рис. 6.3).

Рис. 6.3. Схема перевода КА на эллиптическую орбиту

Решение. Рассчитаем следующие параметры:

$$r_{oo} = R_3 + H_{oo};$$

 $r_{\pi} = r_{oo} = 6371 + 200 = 6571 \text{ KM};$
 $r_{\alpha} = 6371 + 35786 = 42157 \text{ KM};$
 $a = \frac{r_{\alpha} + r_{\pi}}{2} = \frac{6571 + 42157}{2} = 24364 \text{ KM}.$

Подставляя эти значения в формулу (6.5), получаем

$$V_{\pi} = V_1 \sqrt{R_3 \left(\frac{2}{r_{\pi}} - \frac{1}{a}\right)} = 7,91 \sqrt{6371 \left(\frac{2}{6571} - \frac{1}{24364}\right)} = 10,25 \ [\text{KM/c}].$$

Приращение скорости рассчитывается как разность скорости КА в перигее эллиптической орбиты и скорости КА на круговой опорной орбите, то есть

$$\Delta V_1 = V_{\pi} - V_{oo} = 10,25 - 7,79 = 2,46 \text{ [KM/c]}.$$

6.1.6. Расчет приращения скорости для перевода КА с эллиптической орбиты на высокую круговую орбиту

Расчет, так же как и в предыдущем случае, производится с использованием той же зависимости (6.5) и учетом того, что приращение скорости происходит мгновенно в точке апогея эллиптической орбиты (см. схему, представленную на рис. 6.4).

Искомая добавка скорости определяется как разность между скоростью КА на высокой круговой орбите и скоростью КА в точке апогея эллиптической орбиты.

Пример 5. Определить приращение скорости ΔV_2 , которая необходима для перевода КА с эллиптической орбиты на высокую круговую орбиту. Параметры орбит принять такими же, как в примере 4.

Решение. Рассчитаем сначала скорость полета КА по эллиптической орбите в точке апогея. При этом воспользуемся данными, полученными в примере 4:

$$V_{\alpha} = V_1 \sqrt{R_3 \left(\frac{2}{r_{\alpha}} - \frac{1}{a}\right)} = 7,91 \sqrt{6371 \left(\frac{2}{42157} - \frac{1}{24364}\right)} = 1,597 \text{ [KM/c]}.$$

Рис. 6.4 Схема перевода КА с эллиптической орбиты на высокую круговую орбиту

Теперь рассчитаем скорость КА на высокой круговой орбите с высотой, соответствующей радиусу апогея эллиптической орбиты.

Расчетная формула будет практически такой же, как и формула (6.7), с той лишь разницей, что вместо радиуса опорной орбиты необходимо подставлять радиус высокой круговой орбиты. Таким образом можно получить следующие результаты:

$$V_{\kappa p2} = V_1 \sqrt{\frac{R_3}{r_{\alpha}}} = 7,91 \sqrt{\frac{6371}{42157}} = 3,075 \text{ [km/c]}.$$

Тогда приращение скорости ΔV_2 , которая необходима для перевода КА на высокую круговую орбиту в точке апогея эллиптической орбиты, будет следующим:

$$\Delta V_2 = V_{\kappa p2} - V_{\alpha} = 3,075 - 1,597 = 1,478$$
 [KM/c].
6.1.7. Расчет приращения скоростей для перевода КА с высокой круговой орбиты на эллиптическую орбиту и с эллиптической орбиты на низкую круговую орбиту

Такого рода маневры используются, например, при перестроении орбитальной группировки космических аппаратов, перед спуском КА, а также для "захоронения" (затопления) отработавших КА.

Расчет приращений скорости проводится в той же последовательности, что и расчет скорости для перевода КА на высокие орбиты. Но при этом следует учитывать, что процесс перехода осуществляется в обратной последовательности и что в соответствующих точках орбиты скорость нужно гасить, а не добавлять (то есть КА необходимо тормозить до необходимой скорости).

6.1.8. Расчет приращения скорости для изменения плоскости орбиты

Необходимость в изменении плоскости орбиты возникает, например, при запуске КА на геостационарную орбиту с космодромов, которые располагаются не на экваторе. Изменять плоскость орбиты также приходится в тех случаях, когда вывод КА непосредственно на рабочую орбиту с заданным наклонением невозможен из-за ограничений по азимутам пуска РН. Такие ограничения существуют для каждого конкретного космодрома и связаны, в основном, с освоенными трассами и согласованными районами падения отработавших ракетных блоков.

Рис. 6.5. Схема для расчета приращения скорости КА для изменения плоскости орбиты

Поворот плоскости орбиты проводится путем изменения направления вектора скорости КА. Для этого необходимо сообщить КА приращение импульса скорости. Схема для расчета приращения характеристической скорости, необходимой для изменения плоскости орбиты на угол φ , представлена на рис. 6.5. На этой схеме $\overline{V_1}$ - первоначальный вектор скорости КА, $\overline{V_2}$ вектор скорости КА после изменения плоскости орбиты на угол φ . Из схемы видно, что для изменения направления вектора скорости $\overline{V_1}$ на угол φ (чтобы получить вектор скорости $\overline{V_2}$) необходимо добавить вектор скорости $\overline{\Delta V_3}$.

Из геометрических соотношений нетрудно получить модуль вектора $\overline{\Delta V_3}$:

$$\Delta V_3 = 2 V_1 \sin \varphi / 2 \,. \tag{6.12}$$

Пример 6. Пусть необходимо изменить плоскость орбиты на 60°. Тогда по формуле (6.12) получаем

$$\Delta V_3 = 2V_1 \sin \frac{60^\circ}{2} = V_1.$$

Из примера видно, что для поворота плоскости орбиты КА на 60 градусов необходимо сообщить КА импульс скорости, равной скорости полета КА на первоначальной орбите.

Для спутников, запускаемых с космодрома Байконур с углом наклона плоскости орбиты 51,6 градусов, приращение скорости для перевода КА в плоскость экватора составит

$$\Delta V_3 = 2V_1 \sin \frac{51.6^\circ}{2} = 0.87 \cdot V_1.$$

Поэтому запуск КА на орбиты, лежащие в плоскости экватора, выгоднее производить с космодромов, находящихся на экваторе.

Следует также отметить, что для изменения плоскости орбиты выгоднее всего сообщать космическому аппарату импульс скорости в точке апогея орбиты, так как в этой точке скорость КА минимальна.

На рис. 6.6 приведена расчётная схема вывода КА на геостационарную орбиту с космодромов Байконур и Плесецк.

Изменение угла наклона плоскости орбиты при запуске КА на геостационарную орбиту проводится, как правило, с использованием в структуре ракеты-носителя разгонного блока.

Вывод осуществляется в следующей последовательности. Комплекс КА с разгонным блоком выводится на опорную круговую орбиту 1 с углом наклонения *i*. Осуществляется приращение импульса скорости $\Delta \overline{V}_1$ и полёт продолжается по эллиптической (геопереодной) орбите 2. Вблизи апогея геопереходной орбиты осуществляется поворот её плоскости на угол *i* за счёт приращения вектора скорости $\Delta \overline{V}_3$, затем осуществляется переход на стационарную орбиту ($\Delta \overline{V}_2$), где КА отделяется от разгонного блока.

Рис. 6.6. Схема вывода КА на геостационарную орбиту с космодромов Байконур и Плесецк

Практически для реализации приращений скорости $\Delta \overline{V}_3$ и $\Delta \overline{V}_2$ двигатель разгонного блока включается один раз с обеспечением управления необходимого пространственного маневра.

Пример 7. Определить характеристическую скорость ракетыносителя с разгонным блоком для запуска КА на стационарную орбиту. Угол наклона плоскости опорной орбиты принять равным 51,6 градусов.

Решение. Приращения скорости для проведения маневров в нашем примере уже известны, поскольку параметры промежуточных орбит совпадают с параметрами, приведенными в примерах 1 - 6:

$$V_X^{nomp} = V_{Xu\partial}^{nomp} + \Delta V_G + \Delta V_A + \Delta V_P + \sum_{i=1}^n \Delta V_i =$$

= 8,029 + 1,35 + 2,46 + 0,87 \cdot 1,597 + 1,478 = 14,706 [KM/c].

Здесь из выражения (6.2) использовалась скорость, соответствующая нижней границе потерь скорости.

При некоторых схемах запуска предусматривается, что разгонный блок осуществляет старт с опорной орбиты на геопереходную и поворот плоскости орбиты, а последний маневр - перевод КА на стационарную орбиту - осуществляется двигателями самого КА. Это обстоятельство необходимо учитывать при расчёте потребной характеристической скорости РН.

6.2. Старт к Луне и планетам

6.2.1. Старт к Луне

В общем случае задачу определения параметров движения КА к Луне следует решать при наличии двух притягивающих центров, Земли и Луны. Для проектных расчетов в первом приближении можно считать, что Луна не притягивает КА. Расчет в этом случае сводится к схеме перехода КА с опорной орбиты на эллиптическую (очень вытянутую). Радиус апогея такой орбиты равен расстоянию от Земли до Луны, то есть примерно 384400 км. При этом в действительности будет некоторый запас характеристической скорости, так как Луна притягивает КА.

Ограничимся случаем, когда перелёт к Луне осуществляется не в плоскости орбиты Луны, а в плоскости опорной орбиты, то есть поворот плоскости орбиты КА не требуется. При этом необходимо подобрать время старта таким, чтобы плоскость опорной орбиты проходила вблизи точки будущей «встречи» космического аппарата и Луны.

Пример 8. Определить приращение скорости, необходимой для старта космического комплекса к Луне с опорной орбиты.

Решение. Линейная скорость КА на круговой опорной орбите (орбите ожидания) высотой 200 км, как было показано ранее (см. пример 2), составляет 7,79 км/с.

Радиус апогея эллиптической орбиты принимаем равным среднему расстоянию от Земли до Луны, то есть $r_{\alpha} = 384400$ км.

Рассчитаем большую полуось эллиптической орбиты:

$$a = \frac{r_{\pi} + r_{\alpha}}{2} = \frac{6571 + 384400}{2} = 195485$$
 KM.

Скорость в перигее орбиты рассчитывается по формуле (6.5):

$$V_{\pi} = V_{I} \sqrt{R_{3} \left(\frac{2}{r_{\pi}} - \frac{1}{a}\right)} = 7,91 \sqrt{6371 \left(\frac{2}{6571} - \frac{1}{195485}\right)} = 10,923 \, [\text{KM/c}].$$

Следовательно, при отлете с орбиты ожидания к Луне космическому аппарату требуется приращение скорости:

 $\Delta V_1 = V_{\pi} - V_{oo} = 10,923 - 7,789 = 3,134$ км/с.

Следует также отметить, что данное приращение скорости рассчитано при условии, что Луна в момент встречи с КА будет находиться в плоскости орбиты ожидания.

6.2.2. Старт к планетам

Будем полагать, что плоскости всех орбит совпадают и планеты движутся по круговым орбитам, а радиусы орбит планет равны среднему расстоянию от Солнца до соответствующей планеты. Такое упрощение задачи для первого приближения вполне допустимо, ибо эксцентриситеты планетных орбит и их наклонения к плоскости земной орбиты небольшие.

Прежде всего отметим, что плоскость орбиты менять не нужно, даже при запуске с космодромов, расположенных далеко от экватора. Просто следует подобрать время старга ракеты-носителя таким, чтобы плоскость опорной орбиты была определенным образом ориентирована относительно Солнца, а отлетную траекторию такой, чтобы на границе гравитационного действия Земли вектор скорости межпланетного КА был параллелен вектору скорости орбитального движения Земли вокруг Солнца. При этом отлетная траектория - сложная пространственная кривая, на которую оказывают влияние сила притяжения Земли, сила тяги и время работы двигательной установки межпланетного комплекса. Но это задача баллистических расчетов и здесь не рассматривается.

Методику расчета характеристической скорости рассмотрим на примере старта к Марсу.

Характеристическая скорость для перевода КА с опорной земной орбиты на межиланетную траекторию без учета притяжения Земли

Наиболее рациональной схемой межпланетных полетов считается гомановский переход космического аппарата с орбиты Земли на орбиту Марса (рис. 6.7).

Рис. 6.7. Гомановский переход с орбиты Земли на орбиту Марса

Если не учитывать притяжения планеты отлета и планеты назначения, а ограничиться только действием сил притяжения Солнца, то схемы расчета межпланетных траекторий будут полностью совпадать со схемами расчетов при переходе искусственного спутника Земли с одной круговой орбиты на другую, лежащую в той же плоскости. Необходимо лишь вместо геоцентрических данных подставить гелиоцентрические.

Исходные данные для решения этой задачи следующие:

- гравитационная постоянная Солнца 1,32·10²⁰ м³/c²;

- среднее расстояние от Солнца до Земли 1,496·10¹¹ м;

- среднее расстояние от Солнца до Марса 2,278 · 10¹¹ м.

Рассчитывается полуось эллиптической межпланетной орбиты:

$$a = \frac{r_{\pi} + r_{\alpha}}{2} = \frac{1,496 \cdot 10^{11} + 2,278 \cdot 10^{11}}{2} = 1,887 \cdot 10^{11} \text{ M},$$

а затем скорость КА в точке перигелия межпланетной орбиты

$$V_{\pi} = \sqrt{\mu_c \left(\frac{2}{r_{\pi}} - \frac{1}{a}\right)} = \sqrt{1.32 \cdot 10^{20} \left(\frac{2}{1.496 \cdot 10^{11}} - \frac{1}{1.887 \cdot 10^{11}}\right)} = 32725 \, \text{m/c} \, .$$

Учитывая, что абсолютная скорость Земли относительно Солнца равна $\Delta V_3 = 29,785 \ \kappa m / c$, можно получить необходимое приращение характеристической скорости (избыточную скорость) для перевода КА с земной орбиты на межпланетную траекторию:

 $\Delta V_{\mu_{3}\bar{b}} = 32,725 - 29,785 = 2,94 \ \text{Km} / c$.

Приращение характеристической скорости для разгона межпланетного космического аппарата с учетом притяжения Земли

Выше было показано, что для касательного перехода с круговой орбиты Земли на траекторию полета к Марсу (перелет по схеме Гомана) космическому аппарату необходимо сообщить приращение скорости (избыточную скорость) $\Delta V_{usb} = 2,94 \ \kappa m/c$. Если эту скорость добавить на опорной орбите, то космический аппарат в начальные моменты времени будет иметь скорость

 $V_{KA} = V_{OO} + V_{u_{30}} = 7,79 + 2,94 = 10,73 \text{ km/c}$.

Но космический аппарат не достигнет орбиты Марса, так как для преодоления сил земного тяготения КА должен иметь скорость освобождения (с учетом высоты опорной орбиты 200 км) не менее

 $V_{oce} = V_{oc} \cdot \sqrt{2} = 7,790 \cdot \sqrt{2} = 11,017 \text{ km}/c$.

То есть, чтобы КА вышел из сферы действия земного притяжения, ему должна быть сообщена следующая избыточная скорость на опорной орбите:

$$\Delta V = V_{oc} - V_{og} = 11,017 - 7,790 = 3,227 \text{ Km} / c .$$

Для вывода космического комплекса на межпланетную траекторию можно использовать различные схемы.

Например, можно осуществить вывод космического комплекса на гомановскую перелетную траекторию с помощью двух импульсов скорости: сначала на опорной орбите Земли надо сообщить ему скорость, равную скорости освобождения, а затем, когда он пересечет сферу действия Земли, вторым импульсом дать ему добавочную (избыточную) скорость. Подобный разгон, хотя и выведет КА на перелетную гомановскую траекторию, не будет оптимальным.

Если полный разгон КА совершить не на границе действия Земли, а как можно ближе к земной поверхности, то для перехода на межпланетную траекторию можно сэкономить необходимую для этого перехода добавочную скорость. Действительно, если телу сообщить скорость, большую, чем скорость освобождения, то тело не только выйдет из сферы действия Земли, но будет иметь там некоторую скорость, которую называют избыточной или остаточной.

Из механики космического полета известно, что стартовая скорость связана со второй космической скоростью (скоростью освобождения) и избытком скорости движения КА по гиперболической траектории следующей формулой:

 $V_{cm}^2 = V_{oce}^2 + V_{u36}^2$.

Следовательно, если на опорной орбите сообщить космическому аппарату стартовую скорость

 $V_{cm} = \sqrt{V_{ocg}^2 + V_{us\delta}^2} = \sqrt{11,017^2 + 2,94^2} = 11,402 \text{ km/c},$

то он после ухода из сферы притяжения Земли будет иметь избыточную скорость (при движении по гиперболической траектории), равную 2,94 км/с. Эта скорость позволит ему попасть на переходную гомановскую траекторию к Марсу.

Таким образом, характеристическая скорость для старта с опорной орбиты на межпланетную орбиту будет

 $\Delta V_{M} = 11,402 - 7,790 = 3,612 \ \kappa m / c$.

В этом случае превышение стартовой скорости межпланетного космического комплекса над скоростью освобождения будет всего лишь 11,402 – 11,017 = 0,385 км / с

Характеристическая скорость для вывода космического аппарата на межпланетную траекторию полета к Марсу с учетом старта с земной поверхности составит:

$$V_{X_M} = V_{PH} = V_{Xu\delta}^{nomp} + \Delta V_G + \Delta V_A + \Delta V_P + \Delta V_M =$$

= 8,029 + 1,65 + 3,612 = 13,291 km/c.

Применяя описанную выше методику расчетов, можно определить минимальные стартовые скорости V_{cm} для полетов на другие планеты по траекториям, соответствующим переходу Гомана.

В табл. 6.2 приведены результаты расчетов приращения характеристической скорости для старта с Земли к планетам Солнечной системы (без учета притяжения Земли).

Планета	$\Delta V_{\varPi_{n}}$, км/с	V_{cm} , км/с
Меркурий	-7,53	13,49
Венера	-2,49	11,46
Марс	2,94	11,57
Юпитер	8,79	14,22
Сатурн	10,29	15,19
Уран	11,27	15,88
Нептун	11,64	16,4

Таблица 6.2. Данные для расчета приращения характеристической скорости для старта с Земли к планетам солнечной системы [70]

Во второй колонке таблицы указаны добавочные скорости ΔV_{Π_n} , которые должен иметь КА после преодоления силы земного тяготения, чтобы достичь планеты назначения по гомановской траектории. Знак минус напротив Меркурия и Венеты указывает на то, что вектор добавочной скорости должен быть направлен противоположно вектору орбитальной скорости Земли. В третьей колонке таблицы указаны необходимые для достижения планет теоретические минимальные стартовые скорости, сообщаемые межпланетным КА у земной поверхности.

Следует отметить, что в [70] расчёт стартовой скорости проводился без учёта высоты орбиты старта. Этим и объясняется небольшое расхождение табличных и расчётных значений стартовой скорости для Марса.

Контрольные вопросы

1. Приведите некоторые статистические данные по характеристической скорости ракет-носителей.

2. Как производится расчет скорости космического аппарата на опорной орбите?

3. Объясните суть расчёта недобора характеристической скорости для затопления ракетного блока верхней ступени РН в акватории Мирового океана.

4. Как рассчитывается приращение скорости для перевода КА с опорной орбиты на эллиптическую орбиту?

5. По какой зависимости производится расчет приращения скорости для перевода КА с эллиптической переходной орбиты на высокую круговую орбиту?

6. Составьте схему для расчёта приращения скорости при изменении плоскости орбиты.

7. По какой схеме производится расчет приращения характеристической скорости для старта с опорной орбиты к Луне?

8. По какой схеме производится расчет приращения характеристической скорости для старта с опорной орбиты к планетам?

9. Как рассчитывается характеристическая скорость для перевода КА с опорной земной орбиты на межпланетную траекторию без учета притяжения Земли?

10. Как рассчитывается приращение характеристической скорости для разгона межпланетного КА с учетом притяжения Земли?

7. ВЫБОР ТОПЛИВА ПРИ ПРОЕКТИРОВАНИИ РАКЕТ

Выбор топлива при проектировании ракет имеет особое значение, так как оно в основном определяет энергетику РН (удельный импульс), тип применяемого двигателя, массу и габариты ракеты. Следует иметь в виду, что 80-92% стартовой массы ракеты приходится на долю топлива.

7.1. Классификация топлива

В ракетной технике используются три вида ракетных топлив:

- жидкие;

- твердые;

- комбинированные (твердое горючее и жидкий окислитель).

Жидкие топлива классифицируются по следующим признакам.

По числу комнонентов:

- *двухкомпонентные*, раздельно хранимые и подаваемые в камеру сгорания жидкостного реактивного двигателя (ЖРД) (например, жидкий кислород + жидкий водород);

- однокомпонентные (например, перекись водорода).

Двухкомпонентные топлива, в свою очередь, классифицируются по способу воспламенения:

- несамовоспламеняющиеся, требующие для своего воспламенения дополнительного источника тепла (например, керосин + жидкий кислород);

- *самовоспламеняющиеся* (азотная кислота + керосин + диметилгидразин).

По температуре кипения:

- высококипящие (керосин);

- низкокипящие (жидкий кислород, жидкий водород).

Твердые топлива подразделяются:

- на гомогенные (нитроглицерин C₆H₇(OH)_{3-X} (ONO₂) + нитроцеллюлоза); - *гетерогенные* (или смесевые), в которых в качестве окислителя используются соли, богатые кислородом, а в качестве горючего - органические материалы типа резины, асфальта и т.п. (например, перхлорат аммония + каучук).

В комбинированном топливе один из компонентов находится в твердой фазе, а второй компонент – в жидкой (например, твердое горючее и жидкий окислитель). В частности, в противоспутниковой трехступенчатой ракете, запускаемой с помощью самолета МиГ-31, использовался в качестве горючего каучук, а в качестве окислителя - жидкий кислород.

7.2. Требования, предъявляемые к ракетным топливам

В своем историческом развитии основные требования к ракетным топливам претерпели существенные изменения.

Так, при проектировании первых баллистических ракет наряду с требованием высокого удельного импульса выдвигалось требование обеспечения низкой температуры горения. Поэтому на ракетах ФАУ-2 и Р-1 в качестве горючего применялся спирт, температура горения которого относительно низка. Причем этот спирт балластировали (разбавляли) водой до 75% концентрации для еще большего снижения температуры горения в камере сгорания. На последующих ракетах Р-2, Р-5 проблема охлаждения двигателя была частично снята и использовался спирт 95% концентрации.

В дальнейшем, когда проблема охлаждения двигателя была полностью снята, в конструкторском бюро С. П. Королева была спроектирована двухступенчатая баллистическая ракета Р-7 на компонентах топлива керосин + жидкий кислород. Это топливо имело относительно высокий удельный импульс. Однако возникла проблема обеспечения высокой боеготовности ракет с использованием жидкого кислорода. Эта проблема решалась, с одной стороны, увеличением скорости заправки ракеты жидким кислородом (баллистическая ракета Р-9), с другой стороны, - использованием компонентов топлива с высокой стабильностью при длительном хранении. То есть одним из важных требований было требование высокой стабильности топлива. Поэтому появились ракеты с токсичными компонентами топлива.

При дальнейшем совершенствовании баллистических ракет требования высокой боеготовности привели к созданию твердотопливных ракет.

Для ракет-носителей, создаваемых в настоящее время, основные требования (также наряду с требованием высокого удельного импульса) - это нетоксичность (минимальное влияние компонентов топлива на экологию окружающей среды) и минимальная стоимость топлива. Однако полностью отказаться от токсичных компонентов топлива в настоящее время не представляется возможным, так как для разгонных блоков верхних ступеней ракет и межпланетных космических комплексов одним из важных требований является требование длительного хранения компонентов топлива. К сожалению, в настоящее время таким требованиям отвечают только токсичные компоненты.

Наибольшее распространение в ракетах-носителях получили двухкомпонентные жидкие топлива. К ним предъявляются следующие требования.

1. Высокие значения удельных тяг (удельных импульсов).

2. Низкая токсичность компонентов топлива как в жидком, так и в газообразном состоянии.

3. Большая плотность компонентов топлива, обеспечивающая размещение требуемой части топлива в меньших объемах топливных баков.

4. Низкая температура замерзания (не выше -40°С) и возможно высокая температура кипения.

5. Малая химическая активность (коррозионность) компонентов топлива по отношению к конструкционным материалам.

6. Высокая физическая и химическая стойкость компонентов топлива при эксплуатационных давлениях и температурах, обеспечивающая их длительное хранение в баках ракетных блоков (хранение жидких криогенных компонентов представляет определенные трудности).

7. Малая гигроскопичность компонентов топлива, то есть склонность их к поглощению влаги из атмосферы, и как следствие, снижение концентрации.

8. Безопасность при хранении и эксплуатации компонентов топлива, то есть они не должны бурно испаряться, взрываться и самовоспламеняться в присутствии атмосферного воздуха.

9. Бездефицитность компонентов топлива, низкая стоимость, возможность поставки с отечественных баз.

В баллистических ракетах последних поколений в основном применяются твердотопливные двигатели, обеспечивающие требования по минимальному времени с момента выдачи команды на запуск ракеты до ее старта.

7.3. Характеристики ракетного топлива

Существует довольно много характеристик ракетного топлива. Например, такие характеристики, как скорость горения, теплоемкость, теплопроводность, вязкость и др. используются специалистами по разработке топлива и двигателей. При выборе топлива для PH используются, как правило, следующие характеристики:

- удельный импульс;

- токсичность;

- плотность;

- соотношение компонентов топлива;

- стабильность;

- наличие производственной базы;

- наличие специальной производственной базы;

- стоимость.

Рассмотрим последние характеристики подробнее.

Удельный импульс

Эта характеристика подробно рассматривалась в разделе 2 настоящего учебного пособия. Напомним, что она определяется следующим соотношением:

$$J_{yo} = \frac{R}{\dot{m}}, \qquad (7.1)$$

где *R* – тяга двигателя; *m* - расход топлива в единицу времени.

Если одновременно работают несколько ЖРД различного типа или с различными компонентами топлива, то говорят о некоторой осредненной характеристике, например, об отношении суммарной 122

Таблица 7.1. Некоторые характеристики топлива

Окислитель	Горючее	Удельный импульс Ј _{уо} , м/с	Соотн. комп. топли- ва, <i>К</i>	Средн. плотн. ρ_{cp} , кг/м ³	Темпера- тура го- рения, Т °С
Азотная кислота HNO ₃ (98%)	Керосин	2300-3130	5,34	1360	2980-3010
Азотная кислота HNO ₃ (98%)	Тонка	2350-3100		1320	3000
Четырехокись азота N ₂ O ₄	Керосин	2400-3100		1380	3300
Жидкий кисло- род	Керосин	2750-3475	2,73- 2,9	1000	3600
Жидкий кисло- род	Этиловый спирт (92%)	2550	1,5	990	3300
Жидкий кисло- род	Жидкий во- дород	3350-4540	3,5-5,56	260- 320	2755-3270
Жидкий фтор	Гидразин	3450	2,0	1320	4650
Жидкий кисло- род	ДМГ	2850-2950		1020	3545
Жидкий кисло- род	ндмг	2680-3590	1,92	960	3012
Азотная кислота HNO ₃ (98%)	НДМГ	2530-3120	3,2	1280	
Азотная кислота HNO ₃ (70%) + окислы азота (30%)	НДМГ	2530	3,0	1280	3140
Четырехокись азота (N ₂ O ₄)	НДМГ	2680-2795	2,5-2,8	1185	3360
Четырехокись азота (N ₂ O ₄)	Аэрозин-50 (50% НДМГ+50% гидразин)	2700-3305	2,13- 3,00	1240- 1280	3140
Жидкий кисло- род	Природный газ	3050-3740	3,4-3,5	820,4	

тяги двигательных установок к суммарному расходу топлива:

$$w_e = \sum_{1}^{n} R_i \left/ \sum_{1}^{n} \dot{m}_i \right.$$
(7.2)

где n – количество ступеней (или работающих двигателей) РН.

С учетом (7.1) и (2.13) запишем,

$$w_e = \sum_{1}^{n} R_i \left/ \sum_{1}^{n} R_i / w_i \right.$$
 (7.3)

Некоторые данные по удельным импульсам для различных компонентов топлива приведены в табл. 7.1.

В этих таблицах приняты следующие сокращения: ДМГ - диметилгидразин; НДМГ - несимметричный диметилгидразин.

Состав и основные характеристики некоторых твердых топлив приведены в табл. 7.2.

Характе- ристики	Нитроцеллюлозные топлива	Смесевые топлива				
	Нитрат целлюлозы - 51,5%; нитроглицерин – 43,0%; Добавки – 5,5%	NH ₄ ClO ₄ – 80%; Полибутади- ен – 20%	NH₄ClO₄ – 72%; Полиэфир – 18%; Al – 10%	NH ₄ ClO ₄ – 68%; Полиуре- тан – 17%; Al – 15%		
Плотность, кг/м ³	1620	1720	1770	1800		
Температура горения, К	3060	2790	3290	3300		
Удельный	2400	2300	2440	2460		

Таблица 7.2. Состав и основные характеристики некоторых твердых топлив

Следует отметить, что разброс значений отдельных характеристик, приведенных в этих и последующих таблицах, объясняется тем, что они заимствованы из различных источников, измерялись при различных условиях (например, удельный импульс существенно зависит от давления в камере сгорания) и относятся к различным годам становления ракетной техники.

В настоящее время ведутся проработки двигателей, работающих на сжиженном метане и жидком кислороде [51], которые имеют повышенный удельный импульс по сравнению с двигателями на жидком кислороде и керосине.

Токсичность

Предельно допустимые концентрации (ПДК) паров некоторых компонентов топлива представлены в табл. 7.3.

Таблица 7.3. Предельно допустимые концентрации паров компонентов топлива

Компоненты топлива	ПДК, мг/м ³		
Кислород	-	-	
Керосин	300	-	
Азотная кислота	5	Токсичен	
Перекись водорода	1	Токсичен	
НДМГ	0,1	Токсичен	
Фтор	0,03	Токсичен	

Для сравнения: предельно допустимая концентрация паров отравляющего газа фосген равна 0,5, а для синильной кислоты – 0,3.

Плотность топлива и его компонентов

Значения плотности некоторых компонентов топлива приведены в табл. 7.4.

Таблица 7.4. Плотность некоторых компонентов топлива

Компонент топлива	Плотность, кг/м ³
Жидкий кислород	1140
Жидкий водород	70
Керосин	860
НДМГ	78 5-8 08
Аэрозин -50	890
Четырехокись азота N2O4	1440 - 1450
Азотная кислота HNO ₃ (70%) + окислы азота (30%)	1570 - 1610
Природный газ (жидкий при минус 161,6°С)	420

Кроме обычной плотности используют среднюю плотность пары компонентов топлива, в которой учитываются плотности и объемы как окислителя, так и горючего:

$$\rho_{cp} = \frac{m_{OK} + m_I}{V_{OK} + V_{\Gamma}} \,. \tag{7.4}$$

Значения средних плотностей для некоторых пар компонентов топлива приведены в табл. 7.1.

Соотношение компонентов топлива

Соотношение компонентов топлива можно характеризовать следующими коэффициентами.

Молярный (теоретический) стехиометрический коэффициент рассчитывается как отношение молярного веса окислителя к молярному весу горючего. Например, сгорание водорода в среде кислорода соответствует следующей химической формуле реакции: $2H_2 + O_2 = 2H_2O$.

Отсюда можно получить молярный стехиометрический коэффициент $\chi = 32/4 = 8$.

Однако в ракетной технике используется не стехиометрический коэффициент χ , при котором происходит полное сгорание компонентов топлива, а коэффициент κ - отношение расхода в единицу времени массы окислителя к массе горючего (секундного расхода окислителя к секундному расходу горючего):

$$\kappa = \frac{n k_{\sigma \kappa}}{n k_{\sigma}} \,. \tag{7.5}$$

Это объясняется тем, что выбор характеристик топлива происходит на основе компромисса между противоречивыми требованиями к его частным показателям. Например, при проектировании ракет и двигателей важнее другая характеристика топлива, а именно, удельный импульс, максимальное значение которого достигается при несколько меньшем соотношении компонентов топлива, чем стехиометрическое соотношение. Это явление связано с потерями энергии на диссоциацию продуктов сгорания топлива.

В проектных расчетах коэффициент к рассчитывают как отношение массы окислителя к массе горючего, находящихся в ракетном блоке, то есть:

$$\kappa = \frac{m_{\alpha_{\kappa}}}{m_{\epsilon}} \approx \frac{m_{\alpha_{\kappa}}}{m_{\epsilon}} \,.$$

Значения массового стехиометрического коэффициента для некоторых пар компонентов топлива представлены в табл. 7.1.

С учетом коэффициента к может быть получен средний вес топлива, если в качестве исходной использовать формулу (7.4) и выполнить преобразования:

$$\rho_{cp} = \frac{m_{OK} + m_{\Gamma}}{V_{OK} + V_{\Gamma}} = \frac{\frac{m_{OK}}{m_{\Gamma}} + 1}{\frac{V_{OK}}{m_{\Gamma}} + \frac{V_{\Gamma}}{m_{\Gamma}}} = \frac{\kappa + 1}{\frac{V_{OK}}{m_{\Gamma}} \cdot \frac{m_{OK}}{m_{OK}} + \frac{1}{m_{\Gamma}/V_{\Gamma}}} = \frac{\kappa + 1}{\frac{m_{OK}}{m_{\Gamma}} \cdot \frac{1}{m_{OK}} + \frac{1}{\rho_{\Gamma}}} = \frac{\kappa + 1}{\frac{\kappa}{\rho_{OK}} + \frac{1}{\rho_{\Gamma}}} = \rho_{OK}\rho_{\Gamma}\frac{\kappa + 1}{\kappa\rho_{\Gamma} + \rho_{OK}} . (7.6)$$

Состав твердого топлива обычно задается весовыми процентами компонентов. Варьируя состав компонентов, можно изменять в желаемом направлении удельную тягу, плотность и скорость горения топлива. В табл. 7.2. приведен также состав твердых топлив при соотношении компонентов, близких к оптимальным.

Стабильность

Стабильность топлива в первую очередь зависит от температуры кипения (для жидких топлив). Для твердых топлив важна прочность, трещиностойкость и др. Значения температуры кипения и замерзания для некоторых компонентов жидкого топлива приведены в табл. 7.5.

Наличие производственной базы

Жидкий кислород, керосин, азотная кислота, этиловый спирт и т.п. используются в других отраслях промышленности и потому, как правило, бездефицитны и относительно дешевы.

Наличие специальной производственной базы

Для производства жидкого водорода, жидкого фтора, ДМГ, НДМГ, гидразина необходимы специальные установки или заводы. Поэтому такие компоненты топлива, как правило, имеют относительно высокую стоимость.

Компонент топлива	Температура замерзания, °С	Температура кипения, °С
Жидкий кислород	- 218,4	- 183
Жидкий водород	- 259,2	- 258,7
Керосин	- 50 70	+ 150+ 170
Азотная кислота HNO ₃ (70%) + окислы азота (30%)	Не выше - 60	+ 44+ 49
Четырехокись азота N ₂ O ₄	- 11,3	+ 21,5
ДМГ	- 50	+ 55
Пиродный газ	- 182,5	- 161,6

Таблица 7.5. Температура кипения и замерзания компонентов топлива

Стоимость

Стоимость некоторых компонентов топлива в масштабе цен 1990 года приведена в табл. 7.6. Цены с тех пор (с 1990 года), естественно, изменились, однако, соотношение цен, по-видимому, не претерпело существенных изменений.

Таблица 7.6. Стоимость некоторых компонентов топлива и газов (цены 1990 г.)

Компонент	Стоимость, руб/т
Азотный тетраксид - АТ	120
Несимметричный диметилгидразин - НДМГ	900
Жидкий кислород - О ₂	40
Жидкий водород - H ₂	8000 - 15000
Керосин РГ-1 (Т-1)	50
Жидкий азот	50
Гелий	55000
Перекись водорода – H ₂ O ₂ 85-98% концентрации	760 - 2400

7.4. Особенности использования твердого ракетного топлива

В начале эры развития баллистических ракет использовались в основном жидкие компоненты топлива, так как были определенные

проблемы технологического плана в обеспечении прочности и трещиностойкости больших по габаритам топливных зарядов. Кроме того, не достигалась требуемая точность попадания баллистических ракет на твердом топливе из-за разброса характеристик двигателей по тяге и времени окончания их работы.

Однако после решения этих проблем постепенно сначала США, а затем и СССР перешли на твердотопливные баллистические ракеты. Этот переход осуществлялся несмотря на то обстоятельство, что удельный импульс у топлива на жидких компонентах несколько выше, чем у твердого топлива. Дело в том, что, во-первых, боеготовность баллистических ракет на твердом топливе выше, чем их боеготовность на жидких компонентах топлива. Во-вторых, в твердотопливных ракетах отсутствуют многие элементы пневмогидравлических систем и автоматики двигателей, которые увеличивают массу конструкций баллистической ракеты.

В настоящее время на ракетах-носителях твердое топливо используется в основном на ракетных блоках первых ступеней. Часто конструктивно они выполняются в виде боковых ускорителей.

Кроме того, некоторые снятые с вооружения баллистические ракеты на твердом топливе используются для запусков космических грузов, например пятиступенчатый комплекс «Старт», который составлен из ракет «Тополь» и «Пионер», снятых с вооружения.

7.5. Критерии выбора топлива

Напомним, что критерий эффективности – это правило, в соответствии с которым проводят какой-либо выбор. Для выбора топлива существует несколько критериев. В данном учебном пособии рассматриваются два критерия, которые обсуждаются ниже.

7.5.1. Выбор топлива с учетом влияния средней плотности и удельного импульса на стартовую массу PH

Для ракет, где основное требование сводится к минимальной массе, объему и габаритам ракеты, важно рациональное сочетание удельного импульса и средней плотности компонентов топлива, так как на практике встречаются случаи, когда топливо с высоким значением удельного импульса обладает малой средней плотностью. Например, если в качестве компонентов топлива используются жидкий водород и жидкий кислород, то масса конструкции баков в этом случае будет увеличена по сравнению с другими компонентами топлива. Поэтому необходимо использовать критерии при выборе компонентов топлива, учитывающие эти обстоятельства.

Так как масса конструкции PH зависит от плотности компонентов топлива, то вполне естественно желание проектантов выбрать топливо, обеспечивающее минимальную стартовую массу PH при заданной массе полезной нагрузки и заданной характеристической скорости ракеты:

$$m_0 \rightarrow \min \mid m_{\Pi H} = const;$$

 $V_X = const.$

Данный критерий выбора топлива будет равносилен следующему:

$$p_i \to \min_{V_x = const}$$
 (7.7)

где $p_i = \frac{m_{0i}}{m_{\Pi H}}$ - отношение начальной массы *i*-й ступени ракеты к

массе полезной нагрузки.

То есть минимальное значение p_i отношения начальной массы *i*-й ступени ракеты к массе полезной нагрузки будет соответствовать наиболее выгодному в весовом отношении топливу при фиксированных значениях характеристической скорости ракеты ($V_x = const$).

Построить целевую функцию этого критерия для ракет с различными конструкциями ракетных блоков и схемами соединения их между собой – довольно сложная задача. Но можно пойти по другому пути. А именно, вести сравнение не реальных ракет или их прототипов, а так называемых «приведенных» ракет с упрощенной конструктивной схемой. В приведенной ракете имеется всего одна ступень и один топливный отсек, который представляет собой бак сферической формы, содержащий оба компонента топлива со средней плотностью. Кроме этого, ракета имеет двигатель и полезную нагрузку. Все остальные части ракеты как бы отсутствуют (или негласно считается, что они одинаковы для ракет с различными компонентами топлива). Следует заметить, что такое упрощение можно вводить только для сравнения масс конструкций ракет с целью выбора топлива по критерию минимума относительной массы полезного груза ракеты, однако такое упрощение не годится для расчета характеристической скорости и других характеристик ракеты.

Покажем, как построить целевую функцию критерия (7.7) для такой приведенной ракеты с упрощенной конструкцией.

Напомним, что отношение начальной массы ступени к массе ее полезной нагрузки связано с конструктивными характеристиками ракетных блоков и числом Циолковского соотношением

$$p_i = z_i \frac{s_i - 1}{s_i - z_i},$$
(7.8)

где z_i – число Циолковского i-й ступени;

*s*_i – конструктивная характеристика ракетного блока і-й ступени.

По определению конструктивная характеристика *S* выражается следующим образом:

$$S = \frac{m_E}{m_K},\tag{7.9}$$

где m_{E} – масса ракетного блока;

m_к – масса конструкции ракетного блока.

Учитывая, что

 $m_{\rm B}=m_{\rm K}+m_{\rm T}\,,$

где *m_T* - масса топлива ракетного блока, и

 $m_{K}=m_{TO}+m_{\bar{o}e}\,,$

где *m_{то}* - масса топливного отсека;

 $m_{\partial e}$ - масса двигателя,

можно провести следующие преобразования:

$$S = \frac{m_K + m_T}{m_K} = 1 + \frac{m_T}{m_K} = 1 + \frac{m_T}{m_{TO} + m_{\partial \theta}} =$$

$$=1+\frac{1}{\frac{m_{TO}}{m_{T}}+\frac{m_{\partial e}}{m_{T}}}=1+\frac{1}{\eta+\frac{m_{\partial e}}{m_{T}}}.$$
 (7.10)

В этом выражении введено обозначение:

$$\eta = \frac{m_{TO}}{m_T} \,. \tag{7.11}$$

Преобразуем отношение $m_{\partial e}/m_T$, стоящее в знаменателе зависимости (7.10), выразив это отношение через характеристики конструкции двигателя, топливного бака и топлива, а также через числа Циолковского. При этом учтем, что относительный вес двигательной установки по определению

$$\gamma_{\Lambda Y} = \frac{m_{\partial \sigma} g_0}{R_0},$$

где g_0 - ускорение земного тяготения вблизи поверхности Земли;

*R*₀ - тяга ракетного двигателя вблизи поверхности Земли.

Последовательность преобразований приведена ниже:

$$\frac{m_{\partial\sigma}}{m_{T}} = \frac{\gamma_{\partial\sigma}R_{0}}{m_{T}g_{0}} = \frac{\gamma_{\partial\sigma}n_{0}m_{0}g_{0}}{m_{T}g_{0}} = \frac{\gamma_{\partial\sigma}n_{0}m_{0}}{m_{T}} = \frac{\gamma_{\partial\sigma}n_{0}}{m_{T}} = \frac{\gamma_{\partial\sigma}n_{0}}{m_{0}} = \frac{\gamma_{\sigma}n_{0}}{m_{0}} = \frac{\gamma_{$$

Здесь использованы следующие обозначения: m_0 - начальная масса ракеты; n_0 - начальная перегрузка ракеты; z - число Циолковского.

Подставляя (7.12) в (7.10), получаем

$$S = 1 + \frac{1}{\eta + z \frac{\gamma_{\partial s} n_0}{z - 1}}.$$
 (7.13)

Подставляя это выражение в (7.8) и учитывая, что приведенная ракета одноступенчатая, получаем 132

$$p = z \frac{s-1}{s-z} = z \frac{\frac{1}{\eta + z \frac{\gamma_{\partial a} n_0}{z-1}}}{1 + \frac{1}{\eta + z \frac{\gamma_{\partial a} n_0}{z-1}} - z} = z \frac{1}{\eta + z \frac{\gamma_{\partial a} n_0}{z-1} + 1 - z\eta - z^2 \frac{\gamma_{\partial a} n_0}{z-1}} = \frac{z}{\eta + z \frac{\gamma_{\partial a} n_0}{z-1} + 1 - z\eta} = \frac{z}{\eta (1-z) - z \gamma_{\partial a} n_0 + 1}.$$
 (7.14)

Число Циолковского приведенной ракеты выразим (из формул Циолковского) через характеристическую скорость V_{χ} и удельный импульс топлива w:

$$z = e^{\frac{V_x}{w}}$$
 (7.15)

Подставляя (7.15) в (7.14), получаем

$$p = e^{\frac{V_x}{w}} \frac{1}{\eta \left(1 - e^{\frac{V_x}{w}}\right) - e^{\frac{V_x}{w}} \gamma_{os} n_0 + 1}.$$
 (7.16)

Перейдем к преобразованию параметра η в этой формуле, выра-

Рис. 7.1. Расчетная схема для сферического бака

зив числитель и знаменатель этого выражения (см. выражение (7.11)) через характеристики конструкции топливного бака и топлива.

Расчетная схема для сферического бака представлена на рис. 7.1.

На этом рисунке введены следующие обозначения: D_{TO} - диаметр топливного бака сферической формы; δ_{TO} - толщина стенки бака; $p_{\mathcal{A}}$ - среднее давление в баке.

Преобразуем сначала числитель выражения (7.11):

$$m_{TO} = \rho_M F_{TO} \,\delta_{TO} = \rho_M 4\pi \left(\frac{D_{TO}}{2}\right)^2 \delta_{TO} = -\rho_M \,\pi D_{TO}^2 \,\delta_{TO} \,,$$

где ρ_{M} - плотность конструкционного материала бака;

*F*₇₀ - площадь поверхности топливного отсека.

Толщину стенки бака можно определить, если известны давление в баке p_{d} , допустимое напряжение конструкционного материала бака σ_{non} и коэффициент безопасности *f*:

$$\delta = \frac{f \, p_{\pi} \, D}{4 \sigma_{\pi O \pi}} \,. \tag{7.17}$$

Тогда масса топливного отсека будет составлять

$$m_{TO} = \frac{\rho_M \pi D_{TO}^2 f p_{\Pi} D_{TO}}{4\sigma_{\Pi O \Pi}} = \frac{\pi D_{TO}^3 f p_{\Pi} \rho_M}{4\sigma_{\Pi O \Pi}}.$$
 (7.18)

Преобразуем теперь знаменатель выражения (7.11):

$$m_T = \rho_T V_T = \frac{4}{3} \pi \left(\frac{D_{TO}}{2}\right)^3 \rho_T = \frac{\pi}{6} D_{TO}^3 \rho_T.$$
(7.19)

Подставляя (7.18) и (7.19) в выражение (7.11), получаем

$$\eta = \frac{m_{TO}}{m_T} = \frac{\frac{\pi D_{TO}^3 f p_{\pi} \rho_M}{4\sigma_{\pi O \Pi}}}{\frac{\pi}{6} D_{TO}^3 \rho_T} = \frac{3 f p_{\pi} \rho_M}{2\sigma_{\pi O \Pi} \rho_T}.$$
(7.20)

Подставляем (7.20) в (7.16), получаем

$$p = e^{\frac{\nu_x}{w}} \frac{1}{\frac{3f p_{\pi} \rho_M}{2\sigma_{\pi 0 \pi} \rho_T} \left(1 - e^{\frac{\nu_x}{w}}\right) - e^{\frac{\nu_x}{w}} \gamma_{\partial e} n_0 + 1}.$$
 (7.21)

Будем сравнивать варианты (создаваемого изделия и аналога) для одинаковых значений:

- характеристических скоростей ракет ($V_x = const$);

- плотности конструкционных материалов топливных баков ($\rho_{M} = const$);

- допустимых напряжений ($\sigma_{\Pi O \Pi} = const$);

- давлений в баках ($p_{\pi} = const$);

- начальных перегрузок ($n_0 = const$);

- относительных масс двигательных установок ($\gamma_{\pi y} = const$).

В выражении (7.21) различными останутся только средние плотности компонентов топлив ρ_T и удельные импульсы топлив w приведенной ракеты.

Таким образом, методика выбора топлива по критерию (7.8) сводится к проведению расчетов показателя p по формуле (7.21) для различных пар компонентов топлива и выбору пары компонентов топлива, у которой этот показатель минимальный, то есть $p \rightarrow \min$.

Пример расчета по данной методике приведен в табл. 7.7.

Таблица 7.7.	Пример	расчета	относительной	массы	полезной
нагрузки					

Компоненты топлива	Средняя плотность топлива, кг/м ³	Удельный импульс, м/с	Отношение массы ступени к массе ее полезной нагрузки	
Керосин + жидкий кислород	1000	3475	2,408	
Жидкий водород + жидкий кислород	200	4500	2,018	
НДМГ+ четырехокись азота	1280	2795	2,979	
Природный газ + жидкий кислород	820	3740	2,266	

Для расчета были приняты следующие исходные данные, одинаковые для всех расчетных вариантов:

характеристическая скорость 3000 м/с;

плотность конструкционного материала бака 2700 кг/м³;

допустимое напряжение в стенке бака 200 МПа;

среднее давление в баке 0,30 МПа;

начальная перегрузка 1,5;

относительный вес двигателя 0,002.

Для приведенных исходных данных лучший показатель отношения стартовой массы ракеты к массе полезной нагрузки получился у пары компонентов топлива: "жидкий водород - жидкий кислород". На втором месте - пара «природный газ - жидкий кислород». Еще раз отметим, что приведенными зависимостями можно пользоваться только для выбора топлива по критерию минимума относительной массы полезного груза ракеты, а не для расчета и сравнения других проектных характеристик ракеты.

При выборе топлива также можно пользоваться критерием эффективности в виде отношения:

$$p_{om\mu} \to \min$$
 $V_x = const,$
(7.22)

где
$$p_{omh} = \frac{p_{iPH}}{p_{inpom}},$$
 (7.23)

В этом выражении p_{iPH} - отношение начальной массы создаваемой РН к массе полезной нагрузки; p_{inpom} – отношение начальной массы аналога (прототипа) РН также к массе полезной нагрузки.

7.5.2. Выбор топлива по комплексному критерию эффективности

Для современных ракет-носителей, при проектировании которых используется системный подход, применяется следующий комплексный критерий эффективности:

$$W = \sum_{i=1}^{n} \left(k_i W_i \right) \to \max , \qquad (7.24)$$

где *W_i* - частные показатели эффективности;

k, - удельный вес i-го частного показателя эффективности;

n – количество частных показателей эффективности.

Удельный вес частных показателей эффективности назначается экспертным методом. При этом должно соблюдаться одно из следующих соотношений:

$$\sum_{i=1}^{n} k_i = 1$$
 или $\sum_{i=1}^{n} k_i = 100(\%)$,

если удельный вес частных показателей выражается в долях единицы или в процентах соответственно.

Однако для расчета значения комплексного показателя эффективности необходимо привести частные показатели эффективности к одной размерности или к безразмерным величинам.

Перевод частных показателей эффективности к одной размерности может быть произведен только в частных случаях, например, когда эффективность сопоставляется в единицах стоимости.

Переход к безразмерным показателям эффективности возможен с помощью расчета вероятностных показателей эффективности (объективная свертка) или методом экспертного назначения показателей эффективности в баллах (субъективная свертка).

Рассмотрим методику экспертной оценки частных показателей эффективности в баллах.

В качестве частных показателей эффективности при выборе ракетного топлива обычно выбираются следующие:

 W_1 - показатель, характеризующий энергетические возможности топлива ($W_1 = 1$, если удельный импульс максимальный, и $W_1 = 0,1$, если топливо имеет минимальное значение удельного импульса);

 W_2 - показатель, характеризующий токсичность топлива ($W_2 = 1$, если нетоксично, и $W_2 = 0,1$, если топливо максимально токсично);

 W_3 - показатель, характеризующий среднюю плотность топлива ($W_3 = 1$, если плотность максимальна, и $W_3 = 0,1$, если минимальна);

 W_4 - показатель, характеризующий стабильность топлива ($W_4 = 1$, если стабильность максимальна, и $W_4 = 0,1$, если минимальна);

 W_5 - показатель, характеризующий наличие производственной базы (например, $W_5 = 1$, если топливо имеет широкую производственную базу, и $W_5 = 0,1$, если производственная база минимальна);

 W_6 - показатель, характеризующий наличие специальной производственной базы ($W_6 = 1$, если топливо не требует создания специальной производственной базы, и $W_6 = 0,1$, если требуется создание специальной производственной базы);

 W_7 - показатель, характеризующий стоимость топлива ($W_7 = 1$, если стоимость топлива минимальна, и $W_7 = 0,1$, если стоимость топлива максимальна).

Следует отметить, что максимальное и минимальное значение показателя W_i можно назначать произвольно, например, минимальное значение – 1, максимальное значение – 7, или минимальное – 10, максимальное – 100, главное, чтобы эти максимальные и минимальные значения были одинаковы для всех рассматриваемых частных показателей эффективности. Удельные веса частных показателей эффективности можно назначать и в процентах.

Назначение частных показателей эффективности топлива также проводится экспертами (с учетом имеющихся видов топлива, используемых в ракетной технике, или предполагаемых к использованию).

Далее производится расчет числовых значений каждого из частных показателей эффективности для анализируемых видов топлива Исходные данные и результаты расчета заносятся в таблицу, форма иллюстрируется табл. 7.9. В этой же таблице в качестве примера показаны результаты расчета комплексного показателя эффективности для четырёх пар компонентов топлива.

Таблица 7.9. Пример экспертной оценки частных показателей эффективности и расчета комплексных показателей эффективности топлива

Топливо		W_1	<i>W</i> ₂	<i>W</i> ₃	W_4	<i>W</i> ₅	W_6	W ₇	
			Удельный вес частного показателя, k						W
		0,2	0,3	0,1	0,1	0,1	0,1	0,1	1
Окислитель	Горючее								
Жидкий	Жидкий	1	1	0.1	0.5	0.6	0.1	0.3	0.60
кислород	водород		1	0,1	0,5	0,0	0,1	0,5	0,05
Жидкий кислород	Керосин	0,7	0,9	0,8	0,7	0,8	0,7	0,8	0,79
Азотная кислота	НДМГ	0,5	0,2	1	0,8	0,4	0,2	0,2	0,42
Жидкий кислород	Природ- ный газ	0,8	0,9	0,7	0,7	0,9	0,8	0,9	0,83

Для приведенной экспертной оценки лучший показатель эффективности оказался для компонентов топлива: "жидкий кислородприродный газ". Однако ракетные двигатели на природном газе в настоящее время находятся в экспериментальной отработке. А водородно-кислородные двигатели применяются с середины прошлого века.

Следует отметить, что любой комплексный критерий эффективности вносит определенную долю субъективизма исполнителей. Но при наличии опыта работы при выборе компонентов топлива и высокой квалификации исполнителей результаты, как правило, стабильны и не противоречат здравому смыслу.

В настоящее время не рекомендуется использовать токсичные компоненты топлива. Однако полностью отказаться от них не представляется возможным, так как для межпланетных космических комплексов одним из требований является требование длительного хранения компонентов топлива. К сожалению, в настоящее время таким требованиям отвечают только токсичные компоненты.

Контрольные вопросы

1. Приведите классификацию ракетных топлив.

2. Какие виды твердого топлива Вы знаете?

3. Что такое комбинированное топливо?

4. Приведите требования, предъявляемые к ракетным топливам для современных ракет-носителей.

5. Какие группы характеристик ракетного топлива Вы знаете?

6. Объясните физическую или техническую сущность (с определениями и размерностью) следующих характеристик:

- удельный импульс;

- токсичность;
- плотность;
- соотношение компонентов топлива;
- стабильность;
- наличие производственной базы;
- наличие специальной производственной базы;
- стоимость.

7. Поясните суть критерия выбора топлива с учетом удельного импульса и средней плотности топлива. Поясните по учебному пособию или конспекту основные этапы вывода расчетных зависимостей.

8. Поясните суть комплексного критерия для выбора топлива. Что такое частный критерий? Что такое удельный вес частного показателя эффективности топлива?

8. ОПТИМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ МАССЫ РАКЕТЫ-НОСИТЕЛЯ ПО СТУПЕНЯМ И РАСЧЕТ СТАРТОВОЙ МАССЫ РАКЕТЫ

Выбор характеристик масс ступеней ракеты-носителя осуществляется в результате решения оптимизационных задач.

Прежде чем приступить к задачам оптимизации масс ракетных блоков, напомним постановку задач математического программирования.

8.1. Задачи математического программирования

Общая запись задачи математического программирования следующая:

$$F(x_i) \xrightarrow{x_i \in H} \min; \quad i = \overline{1, n},$$
 (8.1)

где $F(x_i)$ - целевая функция параметров x_i ;

 $x_i \in H$ - запись ограничений (H – множество допустимых значений параметров x_i);

n – количество переменных.

Ограничения $x_i \in H$ могут быть двух типов:

a)
$$x_{j\min} \le x_j \le x_{j\max}; \quad j = \overline{1, m}; \quad m \le n$$
, (8.2)

где т – количество переменных, по которым имеются ограничения;

$$6) q_k(x_i) \le 0; \quad k = 1, r, \tag{8.3}$$

где $q_k(x_i)$ – функция ограничений;

r - количество ограничивающих функций.

Задача означает: найти минимальное значение целевой функции $F(x_i)$ и соответствующие значения переменных $x_i^*(i=\overline{1,n})$ при на-

личии ограничений типа $x_{j\min} \le x_j \le x_{j\max}; j = \overline{1,m}; m \le n$ и (или) ограничений типа $q_k(x_i) \le 0; k = \overline{1,r}$.

В учебной и научной литературе встречается другая форма записи задач математического программирования:

$$\{x_i^*\} = \arg\min \left\{ \begin{matrix} F = F(x_i); \\ i = \overline{1, n}; \\ j = \overline{1, m}; \end{matrix} | \begin{array}{c} x_{j\min} \le x_j \le x_{j\max}; \\ j = \overline{1, m}; & m \le n; \\ q_k(x_i) \le 0; & k = \overline{1, r}. \end{matrix} \right\}$$

$$(8.4)$$

Задача означает: найти значения вектора $\{x_i^*\}; (i = \overline{1, n}),$ которые доставляют минимум целевой функции $F(x_i)$ при наличии ограничений типа $x_{j\min} \le x_j \le x_{j\max}; j = \overline{1, m}; m \le n$ и (или) ограничений типа $q_k(x_i) \le 0; k = \overline{1, r}$.

Методы решения задач математического программирования подразделяются на аналитические и численные. К аналитическим методам относится, например, метод неопределенных множителей Лагранжа. Самыми простыми из численных методов являются метод перебора и метод случайного поиска.

8.2. Постановка и решение задачи оптимального распределения массы ракеты-носителя по блокам методом неопределенных множителей Лагранжа

Аналитические решения такого рода задач возможны только для некоторых частных случаев. Приведем решение этой задачи для двухступенчатой ракеты с последовательным соединением ступеней.

8.2.1. Постановка задачи

Оптимальным распределением масс топлива и масс конструкции блоков по ступеням будем считать такое распределение, при котором обеспечивается минимальная стартовая масса ракеты при заданной массе полезной нагрузки, или минимальное отношение стартовой массы ракеты к массе полезной нагрузки (что равносильно) и выполнении ограничений для располагаемой и потребной характеристических скоростей, то есть

$$p_0 \to \min \left| \begin{array}{c} m_{n_{H}} = const; \\ V_x^{pacn} \ge V_x^{nomp}, \end{array} \right.$$

где

$$p_0 = p_1 p_2 = z_1 \frac{(s_1 - 1)}{(s_1 - z_1)} z_2 \frac{(s_2 - 1)}{(s_2 - z_2)} = \frac{z_1 z_2 (s_1 - 1)(s_2 - 1)}{(s_1 - z_1)(s_2 - z_2)}.$$
 (8.5)

Поскольку характеристики s_1 и s_2 считаются заданными, то вместо этой функции можно исследовать на экстремум следующую функцию:

$$p^* = \frac{z_1 z_2}{(s_1 - z_1)(s_2 - z_2)}.$$
(8.6)

Рассмотрим функцию ограничений по скорости.

Располагаемая характеристическая скорость ракеты-носителя должна быть равна (или больше) потребной характеристической скорости, необходимой для вывода КА на орбиту с заданными параметрами $V_X^{pacn} \ge V_X^{nomp}$, или

$$V_X^{nomp} - V_X^{pacn} \le 0. \tag{8.7}$$

На основании формулы Циолковского можем записать

$$V_X^{pacn} = w_1 \ln z_1 + w_2 \ln z_2 + \dots,$$
(8.8)

где w_i - удельные импульсы соответствующих ступеней.

Следовательно, функция ограничений будет выглядеть следующим образом:

$$V_X^{nomp} - w_1 \ln z_1 - w_2 \ln z_2 - \dots \le 0.$$
(8.9)

Применительно к аналитическим методам решения такого рода задач функция ограничений имеет вид

$$V_X^{nomp} - w_1 \ln z_1 - w_2 \ln z_2 - \dots = 0.$$
(8.10)

Составляем функцию Лагранжа:

$$L = \frac{z_1 z_2}{(s_1 - z_1)(s_2 - z_2)} - \lambda \left(V_z^{nomp} - w_1 \ln z_1 - w_2 \ln z_2 \right), \quad (8.11)$$

где λ - неопределенный множитель Лагранжа.

Эту функцию дифференцируем по параметру *z*₁ и приравниваем полученную функцию нулю:

$$\frac{\partial L}{\partial z_1} = \frac{z_2(s_1 - z_1)(s_2 - z_2) - (-1)(s_2 - z_2)z_1z_2}{\left[(s_1 - z_1)(s_2 - z_2)\right]^2} + \frac{\lambda w_1}{z_1} = 0.$$
(8.12)

Упростим полученное выражение с помощью алгебраических преобразований:

$$z_{1} z_{2} (s_{1} - z_{1}) + z_{1}^{2} z_{2} + \lambda w_{1} (s_{1} - z_{1})^{2} (s_{2} - z_{2}) = 0;$$

$$z_{1} z_{2} s_{1} - z_{1}^{2} z_{2} + z_{1}^{2} z_{2} + \lambda w_{1} (s_{1} - z_{1})^{2} (s_{2} - z_{2}) = 0;$$

$$z_{1} z_{2} s_{1} + \lambda w_{1} (s_{1} - z_{1})^{2} (s_{2} - z_{2}) = 0.$$
(8.13)

Дифференцируя функцию Лагранжа по параметру *z*₂, получим второе уравнение:

$$z_2 z_1 s_2 + \lambda w_2 (s_2 - z_2)^2 (s_1 - z_1) = 0.$$
(8.14)

Выражения (8.13) и (8.14) совместно с функцией ограничений (8.10) представляют собой систему трех уравнений с тремя неизвестными z_1 , z_2 и безразмерным параметром λ .

Решим эту систему следующим образом.

Из уравнений (8.13) и (8.14) выразим параметр λ :

$$\lambda = -\frac{s_1 z_1 z_2}{w_1 (s_1 - z_1)^2 (s_2 - z_2)};$$

$$\lambda = -\frac{s_2 z_1 z_2}{w_2 (s_1 - z_1)(s_2 - z_2)^2} \,.$$

Приравняем правые части полученных уравнений:

$$\frac{s_1 z_1 z_2}{w_1(s_1 - z_1)^2 (s_2 - z_2)} = \frac{s_2 z_1 z_2}{w_2(s_1 - z_1)(s_2 - z_2)^2} .$$

После сокращения получаем следующее выражение:

$$\frac{s_1}{w_1(s_1-z_1)} = \frac{s_2}{w_2(s_2-z_2)},$$

откуда находим параметр z1

$$(s_{1} - z_{1}) = \frac{s_{1} w_{2}(s_{2} - z_{2})}{s_{2} w_{1}};$$

$$z_{1} = s_{1} - \frac{s_{1} w_{2}(s_{2} - z_{2})}{s_{2} w_{1}} = s_{1} \left(1 - \frac{w_{2}(s_{2} - z_{2})}{s_{2} w_{1}} \right) = s_{1} \left(1 - \frac{w_{2}}{w_{1}} \left(1 - \frac{z_{2}}{s_{2}} \right) \right). (8.15)$$

Подставляя полученное выражение для *z*₁ в функцию ограничений (8.10), получаем

$$V_{\chi}^{nomp} - w_1 \ln \left[s_1 \left(1 - \frac{w_2}{w_1} \left(1 - \frac{z_2}{s_2} \right) \right) \right] - w_2 \ln z_2 = 0.$$
 (8.16)

Данное уравнение является нелинейным уравнением с одним неизвестным z_2 . Корень этого уравнения можно найти численным методом, например, с помощью системы *Mathcad*.

Для некоторых частных случаев решить эту задачу можно точно и получить формулу для расчета оптимальных чисел Циолковского в явном виде. Рассмотрим один из таких частных случаев, когда удельные импульсы ракетных двигателей одинаковы, то есть когда

$$w_1 = w_2 = w \,. \tag{8.17}$$

В этом случае выражение (8.15) будет выглядеть следующим образом:

$$z_1 = \frac{s_1}{s_2} z_2. \tag{8.18}$$

Аналогично можно получить

$$z_2 = \frac{s_2}{s_1} z_1. \tag{8.19}$$

По этим зависимостям можно определить оптимальное распределение чисел Циолковского первой и второй ступеней ракетыносителя с учетом конструктивных характеристик ракетных блоков (при условии, что значения удельных импульсов топлива и двигателей первой и второй ступеней ракеты-носителя одинаковы).
Анализируя выражения (8.18) и (8.19), приходим к выводу, что для выполнения условия оптимальности при одинаковых значениях конструктивных характеристик ракетных блоков первой и второй ступеней ракеты, то есть при условии $s_1 = s_2 = s$ (а также при условии, что значения удельных импульсов топлива и двигателей первой и второй ступеней ракеты-носителя одинаковы), числа Циолковского первой и второй ступеней ракеты должны быть равны.

8.3. Постановка и решение задач оптимального распределения массы ракеты-носителя но блокам численными методами

Рассмотренный выше метод неопределенных множителей Лагранжа позволяет получить в аналитическом виде решения задач оптимального распределения масс по блокам ракеты только для схемы с последовательным соединением ракетных блоков и при равных удельных импульсах топлива на всех ступенях ракеты.

Численные методы оптимизации позволяют находить оптимальное распределение масс по блокам ракеты при различных схемах соединения и различных удельных импульсах ракетного топлива.

Рассмотрим постановки задач математического программирования для численного их решения применительно к следующим схемам соединения ступеней ракеты:

- с последовательным соединением (так называемая схема "тандем");

- с параллельным соединением без перелива топлива из одних ракетных блоков в другие (схема «пакет без перелива»);

- с параллельным соединением и переливом топлива из одних ракетных блоков в другие (схема "пакет с переливом");

- с параллельным соединением ракетных блоков первой и второй ступеней и последовательным соединением ракетных блоков второй и третьей ступеней (так называемый "трехступенчатый пакет") без перелива и с переливом топлива;

- с параллельным соединением ракетных блоков первой, второй и третьей ступеней и последовательным соединением ракетных бло-ков третьей и четвертой ступеней без перелива топлива.

- схема "трехступенчатый пакет» с дополнительными стартовыми ускорителями.

8.3.1. Схема с последовательным соединением ракетных блоков

Постановка задачи

Расчетная схема представлена на рис. 8.1.

Необходимо отыскать такое распределение масс по ступеням ракеты-носителя, при которых стартовая масса ракеты является минимальной при заданной массе полезной нагрузки. Такая постановка задачи будет равносильна следующей постановке: необходимо отыскать такое распределение масс по ступеням ракеты-носителя, при

которых обеспечивается минимальное значение относительной массы полезной нагрузки (при заданной массе полезной нагрузки).

Математическая формулировка задачи математического программирования в этом случае записывается следующим образом:

$$p_0 \rightarrow \min_{x \in H}$$
 (8.20)

где p_0 - относительная масса полезной нагрузки;

H – множество допустимых значений варьируемых переменных *x*.

Напомним, что множество допустимых значений *x* обычно задается в виде:

a)
$$x_{j\min} \le x_j \le x_{j\max}; \quad j = \overline{1, m}$$
 (8.21)

и (или) в виде функций ограничений:

6)
$$q_k(x_i) \le 0$$
 $k = 1, p$. (8.22)

Для того чтобы получить целевую функцию и функции ограничений в полной формулировке проведем некоторые математические выкладки. В качестве исходной зависимости используем отношение стартовой массы ракеты к массе полезной нагрузки:

$$p_0 = \frac{m_0}{m_{\Pi H}} \,. \tag{8.23}$$

Стартовую массу ракеты-носителя можно представить в виде следующей суммы

$$m_0 = m_{\Pi H} + \sum_{i=1}^{N} m_{Ei} , \qquad (8.24)$$

где *m_{пн}* - масса полезной нагрузки;

*m*_{Бі} - масса *i*-го блока РН;

N – количество ракетных блоков или ступеней РН.

Подставляя выражение (8.24) в (8.23), получим

$$p_0 = \frac{m_0}{m_{\Pi H}} = 1 + \sum_{i=1}^{N} \frac{m_{\mathcal{B}i}}{m_{\Pi H}} .$$
(8.25)

Массу блока попытаемся выразить из следующего известного соотношения для конструктивной характеристики ракетных блоков:

$$s_i = \frac{m_{E_i}}{m_{E_i} - m_{T_i}},$$
 (8.26)

где *m*_{*Ti*} - масса топлива *i*-го ракетного блока.

Решая это уравнение относительно m_{5i} , получим

$$m_{Ei} = \frac{s_i}{(s_i - 1)} m_{Ti} \,. \tag{8.27}$$

Подставляя (8.27) в (8.25), получим

$$p_0 = \frac{m_0}{m_{IIH}} = 1 + \sum_{i=1}^{N} \frac{s}{(s-1)} \cdot \frac{m_{T_i}}{m_{IIH}}.$$
(8.28)

Введем обозначение

$$x_i = \frac{m_{Ti}}{m_{TH}} \tag{8.29}$$

и приведем выражение (8.28) к виду

$$p_0 = \frac{m_0}{m_{\Pi H}} = 1 + \sum_{i=1}^{N} \frac{s}{(s-1)} x_i .$$
(8.30)

Таким образом, мы получили целевую функцию (см. выражение (8.20)).

Математическая формулировка задачи будет следующей:

$$p(x_i) \rightarrow \min_{x_j \in H}; \quad i = \overline{1, n};$$
 (8.31)

или в развернутом виде

...

$$1 + \sum_{i=1}^{N} \frac{s}{(s-1)} x_i \xrightarrow{s}_{x_j \in H} \min; \quad i = \overline{1, n} .$$

$$(8.32)$$

Получим выражения для ограничений на переменные $x_i \in H$ на основе следующих рассуждений.

Функция ограничений в общем виде выражается формулой (8.9):

$$V_{\chi}^{nomp} - w_1 \ln z_1 - w_2 \ln z_2 - ... \le 0.$$
(8.33)

Однако числа Циолковского в этой функции необходимо выразить через параметры x_i. Проделаем это.

Поскольку число Циолковского есть отношение начальной массы ступени к массе ступени после выработки топлива, то можно с учетом (8.30) и (8.29) записать:

$$z_{1} = \frac{m_{01}}{m_{01} - m_{T1}} = \frac{\frac{m_{01}}{m_{\Pi H}}}{\frac{m_{01}}{m_{\Pi H}} - \frac{m_{T1}}{m_{\Pi H}}} = \frac{p_{0}}{p_{0} - \frac{m_{T1}}{m_{\Pi H}}} - \frac{p_{0}}{p_{0} - x_{1}}.$$
 (8.34)

Окончательно с учетом (8.30) получаем

$$z_{1} = \frac{1 + \sum_{i=1}^{N} \frac{s_{i} x_{i}}{(s_{i} - 1)}}{1 + \sum_{i=1}^{N} \frac{s_{i} x_{i}}{(s_{i} - 1)} - x_{1}}.$$
(8.35)

Также можно выразить через параметры x_i число Циолковского для второй ступени:

148

$$z_{2} = \frac{1 + \sum_{i=2}^{N} \frac{s_{i} x_{i}}{(s_{i} - 1)}}{1 + \sum_{i=2}^{N} \frac{s_{i} x_{i}}{(s_{i} - 1)} - x_{2}}.$$
(8.36)

Аналогично можно выразить через параметры x_i числа Циолковского для третьей и последующих ступеней ракеты, если они имеются.

Подставляя выражения (8.35) и (8.36) в (8.33), получаем функцию ограничений в виде:

$$V_{X}^{nomp} - w_{1} \ln \left(\frac{1 + \sum_{i=1}^{N} \frac{s_{i} x_{i}}{(s_{i} - 1)}}{1 + \sum_{i=1}^{N} \frac{s_{i} x_{i}}{(s_{i} - 1)} - x_{1}} \right) - \frac{w_{2} \ln \left(\frac{1 + \sum_{i=2}^{N} \frac{s_{i} x_{i}}{(s_{i} - 1)}}{1 + \sum_{i=2}^{N} \frac{s_{i} x_{i}}{(s_{i} - 1)} - x_{2}} \right) - \dots \le 0.$$
(8.37)

Кроме того, следует составить функции ограничений, исходя из реализуемых в настоящее время значений чисел Циолковского (по статистике) или из физических соображений. Это могут быть, например, следующие ограничения:

 $z_1 > 1,0; \quad z_1 < 10; \quad z_2 > 1; \quad z_2 < 10; \quad Z = z_1 z_2 z_3 < 30.$ (8.38)

Подставляя (8.35) и (8.36) в каждое из выражений (8.38), можно получить несколько функций ограничений (которые здесь приводятся в общем виде):

 $q_2(x_i) \le 0; \ q_3(x_i) \le 0; \ q_4(x_i) \le 0; \ q_5(x_i) \le 0; \ q_6(x_i) \le 0.$ (8.39)

Решение задачи

Задача математического программирования (8.32), с учетом ограничений (8.37) и (8.39), решается каким-либо численным методом.

В результате определяются оптимальные значения параметров $x_i^* (i = \overline{1, N})$.

Затем рассчитываются следующие массы составных частей ракеты-носителя (в последовательности и по формулам, приведенным ниже):

- масса топлива *i*-го ракетного блока (из формулы (8.29)):

$$m_{Ti} = m_{\Pi H} x_i; \tag{8.40}$$

- масса *i*-го ракетного блока (см. формулу (8.27)):

$$m_{EI} = \frac{s_i}{(s_i - 1)} m_{T_i} ; \qquad (8.41)$$

- масса конструкции *i*-го ракетного блока:

$$m_{Ki} = m_{Si} - m_{Ti};$$
 (8.42)

- стартовая масса ракеты-носителя (см. формулу (8.24)):

$$m_0 = m_{\Pi H} + \sum_{i=1}^{N} m_{\mathcal{B}i} .$$
 (8.43)

Полученные массы будут оптимальными.

8.3.2. Схема с параллельным соединением ракетных блоков типа "пакет без перелива"

Расчетная схема представлена на рис. 8.2.

Для этой схемы целевая функция (8.30) не изменится, однако другой будет функция ограничений:

$$V_{\chi}^{nomp} - w_p \ln z_1 - w_2 \ln z_2 \le 0, \qquad (8.44)$$

где w_p - удельный импульс, представляющий собой осредненный импульс от двигателей первой и второй ступеней;

*w*₂ - удельный импульс второй ступени.

Поскольку при пакетной схеме на первой ступени работают двигатели и первого и второго блоков одновременно, то удельный импульс ступеней можно выразить следующим образом:

$$w_{p} = \frac{R_{1} + R_{2}}{n k_{1} + n k_{2}}, \qquad (8.45)$$

где R_1 и R_2 - силы тяги первой и второй ступеней;

*п*⁶х и п⁶х - расходы топлива в единицу времени на первой и второй ступенях ракеты.

Поделим и числитель, и знаменатель этой дроби на массу расхода топлива первого ракетного блока в единицу времени:

$$w_{p} = \frac{\frac{R_{1}}{\dot{m}_{1}} + \frac{R_{2}}{\dot{m}_{1}}}{\frac{\dot{m}_{1}}{\dot{m}_{1}} + \frac{\dot{m}_{2}}{\dot{m}_{1}}}.$$
(8.46)

 R_1 R_2 Введем для пакетной схемы дополнительный проектный параметр

 Рис. 8.2. Пакет без перелива
 $\alpha = R_2/R_1$, который представляет собой отношение силы тяги ракетного двигателя второй ступени к силе

 тяги ракетного двигателя первой ступени. Подставляя этот параметр

 в (8.46), а также учитывая, что $w = R/n^{\&}$ (или $n^{\&} = R/w$), получаем

$$w_{p} = \frac{\frac{R_{1}}{m_{1}} + \frac{\alpha R_{1}}{m_{1}}}{1 + \frac{R_{2}/w_{2}}{R_{1}/w_{1}}} = \frac{\frac{R_{1}}{m_{1}}(1+\alpha)}{1 + \frac{R_{2}w_{1}}{R_{1}w_{2}}} = \frac{w_{1}(1+\alpha)}{1 + \frac{\alpha R_{1}w_{1}}{R_{1}w_{2}}} = \frac{w_{1}w_{2}(1+\alpha)}{w_{2} + \alpha w_{1}}.$$
 (8.47)

Для проверки данной зависимости, в частности, можно положить, что удельные импульсы первой и второй ступеней одинаковы ($w_1 = w_2$), и получить тождество $w = w_1 = w_2$.

Число Циолковского первой ступени будет находиться с учетом израсходованной массы топлива из второго ракетного блока

$$z_{1} = \frac{m_{01}}{m_{01} - m_{T1} - \Delta m_{T2}} = \frac{\frac{m_{01}}{m_{\Pi H}}}{\frac{m_{01}}{m_{\Pi H}} - \frac{m_{T1}}{m_{\Pi H}} - \frac{\Delta m_{T2}}{m_{\Pi H}}} = \frac{p_{0}}{p_{0} - x_{1} - \frac{\Delta m_{T2}}{m_{\Pi H}}}, (8.48)$$

где Δm_{T2} - масса топлива, израсходованная из баков второй ступени за время работы первой ступени.

С учетом (8.30) и (8.29) получаем

$$z_{1} = \frac{1 + \sum_{i=1}^{2} \frac{s_{i}}{(s_{i} - 1)} x_{i}}{1 + \sum_{i=1}^{2} \frac{s_{i}}{(s_{i} - 1)} x_{i} - x_{1} - \frac{\Delta m_{T2}}{m_{\Pi H}}}.$$
(8.49)

Выразим массу топлива Δm_{T2} через параметр x_2 . Для этого проведем выкладки, приведенные ниже:

 $\Delta m_{T2} = n \delta_{T} t_1, \qquad (8.50)$

где t₁ – время работы двигателей первой ступени.

Это время, в свою очередь, можно определить, поделив массу топлива на расход топлива в единицу времени, то есть

$$t_1 = \frac{m_{T1}}{m_T}.$$
 (8.51)

Тогда формула (8.50) запишется следующим образом:

$$\Delta m_{T2} = n \delta_2 t_1 = n \delta_2 \frac{m_{T1}}{n \delta_1} = \frac{R_2}{w_2} \frac{m_{T1}}{\frac{R_1}{w_1}} = \frac{\alpha R_1}{w_2} \frac{m_{T1}}{\frac{R_1}{w_1}} = \frac{\alpha w_1}{w_2} m_{T1}. \quad (8.52)$$

Подставляя (8.52) в (8.49) с учетом (8.29), получаем

$$z_{1} = \frac{1 + \sum_{i=1}^{2} \frac{s_{i}}{(s_{i}-1)} x_{i}}{1 + \sum_{i=1}^{2} \frac{s_{i}}{(s_{i}-1)} x_{i} - x_{1} - \frac{\alpha w_{1}}{w_{2}} x_{1}}.$$
(8.53)

Число Циолковского второй ступени будет находиться также с учетом израсходованной массы топлива из второго ракетного блока, то есть

$$z_{2} = \frac{m_{02} - \Delta m_{T2}}{m_{02} - m_{T2}} = \frac{\frac{m_{02}}{m_{\Pi H}} - \frac{\Delta m_{T2}}{m_{\Pi H}}}{\frac{m_{02}}{m_{\Pi H}} - \frac{m_{T2}}{m_{\Pi H}}} = \frac{p_{02} - \frac{\Delta m_{T2}}{m_{\Pi H}}}{p_{02} - x_{2}} = \frac{1 + \frac{s_{2}}{(s_{2} - 1)}x_{2} - \frac{\alpha w_{1}}{w_{2}}x_{1}}{1 + \frac{s_{2}}{(s_{2} - 1)}x_{2} - x_{2}}.$$
(8.54)

Формулы (8.53) и (8.54) подставляем в функцию ограничений (8.44) и получаем функцию ограничений в следующем виде:

$$V_{X}^{nomp} - \left(\frac{w_{1}w_{2}(1+\alpha)}{w_{2}+\alpha w_{1}}\right) \ln \left(\frac{1+\sum_{i=1}^{N}\frac{s_{i}}{(s_{i}-1)}x_{i}}{1+\sum_{i=1}^{N}\frac{s_{i}}{(s_{i}-1)}x_{i}-x_{1}-\frac{\alpha w_{1}}{w_{2}}x_{1}}\right) - w_{2}\ln \left(\frac{1+\frac{s_{2}}{(s_{2}-1)}x_{2}-\frac{\alpha w_{1}}{w_{2}}x_{1}}{1+\frac{s_{2}}{(s_{2}-1)}x_{2}-x_{2}}\right) \leq 0. \quad (8.55)$$

Следует отметить, что для пакетной схемы необходимо составить еще одну функцию ограничений. Эта функция отражает то, что начальное значение перегрузки боковых ракетных блоков (если их рассматривать как самостоятельные ракеты) должно быть больше значения перегрузки центрального блока (если ее также рассматривать как самостоятельную ракету без боковых блоков), так как боковые блоки предназначены дополнительно ускорять центральный блок ракеты-носителя. Выражаясь образным языком, можно сказать, что в противном случае не имеет смысла центральному блоку "тащить" боковые блоки за собой. Это ограничение можно выразить следующим образом:

$$q_2 = n_{x02} - n_{x01} < 0 , \qquad (8.56)$$

где n_{x02}^* - начальная перегрузка второй ступени, если бы не было первой ступени;

n^{*}_{x01} - начальная перегрузка блока первой ступени (как самостоятельной ракеты) без учета влияния второй ступени.

Выразим значения перегрузок в этой формуле через параметры x_i с учетом выражения (8.27):

$$n_{x01}^{*} = \frac{R_{1}}{g_{0}m_{E1}} = \frac{\frac{R_{1}}{m_{\Pi H}}}{g_{0}\frac{m_{E1}}{m_{\Pi H}}} = \frac{\frac{R_{1}}{m_{\Pi H}}}{g_{0}\frac{s_{1}}{s_{1}-1}\frac{m_{T1}}{m_{\Pi H}}} = \frac{\frac{R_{1}}{m_{\Pi H}}}{g_{0}\frac{s_{1}}{s_{1}-1}x_{1}}; \quad (8.57)$$

$$R_{2} \qquad \alpha R_{1}$$

$$n_{x02}^{*} = \frac{R_{2}}{\left(m_{\Pi H} + m_{\Sigma 2}\right)g_{0}} = \frac{\overline{m_{\Pi H}}}{\left(\frac{m_{\Pi H}}{m_{\Pi H}} + \frac{m_{\Sigma 2}}{m_{\Pi H}}\right)g_{0}} = \frac{\overline{m_{\Pi H}}}{\left(1 + \frac{s_{2}x_{2}}{s_{2} - 1}\right)g_{0}}.$$
 (8.58)

Подставляем эти выражения в (8.56):

$$q_{2} = \frac{\frac{\alpha K_{1}}{m_{\Pi H}}}{\left(1 + \frac{s_{2}}{s_{2} - 1}x_{2}\right)g_{0}} - \frac{\frac{K_{1}}{m_{\Pi H}}}{g_{0}\frac{s_{1}}{s_{1} - 1}x_{1}} < 0.$$

После сокращения получаем

$$q_{2} = \alpha \cdot \frac{s_{1}}{s_{1} - 1} \cdot x_{1} - \left(1 + \frac{s_{2}}{s_{2} - 1} \cdot x_{2}\right) < 0.$$
(8.59)

Далее решается задача математического программирования (8.32) с учетом (8.55) и (8.59), то есть определяются оптимальные значения x_i^* $(i = \overline{1, N})$.

Затем находятся массы топлива и блоков по тем же зависимостям и в той же последовательности, что и при последовательном соединении ступеней (см. зависимости (8.40) ... (8.43)).

154

8.3.3. Схема с параллельным соединением ракетных блоков типа "пакет с переливом"

Расчетная схема представлена на рис. 8.3.

Для этой схемы целевая функция также имеет вид (8.31). Однако несколько другой будет функция ограничений, выраженная через па-

Рис. 8.3. Пакет с переливом

раметры x_i , хотя общая ее запись не изменится и будет как и для пакета без перелива (см. выражение (8.44)):

$$V_{X}^{nomp} - w_{p} \ln z_{1} - w_{2} \ln z_{2} \le 0$$

В момент разделения ступеней РН баки первой ступени пусты, а баки второй ступени – полны (благодаря переливу топлива из баков первой ступени). Поэтому числа Циолковского для первой и второй ступеней РН можно рассчитывать как для схемы с последовательным соединением ступеней:

$$z_{1} = \frac{m_{01}}{m_{01} - m_{T1}} = \frac{m_{01}/m_{\Pi H}}{m_{01}/m_{\Pi H} - m_{T1}/m_{\Pi H}} = \frac{p_{0}}{p_{0} - x_{1}} = \frac{1 + \sum_{i=1}^{2} \frac{s_{i} x_{i}}{(s_{i} - 1)}}{1 + \sum_{i=1}^{2} \frac{s_{i} x_{i}}{(s_{i} - 1)} - x_{1}}; \quad (8.60)$$

$$z_{2} = \frac{m_{02}}{m_{02} - m_{T2}} = \frac{\frac{m_{02}}{m_{TH}}}{\frac{m_{02}}{m_{TH}} - \frac{m_{T2}}{m_{TH}}} = \frac{p_{0}}{p_{0} - x_{2}} = \frac{1 + \frac{s_{2} x_{2}}{(s_{2} - 1)}}{1 + \frac{s_{2} x_{2}}{(s_{2} - 1)} - x_{2}}.$$
 (8.61)

Подставляем (8.60) и (8.61) в функцию ограничений (8.44), получаем с учетом (8.47)

$$V_{X}^{nomp} - \frac{w_{1}w_{2}(1+\alpha)}{w_{2}+\alpha w_{1}} \ln \left(\frac{1+\sum_{i=1}^{2} \frac{s_{i}}{(s_{i}-1)} x_{i}}{1+\sum_{i=1}^{2} \frac{s_{i}}{(s_{i}-1)} x_{i} - x_{1}} \right) - \frac{w_{2} \ln \left(\frac{1+\frac{s_{2}}{(s_{2}-1)} x_{2}}{1+\frac{s_{2}}{(s_{2}-1)} x_{2} - x_{2}} \right)} \right)$$

Затем решается задача математического программирования (8.32) с учетом (8.63), то есть определяются оптимальные значения x_i^* $(i = \overline{1, N})$. Далее находятся массы топлива и блоков по тем же зависимостям и в той же последовательности, что и при последовательном соединении ступеней (см. зависимости (8.40) – (8.43).

Рис. 8.4. Трехступенчатый пакет без перелива

8.3.4. Схема "трехступенчатый пакет"

Расчетная схема представлена на рис. 8.4.

Напомним, что эта схема представляет собой параллельное (пакетное) соединение ракетных блоков первой и второй ступеней и последовательное соединение ракетных блоков второй и третьей ступеней ракеты-носителя. Причем пакетное соединение может быть с переливом топлива или без перелива.

Для этой схемы целевая функция (8.30) не изменится, а функции ограничений, в зависимости от рассматриваемых схем (с переливом или без перелива), можно получить из следующей функции: $V_{X}^{nomp} - w_{p} \ln z_{1} - w_{2} \ln z_{2} - w_{3} \ln z_{3} \le 0.$ (8.63)

В этом выражении учитывается приращение скорости от третьей ступени (z_3 - число Циолковского, w_3 - удельный импульс топлива и двигателей третьей ступени).

Число Циолковского третьей ступени определяется так же, как и для схемы с последовательным соединением ракетных блоков (аналогично зависимостям (8.35) и (8.36):

$$z_{3} = \frac{1 + \frac{s_{3}}{(s_{3} - 1)} x_{3}}{1 + \frac{s_{3}}{(s_{3} - 1)} x_{3} - x_{3}}.$$
(8.64)

Учитывая (8.56) и (8.65), функция ограничений (8.64) для пакета без перелива будет выглядеть так:

$$V_{X}^{nomp} - \left(\frac{w_{1}w_{2}(1+\alpha)}{w_{2}+\alpha w_{1}}\right) \ln \left(\frac{1+\sum_{i=1}^{3}\frac{s_{i}}{(s_{i}-1)}x_{i}}{1+\sum_{i=1}^{3}\frac{s_{i}}{(s_{i}-1)}x_{i}-x_{1}-\frac{\alpha w_{1}}{w_{2}}x_{1}}\right) - w_{2} \ln \left(\frac{1+\sum_{i=2}^{3}\frac{s_{i}x_{i}}{(s_{i}-1)}-\frac{\alpha w_{1}}{w_{2}}x_{1}}{1+\sum_{i=1}^{3}\frac{s_{i}x_{i}}{(s_{i}-1)}-x_{2}}\right) - w_{3} \ln \left(\frac{1+\frac{s_{3}x_{3}}{(s_{3}-1)}}{1+\frac{s_{3}x_{3}}{(s_{3}-1)}-x_{3}}\right) \leq 0. (8.65)$$

Учитывая (8.63) и (8.65), функция ограничений (8.64) для пакета с переливом будет выглядеть следующим образом:

$$V_{X}^{nomp} - \frac{w_{1}w_{2}(1+\alpha)}{w_{2}+\alpha w_{1}} \ln \left(\frac{1 + \sum_{i=1}^{3} \frac{s_{i}}{(s_{i}-1)} x_{i}}{1 + \sum_{i=1}^{3} \frac{s_{i}}{(s_{i}-1)} x_{i} - x_{1}} \right) -$$

$$-w_{2} \ln \left(\frac{1 + \sum_{i=2}^{3} \frac{s_{i}}{(s_{i} - 1)} x_{i}}{1 + \sum_{i=2}^{3} \frac{s_{i}}{(s_{i} - 1)} x_{i} - x_{2}} \right) - w_{3} \ln \left(\frac{1 + \frac{s_{3}}{(s_{3} - 1)} x_{3}}{1 + \frac{s_{3}}{(s_{3} - 1)} x_{3} - x_{3}} \right) \le 0. (8.66)$$

Затем решаются задачи математического программирования (8.32) с учетом (8.65) или (8.66), то есть определяются оптимальные значения x_i^* $(i = \overline{1, N})$.

Далее находятся массы топлива и блоков по тем же зависимостям и в той же последовательности, что и при последовательном соединении ступеней (см. зависимости (8.41) – (8.44).

8.3.5. Схема "трехступенчатый пакет с дополнительными стартовыми ускорителями"

Эта схема представляет собой параллельное (пакетное) соединение ракетных блоков первой, второй и третьей ступеней и последовательное соединение ракетных блоков четвертой ступени ракетыносителя (или так называемый трехступенчатый пакет с дополнительными ускорителями).

Расчетная схема представлена на рис. 8.5.

Для этой схемы целевая функция (8.30) не изменится:

$$p_0 = 1 + \sum_{i=1}^{4} \frac{s_i}{(s_i - 1)} x_i$$
.

Однако другой будет функция ограничений:

$$V^{nomp} - w_{123} \ln z_1 - w_{23} \ln z_2 - w_3 \ln z_3 - w_4 \ln z_4 \le 0, \qquad (8.67)$$

где w₁₂₃ - удельный импульс, представляющий собой осредненный импульс от двигателей первой, второй и третьей ступеней;

w₂₃ - удельный импульс, представляющий собой осредненный импульс от двигателей второй и третьей ступеней.

Поскольку на участке полета первой ступени работают двигатели РБ первой, второй и третьей ступеней одновременно, то осредненный удельный импульс равен

$$w_{123} = \frac{R_1 + R_2 + R_3}{\dot{m}_1 + \dot{m}_2 + \dot{m}_3}, \qquad (8.68)$$

где R_1 , R_2 , R_3 - силы тяги двигателей РБ соответствующих ступеней РН; $\dot{m}_1, \dot{m}_2, \dot{m}_3$ - секундные расходы топлива из РБ соответствующих ступеней.

Рис. 8.5. Расчетная схема для трехступенчатого пакета с дополнительными стартовыми ускорителями без перелива топлива

По определению удельный импульс равен отношению тяги ракетного двигателя R_i к массе расхода топлива в единицу времени (секундному расходу топлива) m_i^c , то есть

$$w_i = \frac{R_i}{\dot{m}_i} \,. \tag{8.69}$$

С учётом (8.68) получим

$$w_{123} = \frac{R_1 + R_2 + R_3}{\frac{R_1}{w_1} + \frac{R_2}{w_2} + \frac{R_3}{w_3}}.$$
(8.70)

Введем дополнительные проектные параметры:

 $\alpha_{21} = R_2/R_1$ - отношение сил тяги двигателей РБ второй и первой ступеней РН;

 $\alpha_{31} = R_3/R_1$ - отношение сил тяги двигателей РБ третьей и первой ступеней.

С учетом этих параметров выражение (8.70) примет вид

$$w_{123} = \frac{w_1 w_2 w_3 (1 + \alpha_{21} + \alpha_{31})}{w_2 w_3 + \alpha_{21} w_1 w_3 + \alpha_{31} w_1 w_2}.$$
(8.71)

Для проверки адекватности данной зависимости, в частности, можно положить, что удельные импульсы первой и второй ступеней одинаковы ($w_1 = w_2 = w_3$), и получить тождество $w_{123} = w_1 = w_2 = w_3$.

На второй ступени работают двигатели РБ второй и третьей ступеней одновременно, поэтому удельный импульс этой ступени равен

$$w_{23} = \frac{R_2 + R_3}{m_2^c + m_3^c} \text{ или}$$
$$w_{23} = \frac{w_2 w_3 (1 + \alpha_{32})}{w_3 + \alpha_{32} w_2}, \tag{8.72}$$

где $\alpha_{32} = R_3/R_2$ - отношение сил тяги двигателей РБ третьей и второй ступеней.

Сравнение этой зависимости с формулой (8.47) показывает, что они по структуре одинаковы, что свидетельствует в пользу адекватности разрабатываемых моделей.

Выразим числа Циолковского в (8.67) через параметры оптимизации x_i . Числа Циолковского следует определять не только с учетом 160 РБ, относящихся конструктивно к тем или иным ступеням РН, но и с учетом массы выработанного или оставшегося в них топлива на моменты начала и конца работы различных ступеней РН.

Число Циолковского первой ступени

$$z_1 = \frac{m_{01}}{m_{k1}} = \frac{m_{01}}{m_{01} - m_{T1} - \Delta m_{T21} - \Delta m_{T31}},$$
(8.73)

где m_{01} и m_{k1} - начальная и конечная массы первой ступени соответственно;

*m*_{*T*1} - масса топлива ракетного блока первой ступени;

 Δm_{T21} - масса топлива, израсходованная из баков РБ второй ступени за время работы РБ первой ступени;

 Δm_{T31} - масса топлива, израсходованная из баков РБ третьей ступени за время работы РБ первой ступени.

Выразим параметры Δm_{T21} и Δm_{T31} через удельные импульсы и массы топлива соответствующих РБ.

Для Δm_{T21} имеем

$$\Delta m_{T21} = m_2^c t_1 = m_2^c \frac{m_{T1}}{m_1^c} ,$$

где t_1 - время работы РБ первой ступени, или с учетом (8.69) и α_{21} получим

$$\Delta m_{T21} = \frac{R_2}{w_2} \frac{m_{T1}}{R_1/w_1} = \frac{\alpha_{21} w_1}{w_2} m_{T1}.$$
(8.74)

По аналогии

$$\Delta m_{T31} = \frac{\alpha_{31} w_1}{w_3} m_{T1} \,. \tag{8.75}$$

С учетом (8.74), (8.75) для z₁ имеем

$$z_{1} = \frac{\left(m_{01}/m_{\Pi H}\right)}{\frac{m_{01}}{m_{\Pi H}} - \frac{m_{T1}}{m_{\Pi H}} - \frac{\alpha_{21}w_{1}}{w_{2}} - \frac{m_{T1}}{m_{\Pi H}} - \frac{\alpha_{31}w_{1}}{w_{3}} - \frac{m_{T1}}{m_{\Pi H}}},$$

или, учитывая (8.25), (8.27) и (8.29), получим

$$z_{1} = \frac{1 + \sum_{i=1}^{4} \frac{s_{i} x_{i}}{(s_{i} - 1)}}{1 + \sum_{i=1}^{4} \frac{s_{i} x_{i}}{(s_{i} - 1)} - x_{1} - \frac{\alpha_{21} w_{1}}{w_{2}} x_{1} - \frac{\alpha_{31} w_{1}}{w_{3}} x_{1}}$$
(8.76)

Число Циолковского второй ступени будем находить с учетом того, что она начинает работу с неполными баками РБ второй и третьей ступеней и заканчивает - с неполными баками РБ третьей ступени, то есть

$$z_2 = \frac{m_{n2}}{m_{k2}} = \frac{m_{02} - \Delta m_{T21} - \Delta m_{T31}}{m_{02} - m_{T2} - \Delta m_{T3}},$$
(8.77)

где m_{n2} и m_{k2} - начальная и конечная массы второй ступени соответственно;

*m*₀₂ - масса РН без ускорителей первого типа и с полностью заправленными баками центрального блока и стартового ускорителя второго типа;

 Δm_{T3} - масса топлива, израсходованная из баков РБ третьей ступени за время работы двигателей РБ второй ступени.

Для Δm_{T3} имеем

$$\Delta m_{T3} = m_3^c t_2 = m_3^c \, \frac{m_{T2}}{m_2^c} \,,$$

где t₂ - время работы РБ второй ступени, или

$$\Delta m_{T3} = m_3^c \frac{m_{T2}}{m_2^c} = \frac{R_3/w_3}{R_2/w_2} m_{T2} = \frac{\alpha_{32} w_2}{w_3} m_{T2}.$$

Для z₂ получим

$$z_{2} = \frac{1 + \sum_{i=2}^{4} \frac{s_{i}}{(s_{i}-1)} x_{i} - \frac{\alpha_{21} w_{1}}{w_{2}} x_{1} - \frac{\alpha_{31} w_{1}}{w_{3}} x_{1}}{1 + \sum_{i=2}^{4} \frac{s_{i}}{(s_{i}-1)} x_{i} - x_{2} - \alpha_{32} \frac{w_{2}}{w_{3}} x_{2}}.$$
(8.78)

Следует заметить, что выражение $\alpha_{32} = R_3/R_2$ можно представить через выражения α_{31} и α_{21} . Действительно: 162

$$\alpha_{32} = \frac{R_3}{R_2} = \frac{R_3}{R_1} \frac{R_1}{R_2} = \frac{\alpha_{31}}{\alpha_{21}} \,.$$

Третья ступень начинает полет также с неполными баками центрального блока. Число Циолковского третьей ступени будет определяться так:

$$z_3 = \frac{m_{n3}}{m_{k3}} = \frac{m_{03} - \Delta m_{T3}}{m_{03} - m_{T3}},$$

где m_{n3} и m_{k3} - начальная и конечная массы третьей ступени соответственно:

*m*₀₃ - масса РН без ускорителей первого и второго типов и с полностью заправленными баками центрального блока, или

$$z_{3} = \frac{1 + \sum_{i=3}^{4} \frac{s_{i}}{(s_{i} - 1)} x_{i} - \frac{\alpha_{32} w_{2}}{w_{3}} x_{2}}{1 + \sum_{i=3}^{4} \frac{s_{i}}{(s_{i} - 1)} x_{i} - x_{3}}$$
(8.79)

Число Циолковского четвертой ступени РН находится с учетом того, что ступень начинает работу с полностью заправленными баками РБ, а кончает – с пустыми:

$$z_4 = \frac{m_{n\,4}}{m_{k\,4}} = \frac{1 + \frac{s_4}{(s_4 - 1)} x_4}{1 + \frac{s_4}{(s_4 - 1)} x_4 - x_4},\tag{8.80}$$

где m_{n4} и m_{k4} - начальная и конечная массы четвертой ступени соответственно.

Функция ограничений (8.68) относительно переменных x_i примет вид

$$V_x^{pacm} - w_{123} \ln \left(\frac{1 + \sum_{i=1}^4 \frac{s_i}{(s_i - 1)} x_i}{1 + \sum_{i=1}^4 \frac{s_i}{(s_i - 1)} x_i - x_1 - \frac{\alpha_{21} w_1}{w_2} x_1 - \frac{\alpha_{31} w_1}{w_3} x_1} \right) -$$

163

$$-w_{23} \ln \left(\frac{1 + \sum_{i=2}^{4} \frac{s_i}{(s_i - 1)} x_i - \frac{\alpha_{21} w_1}{w_2} x_1 - \frac{\alpha_{31} w_1}{w_3} x_1}{1 + \sum_{i=2}^{4} \frac{s_i}{(s_i - 1)} x_i - x_2 - \alpha_{32} \frac{w_2}{w_3} x_2} \right) - w_3 \ln \left(\frac{1 + \sum_{i=3}^{4} \frac{s_i}{(s_i - 1)} x_i - \frac{\alpha_{32} w_2}{w_3} x_2}{1 + \sum_{i=3}^{4} \frac{s_i}{(s_i - 1)} x_i - x_3} \right) - w_4 \ln \left(\frac{1 + \frac{s_4}{(s_4 - 1)} x_4}{1 + \frac{s_4}{(s_4 - 1)} x_4 - x_4} \right) \le 0.$$

$$(8.81)$$

Введем еще два ограничения, которые связаны с тем, что начальное значение перегрузок боковых РБ, если рассматривать их как самостоятельные ракеты (первой квазиракеты), должны быть больше значения перегрузок ускоряемых составных частей ракеты, если их также рассматривать как самостоятельные ракеты (второй квазиракеты) без соответствующих боковых ускорителей. В противном случае боковые блоки будут не ускорять, а тормозить движение ракеты в целом.

Это ограничение можно выразить следующим образом:

$$q_2 = n_{x02}^* - n_{x01}^* < 0, \qquad (8.82)$$

где n_{x02}^* - начальная перегрузка второй квазиракеты;

n^{*}_{x01} - начальная перегрузка первой квазиракеты.

Выразим значения перегрузок через параметры x_i , учитывая, что начальные перегрузки квазиракет равны отношениям сил тяг двигателей соответствующих квазиракет к их весу.

Преобразуем выражения для перегрузок, учитывая (8.27) и (8.29) и обозначения $\alpha_{32} = R_3/R_2$:

$$n_{x01} = \frac{R_1}{g_0 m_{E1}} = \frac{R_1 / m_{\Pi H}}{g_0 \left(\frac{m_{E1}}{m_{\Pi H}}\right)} = \frac{R_1 / m_{\Pi H}}{g_0 \frac{s_1}{(s_1 - 1)} x_1};$$

$$n_{x02} = \frac{R_2 + R_3}{g_0 \left(m_{\Pi H} + \sum_{i=2}^4 m_{Ei}\right)} = \frac{(R_2 / m_{\Pi H})(1 + \alpha_{32})}{g_0 \left(1 + \sum_{i=2}^4 \frac{s_i}{s_i - 1} x_i\right)}.$$

Подставляем эти выражения в (8.82) и, учитывая обозначение $\alpha_{21} = R_2/R_1$, получаем

$$q_{2} = \alpha_{21} \left(1 + \alpha_{32} \right) \frac{s_{1}}{(s_{1} - 1)} x_{1} - \left(1 + \sum_{i=2}^{4} \frac{s_{i}}{s_{i} - 1} x_{i} \right) < 0.$$
 (8.83)

Рассуждая аналогично для РБ второй ступени (боковых ускорителей с большим временем работы двигателей), можно получить следующую функцию ограничений:

$$q_3 = \alpha_{32} \frac{s_2}{(s_2 - 1)} x_2 - \left(1 + \sum_{i=3}^4 \frac{s_i}{s_i - 1} x_i\right) < 0.$$
(8.84)

Кроме того, следует составить еще несколько функций ограничений, сущность которых сводится к тому, что числа Циолковского физически не могут быть меньше единицы, или из реализуемых в настоящее время значений этих чисел (по статистике):

$$z_i > 1, \ z_i < 10 \quad (i = 1, 4).$$
 (8.85)

Далее решается задача математического программирования (8.32) с учетом (8.81), (8.83), (8.84) и других ограничивающих функций, если они имеются, то есть определяются оптимальные значения

$$x_i^*$$
 $(i = \overline{1, N}).$

Верификация моделей

В качестве тестовой ракеты-носителя использовалась РН Японии Н-ПА-2022, которая имеет две пары стартовых ускорителей с различными характеристиками [60]. Её конструктивная схема представлена на рис. 8.6. Эта РН имеет стартовую массу 321 т без ПН и выводит полезную нагрузку массой 3,0 т на эллиптическую орбиту с высотой перигея – 281,55 км, высотой апогея – 232960 км (без поворота плоскости орбиты). Некоторые характеристики PH, необходимые для расчета, приведены в табл. 8.1. В этой таблице приведены суммарные характеристики масс и сил тяги двух боковых блоков каждого типа.

Таблица. 8.1. Характеристики ракетных блоков РН H-2A-2022

Харак- терис-	Ракетные блоки (РБ) различных ступеней РН			
THKH	1-Ă	2-й	3-й	4-ñ
т. т	31.0	154.0	114.0	20.0
т. т	26.0	132.0	101.0	17.0
₩ ₁ .MC	2820	2810	4400	4480
<i>R.</i> кН	1490	4520	1100	137
<i>t</i> ₁ , c	60	100	390	530
Si	6.200	7.000	8.014	6.667
x_i	8.667	44.00	33.667	5.667
Zi	1.580	1.431	3.143	3.833

Рис. 8.6. Конструктивная схема РН Японии Н-ПА-2022

По исходным значениям масс были рассчитаны параметры s_i , x_i , z_i , которые также представлены в табл. 8.1. Масса головного обтекателя (ГО) составляет 1,40 т. Она условно отнесена к массе РБ третьей ступени и учтена при расчете конструктивной характеристики s_3 , так как сброс ГО происходит на участке работы РБ третьей ступени.

Располагаемая характеристическая скорость, рассчитанная с использованием формул Циолковского (8.67) с учетом данных табл. 8.1, составила 12530 м/с. Если в формулу (8.67) вместо чисел Циолковского подставить выражения (8.76), (8.78), (8.79) и (8.80) с учетом значений s_i и x_i из табл. 8.1, получается то же самое значение скорости. Потребная характеристическая скорость, рассчитанная по методике подраздела 6.1 с учетом потерь от действия гравитационных, аэродинамических и др. сил (от минимальных до максимальных), составляет от 12483 до 12783 м/с. В тестовых расчетах она принималась равной располагаемой характеристической скорости, то есть 12530 м/с.

Отметим, что в табл. 8.1 приведены максимальные значения удельных импульсов и сил тяги двигателей - для вакуума. В тестовых расчетах использовались скорректированные средние значения удельных импульсов и сил тяги стартовых ускорителей и центрального блока по высоте полета. Для боковых блоков принималось снижение тяги двигателей (по статистике) на 15%, а для центрального – на 12 %.

Для верификации моделей в части оптимизации масс ракетных блоков РН были введены дополнительные ограничения для сужения диапазона варьирования чисел Циолковского $(1.579 \le z_1 \le 1.581;$ $1.430 \le z_2 \le 1.432;$ $3.142 \le z_3 \le 3.144;$ $3.832 \le z_4 \le 3.834$).

Результаты оптимизации масс PH с этими дополнительными ограничениями в системе Mathcad представлены в табл. 8.2.

РБ	<i>т</i> _{Бі} , т	<i>m_{Ti}</i> , т	x_i	zi
1-й ст.	30,99	25,99	8,664	1,580
2-й ст.	154,05	132,04	44,015	1,431
3-й ст.	115,31	100,92	33,639	3,143
4-й ст.	19,99	17,00	5,665	3,833

Таблица 8.2. Расчетные характеристики ракетных блоков РН Н-II А

Сравнивая исходные данные, приведенные в табл. 8.1, и результаты расчетов, приведенные в табл. 8.2, приходим к выводу, что данные близки.

Оптимизация РН

Оптимизировалась гипотетическая PH, прототипом которой была PH H-II A 2022. Данная PH выполняет поставленные перед ней задачи по выводу полезных нагрузок различной массы на требуемые расчетные орбиты. Наша задача - показать работоспособность моделей оптимизации стартовой массы PH с такой же конфигурацией.

Из характеристик РН Н-ПА-2022 были заимствованы масса ПН, располагаемая характеристическая скорость, удельные импульсы и конструктивные характеристики РБ. При оптимизации были сняты все дополнительные ограничения по числам Циолковского, которые использовались для верификации моделей. Результаты расчетов с использованием системы Mathcad представлены в табл. 8.3.

РБ	<i>т</i> _{Бі} , т	<i>т</i> , т		Zi
1-й ст.	15,68	13,15	4,384	1,255
2-й ст.	85,18	73,01	24,337	1,193
3-й ст.	169,73	148,55	49,518	3,967
4-й ст.	22,00	18,70	6,234	3,968

Таблица 8.3. Оптимальные значения характеристик ракетных блоков

Оптимальная стартовая масса PH с ПН получилась равной 295,6 т. Экономия массы по сравнению с прототипом составляет 28,4 т. Сравнивая массы ракетных блоков оптимальной PH и прототипа, видим, что они отличаются, причем перераспределение масс осуществляется от PE с низкими удельными импульсами топлива к PE с более высокими удельными импульсами.

8.3.6. Особенности расчета масс ракетных блоков с использованием различных компонентов топлива

Если удельные импульсы топлива и двигателей в ракетных блоках первой и второй ступеней ракеты-носителя, а также средние плотности компонентов топлива мало различаются между собой, то никаких дополнительных ограничений не требуется при решении оптимизационной задачи перераспределения масс между ступенями ракеты.

Если же указанные характеристики значительно отличаются между собой, то требуется введение дополнительных ограничений при решении оптимизационной задачи.

Например, наличие керосина в ракетном блоке первой ступени и водорода в ракетном блоке второй ступени приводит к перераспределению массы по ступеням ракеты в пользу водородного ракетного блока второй ступени (при решении задачи математического программирования без дополнительных ограничений). Однако в этом случае, во-первых, объем ракетного блока второй ступени может оказаться больше объема ракетного блока первой ступени, во-вторых, разделение ступеней будет происходить на относительно низких высотах с достаточно плотной атмосферой и надежность отделения будет снижена. Для того чтобы этого не происходило, первая ступень должна заканчивать работу на высоте не менее 50 км.

В свою очередь, ограничение по высоте на момент окончания работы двигателей первой ступени можно свести к ограничению по характеристической скорости первой ступени ракеты-носителя (так как в оптимизационной задаче значение высоты не фигурирует).

По статистическим данным скорость в конце работы первых ступеней ракет составляет примерно 1800...2350 м/с (для трехступенчатых РН типа «Союз» и «Сатурн-V»). Если принять во внимание гравитационные и другого рода потери, которые на участке работы первой ступени составляют по статистическим данным 1200...1300 м/с, то характеристическая скорость ракеты на участке работы первой ступени должна составлять не менее 3000 м/с.

Функция ограничений по скорости в конце работы двигателей первой ступени для схемы с последовательным соединением ракетных блоков примет вид:

$$w_{1} \cdot \ln \left(\frac{1 + \sum_{i=1}^{N} \frac{s_{i}}{(s_{i} - 1)} \cdot x_{i}}{1 + \sum_{i=1}^{N} \frac{s_{i}}{(s_{i} - 1)} \cdot x_{i} - x_{i}} \right) \geq 3000 \,,$$

а для пакетной схемы функция ограничений будет следующей:

$$\left(\frac{w_1 \cdot w_2 \cdot (1+\alpha)}{w_2 + \alpha \cdot w_1}\right) \cdot \ln\left(\frac{1 + \sum_{i=1}^N \frac{s_i}{(s_i - 1)} \cdot x_i}{1 + \sum_{i=1}^N \frac{s_i}{(s_i - 1)} \cdot x_i - x_1 - \frac{\alpha \cdot w_1}{w_2}x_1}\right) \ge 3000.$$

8.3.7. Методика и алгоритм решения задач на условную оптимизацию в системе Mathcad

1. Записывают целевую функцию, например:

 $f(x, y) := 2 + 2 \cdot x + 2 \cdot y - x^2 - y^2.$

2. Назначают начальные значения варьируемых переменных. Например, при поиске максимума приведенной функции были приняты следующие значения переменных:

 $x = 4 \qquad \qquad y = 5.$

3. Записывается ключевое слово Given, после него записываются функции ограничений, например:

Given

 $x \ge 0$ $y \ge 0$ $y \le 9 - x$.

4. Записывается операция оптимизации (Maximize или Minimize) в виде

P = Maximize(f, x, y),

где *P* - вектор-столбец (количество элементов которого равно числу переменных и определяется автоматически).

5. Результаты (значения переменных, соответствующих оптимальному значению целевой функции) можно увидеть после написания обозначения *P* и нажатия знака «=» (знака «равно»):

$$P = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

6. Значение самой целевой функции (ее минимальное значение) можно определить, записав значение функции в виде $f(P_0, P_1)$ и нажав знак «=». Результат будет представлен в виде

 $f\left(P_0,P_1\right)=4,$

где P_0 и P_1 - значения переменных, соответствующих оптимальному значению целевой функции.

8.4. Выбор количества ступеней ракеты-носителя

8.4.1. Выбор количества ступеней ракеты по критерию минимума стартовой массы

Алгоритм этого выбора следующий.

1. Назначается минимальное количество ступеней ракетыносителя (как правило, две ступени).

2. Решается задача на условную оптимизацию по определению минимальной стартовой массы ракеты.

3. Увеличивается количество ступеней на единицу, и расчет по пункту 2 повторяется с новым количеством ступеней.

При этом следует учитывать, что по статистике численные значения конструктивных характеристик ракетных блоков для верхних ступеней меньше, чем для нижних.

4. Расчет заканчивается, когда минимальная стартовая масса ракеты-носителя будет больше по сравнению с предыдущим расчетом.

Следует заметить, что если бы значения конструктивных характеристик ракетных блоков различных ступеней были равны, то стартовая масса ракеты-носителя не имела бы точки минимума (она бы уменьшалась с увеличением количества ступеней).

Оптимальным считается количество ступеней, при котором стартовая масса ракеты минимальна. Процедура нахождения оптимального числа ступеней иллюстрируется графиком, представленным на рис. 8.7. На этом рисунке по оси ординат откладываются расчетные значения отношения стартовой массы ракеты-носителя к массе полезной нагрузки.

Однако при этом следует учитывать, что при увеличении количества ступеней уменьшается надежность ракеты-носителя в целом. Поэтому при окончательном выборе необязательно останавливаться на варианте с минимальной стартовой массой, если, например, стар-

товые массы ракеты не очень отличаются. В этом случае лучше выбрать вариант с меньшим количеством ступеней.

В настоящее время принято, что для вывода полезной нагрузки на низкую опорную орбиту достаточно двух или трех ступеней, в зависимости от используемых компонентов топлива и конструктивнокомпоновочной схемы ракеты.

Рис. 8.7. Иллюстрация к вопросу о выборе количества ступеней ракеты

Так, для схемы с последовательным соединением ракетных блоков и при использовании в качестве топлива пары "керосин + жидкий кислород" или пары " жидкий водород + жидкий кислород" достаточно двух ступеней. Для схемы с параллельным соединением ракетных блоков и при использовании в качестве топлива пары "жидкий водород + жидкий кислород" также достаточно двух ступеней. Для схемы "трехступенчатый пакет" и при использовании в качестве топлива пары "керосин + жидкий кислород" достаточно трех ступеней.

8.4.2 Выбор количества ступеней ракеты-носителя из условия функционального назначения ракетных блоков

Суть этого метода состоит в том, что разгон полезной нагрузки на каком-либо этапе полета лучше начинать с полными топливными баками (чтобы не разгонять полупустые конструкции ракетных блоков). Кроме того, повторное включение двигателей ракетных блоков при таком подходе к распределению масс ракеты по ступеням исключается или сводится к минимуму и, следовательно, упрощается логика их функционирования.

Рассмотрим пример выбора количества ступеней для осуществления марсианской экспедиции.

1-й и 2-й ракетные блоки - для вывода космического комплекса на опорную орбиту Земли.

3-й ракетный блок - для старта отправляемого космического комплекса с опорной орбиты Земли на траекторию полета к Марсу.

4-й ракетный блок - для коррекции траектории полета к Марсу и торможения космического комплекса при его переходе на орбиту Марса.

5-й ракетный блок - для старта возвращаемой части космического комплекса с орбиты Марса на траекторию полета к Земле. Он с возвращаемой частью космического комплекса остаётся на орбите Марса в режиме ожидания возвращения кабины с экипажем.

6-й ракетный блок для схода спускаемой части космического комплекса и торможения вблизи марсианской поверхности.

7-й ракетный блок - для старта КА с поверхности Марса на его орбиту и для стыковки КА с частью комплекса, остававшегося на орбите Марса.

Для расчета масс ступеней сначала необходимо рассчитать соответствующие характеристические скорости (импульсы скорости) для каждого маневра ΔV_i .

Расчет масс ракеты-носителя начинается с расчета массы последнего ракетного блока, затем предпоследнего и т. д. по следующему алгоритму.

1. Рассчитывается число Циолковского *i*-й ступени (сначала для 7-й) по следующей зависимости:

$$z_i = \frac{\Delta V_i}{\mathbf{w}_i} , \qquad (8.86)$$

где w_i - удельный импульс топлива и двигателей *i*-й ступени.

Полезной нагрузкой для 7-й ступени является марсианская кабина. Потребная характеристическая скорость этой ступени должна быть достаточна для старта кабины с поверхности Марса на орбиту ожидания и стыковки с комплексом возвращения на Землю.

2. Выбирается по статистике значение конструктивной характеристики *i*-го ракетного блока *s_i* и рассчитывается отношение массы *i*-й ступени к массе полезной нагрузки:

$$p_i = z_i \cdot \frac{(s_i - 1)}{(s_i - z_i)}.$$
(8.87)

3. Определяется начальная масса (*i* -1)-й ступени

$$m_i = p_i \, m_{i-1} \,. \tag{8.88}$$

Полезной нагрузкой для *i*-й ступени является (*i* + 1)-я ступень, то есть

$$m_{\Pi H i} = m_{i+1} \,. \tag{8.89}$$

4. Расчеты по пунктам 1...3 повторяются для шестой ступени. В результате будет рассчитана масса космического комплекса, предназначенного для спуска на поверхность Марса, старта с его поверхности и стыковки с комплексом возвращения.

5. Проводится расчёт массы возвращаемой части космического комплекса с орбиты Марса (ступени, включающей 5-й ракетный блок, и корабль возвращения). Марсианская кабина после доставки космонавтов отделяется, и не включается в состав комплекса возвращения. Расчёт проводится также по зависимостям (8.87) – (8.89).

6. Рассчитывается масса 4-й ступени. Её полезной нагрузкой является марсианский комплекс спуска и возвращения на орбиту Марса, а также ступень возвращения (с 5-м ракетным блоком).

7. Аналогично рассчитывается масса 3-й ступени РН.

8. Массы первой и второй ступеней РКН рассчитываются из условия оптимального распределения масс двухступенчатой ракеты.

Распределение масс по ступеням, проведенное из условия функционального назначения ракетных блоков, следует сравнить с оптимальным. Для этого необходимо дополнительно провести оптимизацию масс ракетных блоков.

Если стартовая масса ракеты, полученная из условий функционального назначения ракетных блоков, несущественно отличается от стартовой массы ракеты, полученной в результате оптимизации, то следует оставить распределение масс по ступеням из условия их функционального назначения. В противном случае следует выбирать распределение масс ступеней ракеты по результатам решения оптимизационных задач.

Контрольные вопросы

1. Приведите формулировки задач математического программирования в общем виде. Какие виды ограничений Вы знаете?

2. Приведите формулировку задачи математического программирования (в общем виде) применительно к задаче выбора оптимальных масс ракетных блоков.

3. Приведите основную функцию ограничений для задачи выбора оптимальных масс ракетных блоков.

4. Расскажите об основных положениях при выводе функций ограничений для последовательного соединения ступеней ракетыносителя.

5. Расскажите об основных положениях при выводе функций ограничений для параллельного соединения ракетных блоков без перелива топлива (пакет без перелива).

6. Расскажите об основных положениях при выводе функций ограничений для параллельного соединения ракетных блоков с переливом топлива (пакет с переливом).

7. Поясните алгоритм выбора масс ракетных блоков для трехступенчатого пакета.

8. Приведите методику выбора количества ступеней по критерию минимума стартовой массы ракеты.

9. Приведите методику выбора количества ступеней из условия их функционирования.

10. Приведите методику выбора характеристик разгонного блока, который устанавливают на модернизируемую ракету.

9. ОПРЕДЕЛЕНИЕ ПРЕДВАРИТЕЛЬНЫХ ОБЪЕМНО-ГАБАРИТНЫХ ХАРАКТЕРИСТИК РАКЕТ-НОСИТЕЛЕЙ

В процессе выбора компоновочной и конструктивно-силовой схем возможны изменения исходных данных. Поэтому на основании опыта проектирования принимается 10- процентный резерв по массе полезной нагрузки (что соответствует примерно 3-процентному резерву по габаритам) [19]. Таким образом, компоновочную и конструктивно-силовую схемы разрабатывают исходя из расчетной массы полезной нагрузки:

$$m_{\Pi H}^{pac4} = k_{\Pi H} m_{\Pi H} , \qquad (9.1)$$

где $k_{\Pi H} = 1,1$ - коэффициент запаса по полезной нагрузке.

Исходными данными для расчета являются массы полезной нагрузки, ракетных блоков, топлива, характеристики окислителя и горючего.

9.1. Выбор схемы соединения ракетных блоков

Схема соединения ракетных блоков оказывает существенное влияние на оптимальное распределение массы ракеты-носителя по ступеням и на ее стартовую массу.

Схема с последовательным соединением ракетных блоков, как правило, более эффективна в весовом отношении, и в настоящее время применяется для ракет малого, среднего и для некоторых типов ракет-носителей тяжелого класса. Для сверхтяжелых ракет-носителей ранее также применялась схема с последовательным соединением ракетных блоков (лунные PH «Сатурн-V» и «H-1»).

Впоследствии для ракет-носителей сверхтяжелого класса стала применяться в основном схема с параллельным соединением ракетных блоков нижних ступеней (РН «Энергия»). Это связано с тем, что, во-первых, не требуется высоких стартовых сооружений и подъемного оборудования и, во-вторых, запуск двигателей ракетных блоков второй ступени производится на стартовом столе, что повышает на-176 дёжность не только самого запуска двигателей, но и возможность увода PH от стартового стола при отказах одного из двигателей боковых блоков.

По статистике для ракет-носителей с грузоподъемностью на низкие опорные орбиты до 15...20 т применяется, как правило, последовательное соединение, с грузоподъемностью свыше 20 т - параллельное соединение ракетных блоков нижних ступеней.

Если имеется сомнение в выборе схемы, то выбор предварительных габаритов ракет-носителей следует начинать со схемы с последовательным соединением ракетных блоков. Расчет габаритов ракеты производится по методике, изложенной ниже.

9.2. Определение объёма ракеты-носителя и её составных частей

Объём W_p ракеты-носителя рассчитывается как сумма объемов составных частей ракеты с полезной нагрузкой:

$$W_{P} = W_{PO} + \sum_{i=1}^{N} \left(W_{IIOi} \right) + \sum_{i=1}^{N} \left(W_{TOi} \right) + \sum_{i=1}^{N} \left(W_{XOi} \right) + \sum_{i=1}^{N} \left(W_{IIepO} \right), (9.2)$$

где W_{ro} – объём, занимаемый полезной нагрузкой;

W_{ПОi} – объём, занимаемый приборными отсеками и прочими элементами;

*W*_{тоі} - объём, занимаемый топливными отсеками;

W_{XOi} – объём, занимаемый хвостовыми отсеками (с двигательными установками);

*W*_{Перо} - объемы переходных отсеков.

Форма будущей ракеты в первом приближении выбирается в виде удлиненного цилиндра, как это схематично показано на рис 9.1. Там же показаны составляющие объемы. В дальнейшем по этой схеме определяют предварительный диаметр и длину ракеты.

На этом рисунке введены следующие обозначения:

L – длина цилиндра, вычисленная из условия равенства объёма ракеты и объема цилиндра; D – диаметр ракеты.

Рассмотрим расчет составляющих по формуле (9.2) объемов.

Рис. 9.1. Схема для определения предварительных объёмно-габаритных характеристик ракеты-носителя

9.2.1. Объем головного обтекателя

Особенности расчета объёма головного обтекателя для полезных нагрузок различного типа

В связи с тем что космические аппараты не всегда создаются на тех же фирмах, что и ракеты-носители, тем более что ракетнокосмические организации территориально могут быть расположены в разных странах, принято ракету космического назначения делить на собственно ракету-носитель и космическую головную часть (см. рис. 1.1), в которую входят переходный отсек, космический разгонный блок, космический аппарат и головной обтекатель. Преимуществом такого деления является существенное сокращение различного рода согласований между разработчиками космических аппаратов и создателями ракет-носителей. Практически взаимодействие сводится к согласованию элементов интерфейсной части по стыку ракетыносителя и космической головной части.

Отметим, что переходный отсек и головной обтекатель также называют сборочно-защитным блоком.

Если ракета-носитель предназначена для вывода в космос конкретного космического аппарата, который должен быть защищен от воздействия аэродинамических нагрузок и тепловых потоков, то задача сводится к подбору геометрических характеристик головного обтекателя. При этом необходимо обеспечить минимальный объем головного обтекателя при условии размещения космического аппарата в зоне полезной нагрузки. Если ракета-носитель предназначена для вывода в космос различных типов полезных нагрузок, то объем головного обтекателя рассчитывается на основе статистических данных по плотности компоновки полезных нагрузок различного назначения и коэффициента незаполнения объема головного обтекателя полезной нагрузкой. При этом в расчетах рекомендуется использовать наименьшую плотность полезной нагрузки, так как в этом случае объем головного обтекателя будет наибольшим, что заведомо обеспечит размещение других космических аппаратов с большей плотностью компоновки.

В первом приближении объем головного обтекателя можно представить пропорциональным объему полезной нагрузки:

$$W_{ro} = k_{ro} W_{IIH} \,, \tag{9.3}$$

где k_{IO} - коэффициент, учитывающий неполноту заполнения головного обтекателя полезной нагрузкой; W_{IIH} - объем полезной нагрузки.

Для КА зондирования Земли можно принять $k_{IO} = 1,5...2,0$, а для межпланетных космических комплексов, а также для полезного груза, состоящего из разгонного блока, адаптеров и нескольких спутников, запускаемых одной ракетой-носителем, $k_{IO} = 2,0...3,0$.

В свою очередь, объем полезной нагрузки можно получить по следующей зависимости:

$$W_{\Pi H} = \frac{m_{\Pi H}}{\rho_{\Pi H}}, \qquad (9.4)$$

где ρ_{nH} - средняя плотность полезной нагрузки.

Средняя плотность полезной нагрузки зависит от ее назначения. В первом приближении можно принять следующие значения этой плотности:

- для космических комплексов, выполняющих межпланетные полеты, - 150...300 кг/м³;

- для космических аппаратов, функционирующих на орбитах Земли, - 300...700 кг/м³.

Унифицированные головные обтекатели

С целью расширения возможностей проектируемой ракетыносителя, снижения издержек и расширения кооперации с фирмамипроизводителями ракетной техники и космических аппаратов проектанты стремятся использовать унифицированные головные обтекатели. В частности, унифицированный диаметров ГО PH «Союз» имеет диаметр 4,1 м, а длина выбирается в зависимости от габаритов полезной нагрузки (8, 10 и 12 м).

Полезные нагрузки, запускаемые без головного обтекателя

Если полезная нагрузка определена однозначно, то сразу видно, нужен ли головной обтекатель вообще или не нужен. Например, один из проектов космического корабля «Клипер» должен был запускаться без головного обтекателя, так как его корпус выдерживал нагрузки и тепловые потоки, возникающие при спуске с орбиты, и, естественно, выдержал бы нагрузки и тепловые потоки, возникающие при выводе космического корабля на орбиту, так как они значительно ниже.

На рис. 9.2 представлены проектные варианты компоновочных схем космических головных частей ракеты космического назначения «Союз-2-3» с полезными нагрузками без головного обтекателя [53].

Рис. 9.2. Проектные варианты схем установки пилотируемых кораблей на РН без головного обтекателя

9.2.2. Объем приборных отсеков

Особенности расчета объема приборных отсеков для ракетносителей различной грузоподъемности

Объем приборных отсеков следует рассчитывать только для последней ступени ракет-носителей среднего класса (с массой полезной нагрузки до 20 т). Объем, занимаемый приборами на ракетных бло-
ках первой ступени ракеты-носителя, можно не рассчитывать отдельно, так как для установки этих приборов достаточно места в межбаковых отсеках ракетного блока первой ступени. Напомним, что на ракетных блоках первой ступени устанавливаются приборы, которые нужны лишь для работы именно этих ракетных блоков.

Для ракет-носителей с массой полезной нагрузки порядка 50-100 т приборы можно не помещать в отдельные отсеки, так как в больших ракетах приборы занимают относительно небольшой объем и их можно расположить в межбаковых отсеках.

Объем приборного отсека, установленного в одном из ракетных блоков последних ступеней ракеты-носителя, можно рассчитать так:

$$W_{\Pi O} = \frac{m_{\Pi O}}{\rho_{\Pi O}} , \qquad (9.5)$$

где $m_{\Pi O}$ - масса приборного отсека;

 $\rho_{\Pi O}$ - средняя плотность компоновки приборного отсека, которая для приборов системы управления верхних ступеней ракетносителей составляет 150...300 кг/м³.

Масса приборного отсека

$$m_{\Pi O} = \xi_{\Pi O} m_{E} \,, \tag{9.6}$$

где ξ_{no} - относительная масса приборного отсека по статистике;

m_Б - масса ракетного блока.

Следует заметить, что относительную массу приборного отсека можно рассчитывать по отношению к массе последней ступени ракеты или к стартовой массе ракеты. В этом случае в формуле (9.6) необходимо использовать соответствующие массы.

9.2.3. Объем топливных отсеков

Объем топливных отсеков каждого ракетного блока рассчитывается отдельно по формуле

$$W_{TOi} = k_{Ti} W_{Ti},$$
 (9.7)

где *W*_{*тi*} - объем топлива *i*-*ü* ступени;

 k_{Ti} - коэффициент, учитывающий превышение объема топливного отсека над объемом топлива. Коэффициент k_{Ti} характеризует степень совершенства топливного отсека и представляет собой отношение объема топливного отсека к объему компонентов топлива, расположенных в этом отсеке:

$$k_T = \frac{W_{TO}}{W_{O\kappa} + W_T},\tag{9.8}$$

где $W_{O\kappa}$ и W_{Γ} - объемы окислителя и горючего соответственно.

Коэффициент k_{Ti} зависит от формы баков (см. рис. 9.3), от наличия в баках тоннельных трубопроводов, шаров-баллонов для хранения газа наддува, другой арматуры баков и др. Значения этого коэффициента лежат в пределах 1,15...1,3.

Рис. 9.3. К определению коэффициентов k_{T_i} :

а) с разъединенными баками; б) с совмещенными днищами баков.

Объем топлива *i-й* ступени можно рассчитать по зависимости

$$W_{T_i} = \frac{m_{T_i}}{\rho_{c_{p_i}}},\tag{9.9}$$

где ρ_{cpi} - средняя плотность топлива *i*-*ũ* ступени.

Формула для расчета средней плотности топлива была получена в разделе 7 настоящего учебного пособия:

$$\rho_{cp} = \frac{m_{Q\kappa} + m_{\Gamma}}{V_{O\kappa} + V_{\Gamma}} = \frac{\rho_{O\kappa} \rho_{\Gamma} (\kappa + 1)}{\kappa \rho_{\Gamma} + \rho_{O\kappa}}, \qquad (9.10)$$

где $\rho_{O\kappa}$ и ρ_{Γ} - плотность окислителя и горючего соответственно;

к - коэффициент отношения массы окислителя к массе горючего, который в первом приближении можно принять равными отношению секундных расходов компонентов топлива.

Таким образом, рассчитывая среднюю плотность топлива каждой ступени по формуле (9.10) и объемы топлива по формуле (9.9), 182 можно определить объемы топливных отсеков каждой ступени по формуле (9.7).

Отметим, что в работе [11] для оценки конструктивного совершенства топливных отсеков используется коэффициент α_{TO1} , который равен отношению средней плотности топливного отсека (массы конструкции, как бы «размазанной» по объему) ρ_{TO} к средней плотности компонентов топлива ρ_{cp} , то есть

$$\alpha_{TO1} = \frac{\rho_{TO}}{\rho_{cp}}$$

По статистике $\alpha_{TO1} = 0,04...0,07$.

В работе [52] для оценки конструктивного совершенства топливных отсеков используется коэффициент α_{TO2} , который равен отношению массы конструкции топливного отсека m_{TO} к массе топлива m_T :

$$\alpha_{TO2} = \frac{m_{TO}}{m_T} \, .$$

Отметим, что коэффициенты конструктивного совершенства топливных отсеков α_{701} и α_{702} численно близки, но не тождественны.

В работе [47] для оценки конструктивного совершенства топливных отсеков используется отношение

$$\alpha_{TO3}=\frac{m_T}{m_{TO}}.$$

Значение α_{TO3} лежит в пределах от 15 до 25.

9.2.4. Объем хвостовых и переходных отсеков

Суммарный объем, занимаемый хвостовыми и переходными отсеками с двигательными установками всех ступеней ракеты, рассчитывается в первом приближении как доля от объема всей ракеты, то есть

$$\sum W_{XO} + \sum W_{\Pi e p O} = k_{XO} W_P, \qquad (9.11)$$

где k_{XO} - коэффициент пропорциональности, который по статистике составляет 0,15...0,20.

Учитывая (9.2), можно записать

$$W_{p} = W_{TO} + \sum_{i=1}^{N} (W_{TOi}) + \sum_{i=1}^{N} (W_{TOi}) + W_{p} k_{XO}, \qquad (9.12)$$

откуда можно получить

$$W_{p} = \frac{W_{TO} + \sum_{i=1}^{N} (W_{TOi}) + \sum_{i=1}^{N} (W_{TOi})}{1 - k_{XO}}.$$
(9.13)

Таким образом, по приведенной методике можно рассчитать объем ракеты-носителя в первом приближении.

9.3. Определение длины и диаметра ракеты-носителя при последовательном соединении ракетных блоков

Объем ракеты равен произведению площади сечения корпуса ракеты на длину этой ракеты, то есть

$$W_{p} = \frac{\pi D^{2}}{4} L \,. \tag{9.14}$$

Используя характеристику относительного удлинения

$$\lambda = \frac{L}{D}$$
,

выражение (9.14) можно представить в следующем виде:

$$W_p = \frac{\pi D^3 \lambda}{4} \, .$$

Отсюда можно получить искомый диаметр ракеты

$$D = \sqrt[3]{\frac{4W_p}{\pi\lambda}}.$$
(9.15)

Таким образом, зная объем ракеты с головным обтекателем и задаваясь характеристикой удлинения, значение которой можно выбрать из прототипов ($\lambda = 8...12$), можно определить предварительный диаметр проектируемой ракеты. Длина ракеты находится по зависимости $L = \lambda D$.

(9.16)

Далее следует сопоставить полученные габариты ракетных блоков с габаритами выбранных транспортировочных средств и при необходимости уточнить их. Например, при транспортировке ракетных блоков железнодорожным транспортом следует учитывать, что максимально допустимый размер по ширине (диаметру) составляет 3,8 м, если транспортировка осуществляется без остановки встречного движения.

Возможна транспортировка крупногабаритных блоков ракетносителей с помощью самолёта при размещении их на фюзеляже. Так, например, осуществлялась транспортировка баков центрального блока ракеты-носителя «Энергия» на самолете 3MT с завода «Прогресс» (г. Куйбышев) на космодром «Байконур». Однако операции такого рода, как правило, являются уникальными, рискованными, затратными и могут в настоящее время использоваться только в исключительных случаях.

Таким образом, если при выбранной первоначально схеме с последовательным соединением ракетных блоков рассчитанные габариты ракеты-носителя не удовлетворяют ограничениям по диаметру ракетных блоков и длине ракеты в целом, то переходят к проработке схем с пакетным или комбинированным расположением ракетных блоков.

9.4. Определение предварительных массогабаритных характеристик ракетных блоков в схемах с параллельным и смешанным соединениями

При переходе к пакетной схеме необходимо уточнить все предыдущие расчеты по оптимизации ракетных блоков и стартовой массы ракеты-носителя. Возможные компоновочные схемы с параллельным соединением ракетных блоков первой и второй ступеней представлены на рис. 9.4.

Методика расчета объемно-габаритных характеристик ракетных блоков первой ступени при их параллельном соединении будет следующей.

Рис. 9.4. Возможные компоновочные схемы РН

1. Рассчитываются объем и габариты второй ступени ракетыносителя без учета ракетных блоков первой ступени. Расчет производится по методике, представленной в подразделах 9.2 и 9.3. При этом, естественно, статистические данные по удлинению λ следует брать для второй ступени ракеты-носителя, а не для ракеты в целом. Ракетный блок второй ступени будет считаться центральным блоком и иметь соответствующие габариты.

2. Рассчитываются габариты сначала одного так называемого приведенного ракетного блока первой ступени, который включает в себя объёмы всех будущих боковых блоков. Расчет объёма производится также по методике, представленной в подразделах 9.2 и 9.3, но применительно к одному блоку первой ступени. При этом следует учитывать, что объем, предусматривавшийся для головного обтекателя, равен нулю, а удлинение λ следует брать по статистике применительно к одному блоку.

3. Выбирается количество боковых блоков, равное двум. Рассчитываются масса и объем каждого из боковых блоков. Они в данном случае будут равны половине массы и половине объема приведенного ракетного блока первой ступени:

$$m_{EE} = \frac{m_{E1}}{n}; \qquad W_{EE} = \frac{W_{E1}}{n}.$$

где m_{bb} и W_{bb} - масса и объем одного бокового (реального) ракетного блока;

 m_{E1} и W_{E1} - масса и объём приведенного ракетного блока первой ступени;

n – количество боковых блоков.

4. Выбирается предварительный диаметр боковых ракетных блоков. Этот диаметр, как правило, не должен превышать диаметра ракетного блока второй ступени (который стал центральным). В первом приближении его следует принять равным диаметру центрально-го блока (из условия унификации производственного оборудования).

5. Рассчитывается длина бокового блока, исходя из обеспечения рассчитанного объема бокового блока:

$$L_{BB} = \frac{4W_{BB}}{\pi d_{BB}^2},$$

где *d*_{ББ} - диаметр бокового блока.

6. Если длина бокового блока превышает длину центрального (см. рис. 9.4), то количество боковых блоков увеличивают до четырех и проводят новые расчеты.

7. Если условия по пункту 6 не выполнены, то количество бо-

Рис. 9.5. Схема для определения угла β

ковых блоков увеличивают до шести (далее до восьми) и расчет проводят еще раз.

При этом необходимо удостовериться, умещается ли рассматриваемое количество боковых блоков вблизи поверхности центрального ракетного блока. Это условие нетрудно получить из геометрических соотношений (рис. 9.5)

$$\beta \leq \frac{2\pi}{n},$$

где $\beta = 2Arc\sin\left(\frac{d_{BB}}{d_{BB} + d_{LB}}\right).$

8. Если длина бокового блока равна или несколько меньше длины центрального блока, то расчёт заканчивают.

Таким образом, можно рассчитать предварительные габаритные размеры центрального и боковых блоков РН.

Отметим, что один из проектов ракеты-носителя семейства H-IIA Японии предусматривал несимметричную схему по геометрии - боковой блок был лишь один и по габаритам такой же, как и центральный блок. Однако такая схема не была реализована.

Контрольные вопросы

1. Каким образом осуществляется выбор схемы соединения ракетных блоков?

2. Приведите схему определения объёма ракеты-носителя (PH) и её составных частей.

3. Как рассчитывается объём головного обтекателя (ГО) РН?

4. Расскажите об особенностях расчета объёма ГО для полезных нагрузок различного типа.

5. Что Вы знаете об унифицированных головных обтекателях?

6. Какие полезные нагрузки могут запускаться без ГО?

7. По каким зависимостям рассчитывается объем приборных отсеков?

8. Расскажите об особенностях расчёта объёма приборных отсеков для PH различной грузоподъёмности.

9. Приведите схему расчёта объёма топливных отсеков.

10. Как рассчитывается объём хвостовых и переходных отсеков?

11. Как определяются длина и диаметр РН при последовательном соединении ракетных блоков?

12. Приведите последовательность расчёта предварительных массогабаритных характеристик ракетных блоков в схемах с параллельным и смешанным соединениями.

10. РАЗРАБОТКА ПРЕДВАРИТЕЛЬНОЙ КОМПОНОВОЧНОЙ СХЕМЫ РАКЕТЫ-НОСИТЕЛЯ

Построение предварительной компоновочной схемы ракетыносителя начинается с проведения осевой линии и выделения на поле чертежа прямоугольника (или прямоугольников – для параллельного соединения), одна сторона которого равна длине ракеты-носителя (или соответствующих ракетных блоков), а другая – ее диаметру (или диаметру ракетных блоков), которые были вычислены по результатам оценки предварительных объемно-габаритных характеристик.

Компоновка ракеты-носителя начинается, как правило, с первой ступени при последовательном соединении и с центрального блока при параллельном соединении ракетных блоков. Компоновка производится «снизу - вверх», то есть начинается с хвостовых отсеков. Затем проводится компоновка топливного отсека (баков окислителя и горючего), переходного отсека между ступенями с учетом выбранной схемы разделения ступеней. Аналогично проводится компоновка ракетных блоков верхних ступеней ракеты-носителя.

Заканчивается компоновка разработкой схемы переходного отсека от ракеты-носителя к полезной нагрузке с учетом габаритов полезной нагрузки (если они известны) и "установкой" головного обтекателя, закрывающего полезную нагрузку. Рассмотрим отдельные этапы компоновки ракеты-носителя.

10.1. Методические вопросы разработки предварительной компоновочной схемы ракеты-носителя

Применение в проектных работах современных информационных технологий дает определенные преимущества.

Однако даже многие квалифицированные конструкторы, глубоко знающие и «чувствующие» конструкцию ракет-носителей и ее элементов, владеющие в совершенстве компьютерными средствами, предпочитают «думать с карандашом в руке», делая начальные наброски на миллиметровке или на ватмане.

Но при дальнейшем усложнении проекта или конструкции переделка вручную (перерисовка) эскизов и чертежей требует значительных затрат времени. В этом случае целесообразнее переходить к электронным технологиям, основное преимущество которых - относительно нетрудоемкий процесс перестроения даже самых сложных графических документов. Кроме того, системы твердотельного моделирования позволяют автоматически составлять чертежи после создания модели детали или сборки.

10.2. Компоновка хвостовых отсеков

Кроме общих требований по максимальной плотности компоновки, минимальной массе и длине, к хвостовому отсеку предъявляются требования по удобству эксплуатации (техобслуживания, ремонта и др.). Для этого предусматривают установку достаточного количества люков.

10.2.1. Выбор габаритов ракетных двигателей

Если в проектируемой ракете-носителе используются двигатели, созданные ранее и выпускаемые промышленностью, и известны их габаритные характеристики, то компоновка хвостового отсека сводится к согласованию размеров корпуса и размеров двигателей с учетом схемы передачи усилий. Например, двигатели РД-107 конструкции В.П.Глушко для первой ступени ракеты-носителя «Союз» имеют четыре камеры сгорания с общей тягой 812 кН у поверхности Земли, вписываются в диаметр 2,86 м и имеют высоту 2,58 м.

Если разработанные ранее и выпускаемые промышленностью двигатели не подходят по какой-либо причине или имеется необходимость в разработке нового двигателя с более совершенными характеристиками, то необходимо провести предварительную оценку габаритов двигателя. Покажем, как это делается.

Рассмотрим классическую схему двигателя (рис. 10.1). Такая схема была принята на ракете ФАУ-2.

За длину двигателя принимается расстояние от среза сопла до опорной площадки рамы.

Длину камеры сгорания с сопловой частью рассчитывают по эмпирическим зависимостям, полученным из статистики, например по зависимости

$$L_{\kappa} = 0.125 \left(\frac{R}{9.8}\right)^{0.25},$$
 (10.1)

Рис. 10.1. Схема для определения длины хвостового отсека

где *R* - тяга двигателя, выраженная в ньютонах.

Размерность длины двигателя, подсчитанная по данной зависимости, получается в метрах.

Тяга двигателей определяется как произведение начальной перегрузки ступени на начальный вес ступени:

$$R_i = n_{0i} m_{0i} g_0 \,. \tag{10.2}$$

По статистике для большинства ракет-носителей начальная перегрузка первой ступени составляет $n_{01} = 1, 1...1, 5$; второй - $n_{02} = 0, 8...1, 1$; третьей - $n_{03} = 0, 6...0, 8$.

Приведенные методики справедливы для диапазонов тяги двигателей примерно до 1500 *kH*.

Длина двигателя L_{де} рассчитывается по следующей зависимости

$$L_{\partial \theta} = k_{\partial \theta} L_{\kappa} , \qquad (10.3)$$

где L_{κ} - длина камеры сгорания с сопловой частью двигателя;

 $k_{\partial \theta} = 1, 2...1, 5$ - коэффициент, учитывающий превышение длины двигателя над длиной камеры сгорания с сопловой частью.

Если для исследуемого диапазона тяг двигателей не существует эмпирических зависимостей типа (10.3), то их нетрудно построить по статистическим данным. Это делается так.

Собираются статистические данные по тягам и габаритам ракетных двигателей интересующего диапазона. Отбираются двигатели с одинаковыми (или близкими) характеристиками топлива.

Если количество камер сгорания разное, то тягу двигателя приводят к одинаковому количеству камер сгорания, например к четырем или к одной. Затем с помощью табличного процессора Microsoft Excel строится график зависимости длины двигателя от его тяги и с помощью опций «линия тренда» определяется уравнение регрессии.

В качестве примера в табл. 10.1 представлены данные по двигателям первых ступеней ракет-носителей «Союз», «H-1», «Зенит», «Сатурн-V». Результаты по значениям тяг этих двигателей, приведены к одной камере сгорания.

Приведенная тяга ДУ, кН	Длина ДУ, м	Марка ДУ	Использование на РН		
203	2,87	РД107	Союз		
1530	3,5	НК-33	H-1		
1840	4	РД171	Зенит		
6767	6	F1	Сатурн-V		

Таблица 10.1. Приведенные статистические данные по ракетных двигателей

Результаты обработки статистических данных показаны на рис. 10.2. На поле этого рисунка приведена регрессионная зависимость, под которой приведено значение коэффициента корреляции, равное (0,9837).

Аналогично можно построить расчетные зависимости и для поперечных размеров двигателя, диаметров камер сгорания и др.

На последующих этапах проектирования производятся детальные расчеты габаритных и других характеристик ракетных двигателей. Одна из таких методик приведена в учебнике [19].

Рис. 10.2. График зависимости длины хвостового отсека от тяги двигателя

10.2.2. Определение длины хвостового отсека

Длина хвостового отсека определяется, во-первых, конфигурацией нижнего днища бака, к которому примыкает двигатель, во-вторых, длиной камеры сгорания с сопловой частью и, в-третьих, схемой передачи усилий от камеры сгорания к силовому шпангоуту бака (конфигурацией рамы двигателя).

Длина хвостового отсека L_{XO} может быть равна или меньше длины двигателя $L_{\partial e}$, то есть

$$L_{XO} \le L_{\partial \theta} \,, \tag{10.4}$$

так как сопловая часть двигателя может выступать из хвостового отсека (см. рис. 10.1 и 10.3).

Для других (не классических) схем двигателей и различных конфигураций днищ баков длина хвостового отсека определяется конструктивно в результате проведения компоновочных работ по сопряжению двигателя с днищем бака с учетом передачи усилий, в том числе и через силовые элементы в корпусе хвостового отсека.

Рис. 10.3. Хвостовой отсек южно-Корейской РН «Naro» с выступающей частью российского двигателя РД 191 [54]

Кроме того, в хвостовом отсеке должны быть предусмотрены зоны прокладки электрических, пневматических, гидравлических, тепловых коммуникаций и установки соответствующих разъемов, особенно если ракета на старте опирается на корпус хвостового отсека.

10.2.3. Компоновочные и силовые схемы хвостовых отсеков

После расчета объемно-габаритных характеристик хвостовых отсеков и определения их длины выбирается компоновка с учетом схемы передачи усилий от двигателя на корпус ракеты.

Возможные варианты компоновки хвостовых отсеков с учетом схем передачи усилий для нижних ступеней ракет-носителей представлены на рис. 10.4 и 10.5. Стрелками обозначены направления смещения среза сопла при повороте двигателей.

На рис. 10.4 представлена компоновочная схема хвостового отсека нижней ступени ракеты-носителя с передачей усилия через рамы двигателя к силовому кольцу (а) и к лонжеронам корпуса (б) хвостового отсека.

Рис. 10.4. Компоновочные схемы хвостовых отсеков нижних ступеней ракет-носителей:

а) с рулевыми двигателями; б) с поворотными камерами

На рис. 10.5 представлена компоновочная схема хвостового отсека с передачей усилия через силовые кольца с поперечными балками.

Возможны два варианта передачи усилий от двигателей: а) периферийные двигатели опираются на силовое кольцо, а центральный двигатель на узел пересечения двух диаметральных балок; б) все двигатели опираются на узлы соединения балок. Балки имеют коробчатое сечение для уменьшения их массы и обеспечения достаточной жесткости.

Рис. 10.5. Компоновочная схема хвостового отсека с передачей усилия через силовые кольца с поперечными балками

На рис. 10.6 представлены компоновочные схемы хвостовых отсеков ракет-носителей с передачей усилий от двигателей на бак, днище которого выполнено сферическим. Передача усилия на днище осуществляется по касательной к оболочке бака посредством конической оболочки, приваренной к сферическому днищу с помощью точечной сварки.

Рис. 10.6. Компоновочные схемы хвостовых отсеков верхних ступеней ракет-носителей

На рис. 10.7 представлены компоновочные схемы хвостовых отсеков с передачей усилий от двигателей на бак, днища которых выполнены комбинированными или коническими. Комбинированные днища имеют коническую форму внешней части и сферическую форму внутренней части с обратной кривизной. Места соединения двух частей днища укреплены силовым шпангоутом, на который и происходит передача усилия от двигателей. Внутренние части днища для предотвращения потери устойчивости должны быть подкреплены силовым набором или выполнены в виде вафельных конструкций.

Рис. 10.7. Компоновочные схемы хвостовых отсеков с комбинированными и коническими днищами баков

При малых объемах топливных баков верхних ступеней ракет компоновку хвостовых отсеков и компоновку топливных баков с учетом схем передачи усилий рассматривают совместно. Поэтому другие возможные варианты компоновки хвостовых отсеков будут обсуждаться позднее при рассмотрении компоновки топливных отсеков верхних ступеней ракет-носителей (см. рис. 10.11).

Следует отметить, что при использовании готовых двигателей компоновка хвостовых отсеков не всегда получается рациональной по критерию наибольшей плотности компоновки. Так, например, на ракетах-носителях Atlas (США) и H-IIB (Япония) используются двухкамерные ракетные двигатели. Хвостовые отсеки этих ракет показаны на рис. 10.8. Причем на PH Atlas используются российские двигатели РД-180. Основная причина применения таких схем заключается в относительно низкой стоимости используемых двигателей.

a) Atlas (США) [55]

б) H-II В (Япония) [56]

Рис. 10.8. Хвостовые отсеки РН с двухкамерными двигателями

10.3. Компоновка топливных отсеков

Основные требования к компоновке топливных отсеков следующие:

1. Наименьший объем ракеты.

2. Наименьшая масса конструкции топливных отсеков.

3. Форма баков должна учитывать требования к положению центра давления аэродинамических сил.

4. Минимальные амплитуды колебаний жидкости в баках и др.

10.3.1. Компоновочные схемы топливных отсеков нижних ступеней РН

На рис. 10.9 представлены компоновочные схемы топливных отсеков нижних ступеней ракет-носителей. На этих схемах введены следующие обозначения: 1, 2 - баки окислителя и горючего; 3 – расходный трубопровод одного из компонентов; 4 - диафрагмы (для увеличения момента инерции массы топлива относительно продольной оси ракеты); 5 – бак жидкого водорода с теплоизоляцией.

Теплоизоляция внешней поверхности баков жидкого кислорода не предусматривается. Роль теплоизоляции выполняет слой инея,

конденсированного из атмосферного воздуха. При запуске двигателей этот слой разрушается и падает вниз.

Рис. 10.9. Компоновочные схемы топливных отсеков нижних ступеней ракет-носителей

Отметим особенности компоновки водородных баков.

1. Баки с жидким водородом должны иметь теплоизоляционное покрытие по внешней поверхности бака и по днищам (типа пенополиуретана), так как температура кипения жидкого водорода значительно ниже температуры кипения жидкого кислорода.

2. Даже если используются схемы совмещения днищ водородного и кислородного баков, то конструктивно из-за соображений безопасности эти днища все равно следует изготавливать из двух днищ, расположенных друг от друга на некотором расстоянии. Это делается, во-первых, во избежание соприкосновения компонентов топлива при негерметичности совмещенных днищ и образования взрывоопасной смеси и, во-вторых, для возможности конструктивного исполнения теплоизоляции днищ между водородом и кислородом.

3. В промежутках между днищами должны устанавливаться датчики утечки компонентов топлива и должна быть предусмотрена продувка промежутка совмещенных днищ нейтральным газом.

4. Конструктивно возможно исполнение совмещенных днищ с герметизацией полости между ними и откачкой газов с помощью вакуумных насосов. В этом случае совмещенные днища функционируют с точки зрения теплоизоляции как сосуды Дьюара.

На рис 10.10 *а* представлены варианты компоновки топливных отсеков первой ступени ракеты-носителя "Сатурн IB" [19]. У топливных отсеков, выполненных с отдельными баками, имеются достоинства и недостатки. К достоинствам следует отнести относительно малые габариты составных частей топливного отсека, что, во-первых, позволяет сделать стенки баков тоньше при обеспечении достаточной прочности и, во-вторых, облегчает транспортировку его частей на космодром. К недостаткам следует отнести сложную и относительно тяжелую конструкцию соединительных элементов топливного отсека.

На рис 10.10 б представлена компоновочная схема топливного отсека первой ступени ракеты-носителей: "H-1" (блок А). К недостаткам такой схемы следует отнести неплотную компоновку топливного отсека и конструктивное исполнение баков в подвесном варианте, что требует наличие силового корпуса топливного отсека.

К достоинствам следует отнести меньшую толщину стенок сферических баков по сравнению с цилиндрическими и, следовательно, меньшую массу конструкции самих баков, а также меньшую поверхность испарения низкокипящих компонентов топлива. Сварка меньших толщин стенок сферических баков (по сравнению с толщинами стенок цилиндрических баков) более технологична.

Кроме того, использование конических ракетных блоков различных габаритов позволяет создавать семейство ракет-носителей различной грузоподъемности.

Рис. 10.10. Компоновочные схемы топливных отсеков нижних ступеней ракет-носителей «H-1» и «Сатурн IB»

10.3.2. Компоновочные схемы топливных отсеков верхних ступеней

Как упоминалось, при малых объемах топливных баков, что характерно для верхних ракетных блоков ракет-носителей, компоновку хвостовых отсеков и компоновку топливных баков рассматривают совместно. Такие схемы представлены на рис. 10.11.

Рис. 10.11. Компоновочные схемы топливных и хвостовых отсеков ракетных блоков верхних ступеней ракет-носителей

10.3.3. Определение масс и объемов окислителя и горючего

Масса топлива считается известной из распределения масс по блокам ракеты-носителя.

Объем топлива каждой ступени складывается из объема окислителя и объема горючего:

$$W_T = W_{O_K} + W_{\Gamma} \,, \tag{10.5}$$

где W_{Ok} и W_{Γ} – объемы, занимаемые окислителем и горючим соответственно.

Объемы окислителя и горючего можно вычислить по следующим зависимостям:

$$W_{OK} = \frac{m_{OK}}{\rho_{OK}}; \tag{10.6}$$

$$W_{\Gamma} = \frac{m_{\Gamma}}{\rho_{\Gamma}}, \qquad (10.7)$$

где ρ_{OK} и ρ_{T} - плотности окислителя и горючего соответственно.

Массу окислителя и массу горючего можно рассчитать, зная коэффициент отношения массы окислителя и массы горючего, которые в первом приближении принимают равными отношению секундных расходов компонентов топлива:

$$\kappa = \frac{m_{O_K}}{m_{\Gamma}} \approx \frac{m_{O_K}}{m_{\Gamma}} \,. \tag{10.8}$$

Масса окислителя и горючего определяется из соотношений:

$$m_{T} = m_{O\kappa} + m_{\Gamma};$$

$$\frac{m_{T}}{m_{\Gamma}} = \frac{m_{O\kappa}}{m_{\Gamma}} + \frac{m_{T}}{m_{\Gamma}} = \kappa + 1;$$

$$m_{\Gamma} = m_{T} \frac{1}{\kappa + 1};$$

$$m_{O\kappa} = m_{T} - m_{\Gamma} = m_{T} - \frac{m_{T}}{\kappa + 1} = m_{T} \left(1 - \frac{1}{\kappa + 1}\right) = m_{T} \frac{\kappa}{\kappa + 1}.$$
(10.10)

Таким образом, подставляя (10.9) и (10.10) в (10.6) и (10.7), можно найти объем топлива для каждой ступени.

10.3.4. Определение геометрических размеров баков

Геометрические размеры баков в первую очередь зависят от их формы. Методика расчета сводится к определению размеров вписанного в корпус ракеты бака принятой формы. При этом считается, что диаметр ракеты установлен по предыдущим расчетам.

Кроме того, геометрические размеры баков зависят от конфигурации отдельных частей бака. На рис. 10.12 приведены три варианта днищ баков: полусферическое днище (a), днище в форме части поверхности сферы (δ) и комбинированное днище, состоящее из части поверхности эллипсоида вращения и части поверхности сферы (b). 204

Рис. 10.12. Формы днищ для баков цилиндрической формы

На этом рисунке введены следующие обозначения: 1 - сферическое днище; 2 - цилиндрический бак; 3 - межбаковый или переходный отсек; 4 - сферический сегмент днища; 5 - часть днища в виде части поверхности эллипсоида.

У каждой схемы есть свои достоинства и недостатки. При реализации схемы a) получается тонкое днище, но высокий межбаковый отсек. При реализации схемы b) межбаковый отсек получается небольшим по высоте, но необходим мощный шпангоут и увеличенная толщина днища по сравнению с баком в форме полусферы. При реализации схемы b) необходима сложная технология изготовления.

Методику расчета геометрических характеристик бака рассмотрим на примере топливного отсека цилиндрической формы с днищами в виде части сферы. Схема для определения размеров бака представлена на рис. 10.13. Исходные данные для расчета: диаметр бака D, объемы окислителя $W_{O\kappa i}$ и горючего $W_{\Gamma i}$ (объем компонента топлива $W_{\kappa T}$).

В первом приближении можно принять радиус днища равным диаметру бака, то есть R = D. При таком условии обеспечивается равнопрочность цилиндрической и сферической частей бака при одинаковых толщинах этих стенок.

Алгоритм определения длины цилиндрического бака

1. Определяется высота сферической части днища h.

Формулу для расчета можно получить из геометрических соотношений (см. рис. 10.13):

Рис. 10.13 Схема для определения размеров бака

$$h = R - OA = R - R\cos\varphi = R(1 - \cos\varphi).$$

В частном случае, когда R=D, $\varphi = 30^{\circ}$, тогда

$$h = D(1 - \cos 30^{\circ}) = D(1 - 0.866) = 0.134 D.$$
(10.11)

2. Определяется объем сферического сегмента $W_{c\phi}$ по одной из следующих равносильных формул, известных из геометрии:

$$W_{c\phi} = \frac{1}{6} \pi h \left(3R^2 + h^2 \right)$$
 или $W_{c\phi} = \pi h^2 \left(R - \frac{1}{3} h \right).$ (10.12)

3. Вычисляется объем цилиндрической части бака $W_{ub} = W_{KT} - W_{cb}$. (10.13)

Следует заметить, что из объема компонента топлива W_{KT} вычитается объем только одного днища (части сферы) $W_{c\phi}$, так как при предварительных расчетах можно принять, что он топливом не заполнен и используется для организации наддува бака.

4. Находится длина цилиндрической части бака по формуле

$$L_{\mu\delta} = \frac{4 \cdot W_{\mu\delta}}{\pi \cdot D^2} \,. \tag{10.14}$$

5. Рассчитывается общая длина бака по формуле 206

 $L_6 = L_u + 2h$.

Если форма баков сложная, то расчет габаритов можно проводить методом последовательных приближений, задаваясь размерами бака и вычисляя его объем.

10.3.5. Особенности компоновки твердотопливных отсеков

Твердотопливные отсеки PH представляют собой, по сути, камеры сгорания больших габаритов, в которых располагаются твердотопливные заряды. Корпуса твердотопливных отсеков, в отличие от топливных отсеков с жидкими компонентами топлива, должны выдерживать большие внутренние давления и значительные тепловые потоки. Основные требования, предъявляемые к твердотопливным зарядам (не считая рассмотренных ранее: высокого удельного импульса, высокой плотности, малой стоимости и других требований, которые были рассмотрены в разделе 7), следующие.

1. Обеспечение заданной силы тяги двигателя (достигается за счет горения определенной площади поверхности заряда).

2. Небольшое изменение тяги в процессе работы двигателя (достигается за счет малого изменения общей площади горения твердотопливных зарядов).

3. Малое воздействие высоких температур на силовой корпус двигателя.

4. Малая склонность к трещинообразованию в процессе длительного хранения и горения заряда.

5. Простота технологии изготовления и монтажа заряда.

Форма заряда в значительной степени влияет на значение силы тяги двигателя и изменение ее в процессе горения заряда. Основная причина связана с изменением площади горения, как это схематично показано на рис. 10.14 для трех форм заряда.

Постоянство площади горения (требование 2) обеспечивается только при использовании схемы *а*). Однако она неприемлема из-за низкой тяги (не удовлетворяет требованию 1).

Из многочисленных возможных форм зарядов лишь немногие по своим характеристикам подходят для ракетных двигателей твердого топлива ракет-носителей.

(10.15)

Рис. 10.14. Влияние формы заряда на изменение силы тяги двигателя по времени

На рис. 10.15 показаны формы заряда, при использовании которых обеспечивается большая площадь горения и тяга двигателя изменяется незначительно по времени.

Рис. 10.15. Формы зарядов твердого топлива:

а — заряд телескопической формы; *б* — заряд с продольными щелями; *в* — заряд со звездообразным каналом Чтобы исключить прямое воздействие горячих газов на стенку корпуса твердотопливного двигателя, его внутренние поверхности покрываются инертной бронировкой (рис. 10.16). В этом случае корпус можно делать из неметаллических материалов. Изготовление таких корпусов может быть обеспечено намоткой стекловолокна, пропитанного эпоксидной смолой, непосредственно на внешнюю поверхность топливного заряда [15].

Рис. 10.16. Заряд с продольными щелями:

1 — топливо; 2 — бронировка; 3 — центральный канал; 4 — щель

При изготовлении твердотопливных ракетных блоков больших габаритов их корпуса, как правило, делают многосекционными, как это показано на рис. 10.17. На этом рисунке введены следующие обозначения: 1 - днище с воспламенителем; 2 - секция РДТТ; 3 - бронировка зарядов.

Рис. 10.17. Компоновочная схема многосекционного твердотопливного двигателя

Многосекционные корпуса твердотопливных ракетных блоков используются на боковых ускорителях Спейс Шаттл.

В процессе создания РН «Энергия» рассматривался вариант с твёрдотопливными боковыми ускорителями, которые имели следующие характеристики [47]:

- максимальный габаритный диаметр - 3,6 м;

- длина - 44,92 м;

- степень расширения сопла - 2,8;

- масса конструкции - 60 т;

- масса топлива - 460 т;

- масса снаряженного двигателя - 520 т;

- коэффициент весового совершенства - 0,3;

- время работы на установившемся режиме полета - 124 с;

- полное время работы - 138 с;

- максимальное давление в камере сгорания – 6,8 МПа;

- удельный импульс тяги - 2630 м/с;

- средняя тяга -10500 kH.

Топливо двигателя – твердое, смесевое, с высоким удельным весом, которое способно сохранять высокий уровень эластичности при низких температурах. Корпус двигателя – семисекционный, односопловой. В качестве конструкционного материала для корпуса был принят стеклопластиковый вариант. При этом концевые секции предполагалось выполнять методом спирально-кольцевой намотки по схеме "полукокон", остальные секции - методом продольнопоперечной намотки.

Основную сложность в освоении такого двигателя вносили его габариты и масса, которые промышленностью страны по всей технологической цепочке не были освоены. Поэтому решение было принято в пользу ускорителей на жидких компонентах топлива.

В табл. 10.2 представлены статистические данные и расчётные значения некоторых характеристик твёрдотопливных ускорителей, которые использовались или используются в ракетах различного класса.

Таблица 1	0.2. CTATHC	TBYECKBE	н расчетні	ые характе	puctake 1	LEEP.JOTOLA	BBBECK VCK0	рителей ра	Ref-Boch	reneă	
Марка ускорителя	Ускоритель Для РН	Длина. м	Диаметр, м	Стартозая масса, г	Macca Tonnesa, T	Масса хоиструзш., т	Сила гага, kH	Удельный импульс, м с	Врема горения, с	Nonerp. Nap-na, s (paceer)	THE R. LEWIS CO., LANSING, MICH.
RSRM (c chcreadi chaceana)	Spase Shattl	45,6	3,77	065	502		11790	2859. (pacrer)	EI -	6.3	10170-0-01030-0-000
SRM	Titan-IVB	1+'+E	3,11	315,7	272,16	<u>č,</u> 94	1117	26S7. B IIYCIOTE	121,5	6,38	In case of the second se
SRMU	Titan-IVB	34,25	3,2	352,2	315,7	36,5	6361	2842, Buycrore	127	t 9°0	and a second second second second
	Titan-IIIE		3,0				5340 6210	2602		•	
Kacrop- IVA	Дельта- 6925, 7925	11,2	1	11,7	10,1		178,3	2714 (pacer)	795	11.2	
GEM	Дельта- 69.25, 7925	13	1	13	11,7		9'2St	2625 (pacaer)	63	10	
Castor-IVA	Delta III-IV	11,2	1	11.7	10,1		178,3	2713 (pacter)	293	1.31	
GEM		13	1	13	11,7		9°25†	2625 (pacser)	63	10	and the second second
Kacrop- IVA	Конестога 1620	t1'ó	1,02	1,34	10,2		561	2610 (paceer)	+	to 6	and the second second second
Kacrop-IV- B-1 (PE 3-й cryn. PH)	Конестога 1620	9.24	1,02	1,4	S6'6		130	2766 (pacser)	545	S.02S	The second se
Kacrop 120	LLV1, LLV2,LLV3	9,02	2,36	52,85	S St		1554	2633 (pacter)	S2,7	13,05	Concernant of the second
Kacrop- IVA	TLV3	9,02	1,01	11.63	10,13		S'Oót	4007 (Dacret)	\$2,7	52'2	A DESCRIPTION OF TAXABLE PARTY.

Окончание табл. 10.2

	-	-				_		_		
Kowerpysu xap-xa, s (pacter)	12,6	\$,\$2	ē	6,0	9.67	1,05	6 93	7,89	6,65	S.90-9,21
Врела гореана, с	154	107	12	107	135-143	5.0F	129	60	100	75,4
Удельный импульс. алс	2879 (Dacver)	2924 (pacter)	2835 (pacher)		2305-2442 (parter)		2700	2530	2800	2402-2412
Cura tarn. kH	183,2	2350 (cperman)	630		665		5400	75.5	2300	981
Масса конструки, т							0†			
Масса гоцлиза, г	3.6	86	91	-	39	5,9	237	13,1	65	30,67-30,5
Стартовая масса блока, т	10,64	26		t s	43,5	12,6	112	15	76.5	34,55
Диаметр. М	2.33	e#1	1,9	1,0	≈2,2.2.4	≈0,S-1,0	10°E	1	2.5	1.54
Длина, м	3,18	12,6	6'0	3.5			31,605	14.9	15,2	- 6
Ускоритель для РН	LLV2.LLV3	Bera (upoesr)	Вета (проект)	Bera (npoes.r)	Arian 44LP	Arian 44LP	Arian 5	H-II-A	H-II-A	NIEP PT2II
Mapka ycxopurels	Opőyc-21D	РБ 1-й ступени	РБ 2-й ступени	РБ 3-й ступени	PAL	PAP	ЕАР (с системой спасения)	SSB	SRB-A	РБ 1-й ступени

10.4. Компоновка переходных отсеков

Компоновочные схемы переходных отсеков между ступенями ракеты-носителя определяются схемой разделения ступеней.

10.4.1. Схема с холодным разделением

В этом случае следует предусмотреть установку тормозных ракетных двигателей твердого топлива на отделяемом ракетном блоке и ускоряющих РДТТ на ракетном блоке, маршевые двигатели которого должны запускаться. Ускоряющие РДТТ необходимы для обеспечения начального ускорения и прилива топлива к заборным устройствам перед запуском маршевых двигателей.

На рис. 10.18 представлена схема сил, действующих на ракетные блоки, и диаграмма изменения этих сил во времени с учетом переходных процессов. На рисунке введены следующие обозначения: 1 - ракетный блок первой ступени; 2 - тормозной двигатель первой ступени; 3 - вторая ступень, 4 - ускоряющий двигатель второй ступени; $t_1, t_2, ..., t_s$ - соответствующие моменты времени.

Рис. 10.18 Схема и диаграмма сил, действующих на ракетные блоки при холодном разделении

Переходным отсеком при этой схеме разделения может служить оболочка хвостового отсека второй ступени, которая должна сбрасываться либо вместе с отделением блока первой ступени ракеты-

Рис. 10.19. Схема переходного отсека с холодным разделением

носителя, либо вскоре после его отделения (рис. 10.19).

На этом рисунке введены следующие обозначения: 1 - ракетный блок верхней ступени; 2 - переходный отсек; 3 - ракетный блок нижней ступени; 4 - ракетный двигатель твердого топлива для создания начальной перегрузки при запуске основного двигателя. Тормозные двигатели нижней ступени не показаны (так как они располагаются, как правило, в нижней части ракетного блока).

Достоинством схемы с холодным разделением является отсутствие

относительно тяжелых теплозащитных экранов, предотвращающих повреждение стенок баков или приборных отсеков нижней ступени при запуске маршевого двигателя верхней ступени ракеты-носителя. Недостатком такой схемы является начальный этап полета верхней ступени как бы в невесомости, так как необходимо применять конструктивные меры для обеспечения надежности безударного разделения и запуска двигателей в невесомости.

Схемы с холодным разделением ранее были характерны для РН США, например, РН «Сатурн-V».

10.4.2. Схема с горячим разделением

В случае выбора схемы с горячим разделением тормозные РДТТ не нужны, так как маршевый двигатель верхней ступени запускается при работающем двигателе нижней ступени (перед окончанием его работы). На рис. 10.20 представлена схема сил, действующих на ракетные блоки при горячем разделении, и диаграмма изменения этих сил во времени с учетом переходных процессов. 214

Рис. 10.20. Схема и диаграмма сил, действующих на ракетные блоки при горячем разделении

На этой схеме цифрами обозначены: 1 - ракетный блок первой ступени; 2 - ракетный блок второй ступени. Моменты времени $t_1, t_2, ..., t_s$ соответствуют началу или окончанию включения или выключения каждого из двигателей.

Переходный отсек может быть выполнен в виде ферменной конструкции (см. рис. 10.21 *a*) или в виде подкрепленной обечайки с люками (так называемые «вышибные» окна), которые отбрасываются при повышении давления в переходном отсеке (рис. 10.21 б). На этих рисунках введены следующие обозначения: 1 - ракетный блок верхней ступени; 2 - переходный отсек; 3 - ракетный блок нижней ступени; 4 - переходная ферма; 5 - теплозащитный экран; 6 - люки, открывающиеся газами двигателя.

Верхняя часть нижнего ракетного блока должна быть экранирована прочным теплозащитным экраном (отражателем), иначе огненная струя газов из сопла работающего двигателя может прожечь днище бака ракетного блока, расположенного ниже (или стенки приборного отсека), и разделение ракетных блоков будет нештатным. Для выхода газов срез сопла запускаемого двигателя должен отстоять от теплозащитного отражателя на некотором расстоянии.

Рис. 10.21. Схемы переходных отсеков с горячим разделением: а) с фермой; б) с люками

Расстояние l_c между срезом сопла двигателя и защитным экраном определяется (рис. 10.22) из условия равенства суммарной площади s_c среза сопла двигателя, из которого истекают газы, и

площади S_c^{6u} боковой цилиндрической поверхности, построенной на срезе сопла или на приведенной к кругу суммарной площади среза сопла, если двигатель многокамерный, то есть $S_c^{6u} = s_c$. Учитывая, что $s_c = \pi d_c^2/4$, где d_c диаметр сопла двигателя, и $S_c^{6u} = \pi d_c l_c$, можно получить $l_c \ge 0.25 d_c$. (10.16)
Для определения длины переходного отсека необходимо добавить к расстоянию l_c высоту защитного экрана (который определяется габаритами верхнего днища отделяемого ракетного блока) и размер выступа сопловой части двигателя (из донной защиты хвостового отсека верхней ступени ракеты-носителя, если он имеется).

Достоинством схемы с горячим разделением являются высокая надежность запуска маршевого двигателя ракетного блока верхней ступени (так как начальный этап его полета не происходит в невесомости) и высокая надежность самого разделения. Недостатком такой схемы является необходимость установки относительно тяжелых теплозащитных экранов.

Схемы с горячим разделением ранее были характерны для РН СССР, например, РН типа «Союз».

10.4.3. Схема с теплым разделением

В этом случае разделение происходит с помощью управляющих двигателей верхней ступени. Кроме того, при недостаточной тяге управляющих двигателей, а также для повышения надежности средств отделения могут быть использованы тормозные РДТТ нижней ступени.

Схема сил, действующих на ракетные блоки при разделении с помощью управляющих двигателей верхней ступени, будет такая же, как и для холодного разделения (см. верхнюю часть рис. 10.18), а диаграмма действия сил по времени с учетом переходных процессов будет другая. Она представлена на рис. 10.23.

Рис. 10.23 Схема и диаграмма сил, действующих на ракетные блоки при теплом разделении

Переходным отсеком при этой схеме разделения могут служить оболочка хвостового отсека верхней ступени, либо переходная ферма, которые должны сбрасываться либо вместе с отделением ракетного блока нижней ступени, либо вскоре после его отделения, как это показано на рис. 10.24. На этом рисунке введены следующие обозначения: 1 - ракетный блок верхней ступени; 2 - переходный отсек; 3 - ракетный блок нижней ступени; 4 - управляющий двигатель верхней ступени; 5 - переходная ферма; 6 - теплозащитное покрытие.

Рис. 10.24. Схема переходного отсека с теплым разделением

Теплозащитное покрытие предназначено для защиты днища бака или приборного отсека, если двигатель воздействует на него, от струи газов управляющих двигателей, Покрытие имеет относительно небольшую толщину (как правило, несколько миллиметров), наносится методом горячего прессования асбестовой ткани, пропитанной фенолформальдегидной смолой.

Схема с теплым разделением сочетает в себе преимущества схем с горячим и холодным разделением:

- высокая надежность разделения;
- высокая надежность запуска маршевого двигателя;
- отсутствие тяжелого защитного экрана;

- минимальная длина переходного отсека в связи с отсутствием необходимости разнесения среза сопла двигателя и защитного экрана.

10.5. Компоновка приборных отсеков

Дополнительные требования к приборным отсекам

1. Минимальные габариты (в частности, длина).

2. Доступ к приборам во время эксплуатации ракеты-носителя (достаточное количества люков).

3. Возможность быстрой замены приборов.

4. Размещение части приборов в межбаковых отсеках.

Длина приборного отсека определяется по зависимости

$$L_{\Pi O} = \frac{4W_{\Pi O}}{\pi D^2},$$
 (10.17)

где $W_{\Pi O}$ - объем приборного отсека, рассчитанный по формуле (9.5).

Компоновочные схемы приборных отсеков представлены на рис. 10.25 и 10.26. На этих рисунках введены следующие обозначения: 1 защитный экран; 2 - корпус приборного отсека; 3 - зона размещения приборов; 4 - днище бака; 5 - бак топливный; 6 - приборы; 7 - крышка люка приборного отсека; 8 - элементы крепления стенки приборного отсека; 9 - несущая конструкция приборного отсека (подкрепленная обечайка); 10 - стенки приборного отсека.

Рис. 10.25. Компоновочная схема приборного отсека с центральным силовым элементом

При компоновке приборных отсеков следует учитывать геометрию сопрягаемых отсеков (например радиус днища бака, над кото-219 рым расположен приборный отсек, внутреннее пространство защитного экрана и др.).

Рис. 10.26. Компоновочная схема приборного отсека с главной и вспомогательными стенками

Схемы расположения приборов в межбаковых отсеках представлены на рис. 10.27. На этом рисунке введены следующие обозначения: 1 - верхний бак; 2 - крышка люка; 3 - рама для установки приборов; 4 - зоны установки приборов; 5 - нижний бак.

Рис. 10.27. Схемы расположения приборов в межбаковых отсеках

10.6. Компоновка космических головных частей

Дополнительные требования к переходным отсекам и головным обтекателям

1. Доступ к наиболее ответственным элементам полезной нагрузки во время подготовки ракеты-носителя к пуску.

2. Возможность термостатирования полезной нагрузки перед пуском.

3. Надежная схема сброса головного обтекателя.

4. Возможность установки системы аварийного спасения при запуске пилотируемых кораблей.

Схемы компоновки космических головных частей и контейнеров полезной нагрузки приведены на рис. 10.28 и 10.29. На этих рисунках введены следующие обозначения: 1 - головной обтекатель; 2 верхний бак ракеты-носителя; 3 - переходник; 4 - полезная нагрузка; 5 - двигатель системы аварийного спасения; 6 - решётчатые стабилизаторы; 7 - ложемент системы аварийного спасения; 8 -контейнер полезной нагрузки; 9 - центральный блок РН.

Контрольные вопросы

1. Приведите формулы для расчета объема головного обтекателя, приборного отсека, топливного отсека.

2. Как оценивается объем хвостовых и переходных отсеков?

3. По какой зависимости определяется объем ракеты-носителя?

4. Приведите зависимости для расчета предварительных габаритов (длины и диаметра) ракеты-носителя.

5. Приведите требования к компоновке хвостовых отсеков и методику определения длины двигательной установки (первое приближение, второе приближение).

6. Приведите типовые схемы компоновки хвостовых отсеков нижних ступеней ракет-носителей.

7. Приведите типовые схемы компоновки хвостовых отсеков верхних ступеней ракет-носителей.

8. Приведите требования к компоновке топливных отсеков и формулы для определения масс и объемов окислителя и горючего.

Рис. 10.28. Схемы компоновки КГЧ: а) КА «Зенит»; б) КА «Союз»; в) КА «Джемени»

Рис. 10.29. Схемы компоновки КГЧ и контейнеров полезной нагрузки: а) блок орбитальной станции; б)полезная нагрузка PH «Энергия»

9. Приведите типовые схемы компоновки топливных отсеков нижних ступеней ракет-носителей.

10. Приведите типовые схемы компоновки топливных отсеков верхних ступеней ракет-носителей.

11. Приведите методику определения длины бака цилиндрической формы с днищами в форме части сферы.

12. Приведите требования к компоновке приборных отсеков и типовые схемы компоновки приборных отсеков.

13. Приведите типовые схемы компоновки приборов в межбаковых отсеках.

14. Приведите требования к компоновке переходных отсеков и типовые схемы переходных отсеков для ракет-носителей с "холодным" и "горячим" разделением ракетных блоков

15. Приведите требования к переходным отсекам и обтекателям и типовые схемы переходных отсеков.

16. Приведите типовые схемы компоновки головных обтекателей с различными видами полезной нагрузки.

17. Приведите методику уточнения компоновочной схемы ракеты-носителя.

18. По каким зависимостям рассчитывается центр давления ракеты-носителя?

19. Приведите методику приближенного расчета диаметра хвостового отсека для "перемещения" центра давления в центр ракеты по ее длине.

20. Для чего производится наддув баков ракет-носителей?

11. УТОЧНЕНИЕ КОМПОНОВОЧНОЙ СХЕМЫ РАКЕТЫ-НОСИТЕЛЯ

11.1. Уточнение компоновочной схемы ракеты-носителя с последовательным соединением ракетных блоков

Процесс уточнения компоновочной схемы является творческим. Рассмотрим методику уточнения компоновочной схемы ракетыносителя на примере, рассмотренном в учебнике [19].

Пусть предварительная компоновка проведена и представлена на схеме рис. 11.1. На этой схеме цифрами обозначены следующие составные части ракеты: 1 – головной обтекатель; 2 – приборный отсек; 3 – топливный отсек второй ступени; 4 - хвостовой отсек; 5 – переходный отсек; 6 – топливный отсек первой ступени; 7 – хвостовой отсек.

Рис. 11.1. Предварительная компоновочная схема

Методика уточнения компоновочной схемы

1. Если диаметры корпуса ракеты-носителя неприемлемы для верхних ступеней, например топливные баки вырождаются в чечевицеобразные, как это схематично показано на рис. 11.1, то необходимо провести перекомпоновку верхней ступени ракеты-носителя. Примеры перекомпоновок приведены ниже в пунктах а), б) и в).

а) Уменьшается диаметр верхних блоков, как это схематично показано на рис. 11.2. Однако это приводит к уменьшению диаметра

обтекателя и, следовательно, уменьшению габаритов полезной нагрузки. Этот подход приемлем к ракетам-носителям с большими габаритами, например таких как "Сатурн-V".

Рис. 11.2. Компоновочная схема с уменьшенными диаметрами верхних ступеней

б) Совмещаются днища баков верхних ступеней, как это схематично показано на рис. 11.3.

Рис. 11.3. Компоновочная схема с совмещенными днищами баков верхней ступени

в) Совмещаются топливный и двигательный отсеки путем размещения двигателя в центре кольцевых баков или баков в форме тора, как это схематично показано на рис. 11.4.

Рис. 11.4. Размещение двигателя в центре кольцевых баков

2. Если полученная компоновка не обеспечивает близости положений центра масс и центра давления в момент прохождения ракетой больших скоростных напоров, то проводится уточнение компоновочной схемы PH согласно методике, изложенной ниже в пунктах а)... д).

а) Вводится конический хвостовой отсек, как это схематично показано на рис. 11.5.

Рис. 11.5. Введение конического хвостового отсека

Рассмотрим пример определения диаметра конической части хвостового отсека в первом приближении для схемы, приведённой на рис. 11.6.

Учитывая, что наибольшие по значению аэродинамические нормальные силы действуют на конических участках корпуса ракетыносителя, в качестве грубого приближения для оценки координаты центра давления можно воспользоваться условными центрами площадей конических участков корпуса.

Центр давления всего летательного аппарата определяется по формуле

$$x_{IUI} = \frac{\sum_{i=1}^{n} (Y_i \cdot x_i)}{\sum_{i=1}^{n} Y_i},$$
(11.1)

где х, - координата условного центра (средней точки) площади і-го конуса.

Подъемные силы на конусных частях ракеты в первом приближении равны

$$Y_1 = c_v \cdot q \cdot S_1; \tag{11.2}$$

 $Y_2 = c_y \cdot q \cdot S_2;$ (11.3)

где c_v - коэффициент подъемной силы;

q - скоростной напор;

S₁ - площадь проекции конической поверхности обтекателя на плоскость, перпендикулярную продольной оси ракеты;

 S_2 - площадь проекции конической поверхности хвостового отсека на ту же плоскость.

С учетом (11.2) и (11.3) выражение (11.1) преобразуется к виду

$$x_{IUI} = \frac{\sum_{i=1}^{n} (c_{y} \cdot q \cdot S_{i} \cdot x_{i})}{\sum_{i=1}^{n} c_{y} \cdot q \cdot S_{i}} = \frac{c_{y} \cdot q \cdot \sum_{i=1}^{n} (S_{i} \cdot x_{i})}{c_{y} \cdot q \cdot \sum_{i=1}^{n} S_{i}} = \frac{\sum_{i=1}^{n} (S_{i} \cdot x_{i})}{\sum_{i=1}^{n} S_{i}},(11.4)$$

где S_i - площади проекции конической поверхности обтекателя или корпуса ракеты на плоскость, перпендикулярную продольной оси ракеты;

n – количество конических участков корпуса ракеты.

Момент времени, соответствующий максимальному скоростному напору, примерно соответствует половине времени активного полета первой ступени, и в этот момент времени координата центра масс x_{IIM} должна по возможности совпадать с координатой центра давления x_{IIII} .

В первом грубом приближении примем, что центр масс ракеты в момент прохождения максимального скоростного напора располагается в середине длины ракеты (более точное определение центра масс ракеты проводится на последующих этапах проектирования по результатам составления центровочной ведомости).

Площади конических участков корпуса ракеты подбираются из условия нахождения центра давления также примерно в середине ракеты по ее длине.

Для того чтобы центр давления находился в середине ракеты по ее длине необходимо, чтобы аэродинамические силы, а следовательно и площади проекций конического обтекателя и конического участка хвостового отсека, были примерно равны между собой, то есть $S_1 = S_2$.

Учитывая, что $S_1 = \frac{\pi \cdot D_1^2}{4}$ и $S_2 = \frac{\pi \cdot D_2^2}{4} - \frac{\pi \cdot D_1^2}{4}$, и при-ая значения этих площадей между собой, получаем равнивая $\frac{\pi \cdot D_1^2}{4} = \frac{\pi \cdot D_2^2}{4} - \frac{\pi \cdot D_1^2}{4}.$ Б Б Б-Б

Рис. 11.7. Введение конических обтекателей сопловых частей ДУ

Решаем это уравнение относительно D_2 , приходим к следующей формуле для расчета нижнего диаметра хвостового отсека

$$D_2 = \sqrt{2} \cdot D_1 \ . \tag{11.5}$$

б) Вводятся конические обтекатели сопловых частей двигательной установки, как это схематично показано на рис. 11.7.

Подъемная аэродинамическая сила на таких обтекателях подсчитывается как на конусе с площадью миделя, равной площади проекций всех обтекателей на плоскость, перпендикулярную продольной оси ракеты-носителя.

в) Вводятся дополнительные днища в топливных баках и организуется расход компонентов топлива сначала из нижних частей баков, а затем - из верхних, как это показано на рис. 11.8.

Вследствие этого центр масс смещается вперед в момент прохождения максимальных скоростных напоров и обеспечивается статическая устойчивость ракеты.

Рис. 11.8. Компоновочная схема ракеты с дополнительным днищем в топливном баке

Такая схема была реализована в 50-х годах 20-го века в СССР на баллистической ракете 8К63, главный конструктор М. К. Янгель.

г) Вводятся стабилизаторы (обычные крылья небольшого размера), которые устанавливаются на корпусе хвостового отсека, как это показано на рис. 11.8, позиция 6, или вводятся решетчатые стабилизаторы, как это схематично показано на рис. 11.9.

Решетчатые стабилизаторы очень эффективны с точки зрения создания стабилизирующей аэродинамической силы на единицу площади этих крыльев.

Рис. 11.9. Ввведение решетчатых стабилизаторов

д) Вводятся более мощные рулевые двигатели или увеличивается угол качания основных поворотных двигателей. Это производится, когда из-за габаритных ограничений невозможно выполнить хвостовой отсек коническим или установить стабилизаторы. В этом случае ракета становится статически неустойчивой, но динамическая устойчивость обеспечивается мощными рулевыми или поворотными двигателями.

3. Производится (по возможности) уплотнение хвостовых, межбаковых, приборных и переходных отсеков. Уточняются сбрасываемые элементы и выделяются на компоновочной схеме. Направления основных силовых потоков показываются на схеме стрелками. Пример уточненной компоновочной схемы ракеты-носителя приведен на рис. 11.10.

Следует отметить, что наиболее плотная компоновка характерна для баллистических ракет, созданных для пуска с подводных лодок.

4. Предусматривается разгрузка несущих топливных баков первой ступени с помощью давления наддува.

Давление наддува рассчитывается из условия компенсации сжимающих напряжений в баках при наиболее неблагоприятных сочетаниях внешних нагрузок, воздействующих на ракету при ее эксплуатации.

Рис. 11.10. Пример уточненной компоновочной схемы ракеты-носителя

Методика определения давления наддува рассматривается далее в разделе 12 "Расчет масс основных элементов конструкций ракетыносителя". Здесь лишь отметим, что давление наддува в баках должно быть не меньше давления, при котором обеспечивается бескавитационный режим работы турбины двигательной установки. Поэтому в первом приближении давление наддува принимается по статистике следующим: $p_{uad} \ge 3,0...3,5 \cdot 10^5 MIIa$.

11.2. Уточнение компоновочной схемы ракеты-носителя с параллельным соединением ракетных блоков

11.2.1. Уточнение габаритов и мест сопряжения ракетных блоков

Уточнение проводится по следующей методике.

1. Если длина боковых ракетных блоков примерно равна длине центрального, как это показано на рис. 11.11 *а* (левый блок), то крепление выполняют по верхним силовым шпангоутам 7, 10 и нижним силовым кольцам 3, 11. При этом на боковых блоках устанавливают конические обтекатели 9.

2. Если длина боковых ракетных блоков несколько меньше длины центрального, как это показано на рис. 11.11 *а* (правый блок), то боковой блок оснащают силовым коническим обтекателем несимметричной формы 5, вершина которого с узлом крепления 6 находится на уровне верхнего силового шпангоута 7 центрального блока. 3. Если есть возможность изменять диамегр боковых блоков, то их длину можно «подогнать» под схемы рис. 11.11 *а* (слева или справа от центрального блока).

Рис. 11.11. Уточнение габаритов и мест сопряжения ракетных блоков

4. При невозможности варьирования диаметром боковых блоков в топливном отсеке центрального блока устанавливают дополнительный силовой шпангоут 15 для сопряжения блоков, как это показано на рис. 11.11 б.

5. При относительно низких боковых блоках целесообразно сопрягать блоки в районе межбакового отсека центрального блока, вводя силовой шпангоут 14 в межбаковом отсеке, как это показано на рис. 11.11 б.

6. Если силовые кольца в хвостовых отсеках находятся не на одном уровне (из-за разных габаритов хвостовых отсеков и двигателей), как это показано на рис. 11.11 б, то крепление боковых блоков к центральному осуществляется с помощью ферменных конструкций 13 (типа тетраэдров). При этом необходимо наличие на боковых блоках двух силовых колец (1 и 12).

11.2.2. Схемы с унифицированными ракетными блоками

При выборе пакетной схемы с точки зрения экономики желательно, чтобы конструкция боковых блоков была одинакова (унифицирована). Еще лучше, если удается сделать и центральный блок одинаковым по конструкции с боковыми блоками. В этом случае открываются пути к созданию так называемого семейства ракетносителей, первые и вторые ступени которых можно создать на базе одного унифицированного ракетного блока. Примеры семейств ракет-носителей приведены в разделе 17 настоящего учебного пособия.

11.2.3. Схема с неразъемными соединениями ракетных блоков

При уточнении компоновочной схемы РН можно ракетный блок первой ступени РН составить из отдельных универсальных ракетных блоков (УРБ) с помощью неразъемных соединений. При этом центральный блок также относится к одному из ракетных блоков первой ступени. Такая схема приведена на рис. 11.12.

Рис. 11.12. Схема с неразъемным соединением ракетных блоков

Недостатком этой схемы является то, что составной ракетный блок, выполненный по этой схеме, неэффективен по массе (три блока тяжелее одного с тем же количеством топлива), однако такая схема имеет преимущества, если в дальнейшем предполагается на базе отдельных УРБ создавать семейство ракет-носителей. Кроме того, стоимость составного ракетного блока, состоящего из трех отдельных, возможно, окажется ниже стоимости одного ракетного блока с большими массами и габаритами. К преимуществам этой схемы также следует отнести относительно малые габариты каждого отдельного блока, что очень важно для выбора средств транспортировки ракетных блоков.

11.2.4. Схема с отдельными блоками горючего и окислителя

На рис 11.13 представлены варианты компоновки баков нижних ступеней РН с отдельными баками окислителя и горючего.

Рис. 11.13. Компоновочные схемы топливных отсеков нижних ступеней с отдельными баками окислителя и горючего

На схеме *а*) представлен вариант компоновки, в котором баки 1 и 2 различных компонентов топлива по диаметру и длине не одинаковы. Такая схема реализована на ракетном блоке первой ступени РН «Протон».

На схеме б) представлен вариант компоновки, в котором диаметры баков 1 и 2 одинаковы, а длины баков зависят от компонентов топлива. Для кислородно-керосиновых ракетных блоков при одинаковых диаметрах длины баков отличаются примерно на 5%. Это нетрудно посчитать, если учесть, что плотность жидкого кислорода 1140 кг/м³, плотность керосина 800 кг/м³, а отношение массы окислителя к массе горючего составляет 2,7.

В схеме с отдельными баками отсутствуют днища, которые должны разделять компоненты топлива. Поэтому такая схема эффективна в весовом отношении.

11.3. Уточнение сбрасываемых элементов ракеты-носителя

В компоновочной схеме PH необходимо определить плоскости или узлы разделения ракетных блоков (РБ). Крепление и разделение РБ осуществляется, как правило, с помощью пирозамков-толкателей.

Если РН имеет схему с последовательным соединением ракетных блоков, то отделение отработавших РБ осуществляется, как правило, совместно с переходными отсеками примыкающих верхних ступеней РН, как это схематично показано на рис. 11.14.

Рис. 11.14. Схема разделения РБ с переходной фермой

Оставшиеся хвостовые отсеки уже не включены в силовую схему работы ступени и, по сути, являются балластом. Поэтому они также должны быть сброшены. На рис. 11.15 представлена схема сброса хвостового отсека, которая получила название «сброс чулком». Для реализации данной схемы необходимо предусмотреть направляющие элементы для предотвращения удара корпуса хвостового отсека о двигатель и заклинивания хвостового отсека из-за перекоса элементов.

Рис. 11.15. Схема сброса хвостового отсека «чулком»

На рис. 11.16 представлена схема сброса хвостового отсека, состоящего из трёх панелей. Разлёт панелей осуществляется с помощью специальных толкателей после срабатывания пирозамков-толкателей поперечного стыка и механических замков продольного стыка. На этой схеме введены следующие обозначения: 1 – толкатели; 2, 3 и 4 – отделяемые панели хвостового отсека.

На схеме *а*) показан хвостовой отсек до сброса. На схеме *б*) показана схема сброса панелей хвостового отсека (третья панель условно не показана). На схеме *в*) показаны толкатели панелей в поперечном сечении хвостового отсека до его сброса. На схеме *г*) показана схема сброса панелей в поперечном сечении хвостового отсека.

В случае использования сбрасываемых хвостовых отсеков при расчёте конструктивных характеристик следует внести коррективы. Например, если отделяется хвостовой отсек второй ступени, то его массу следует вычесть из ракетного блока второй ступени и отнести её к РБ первой ступени (обозначения см. в разделе 4):

$$S_2 = \frac{m_{52} + m_{70} - m_{X02}}{m_{52} + m_{70} - m_{X02} - m_{72}}; \qquad S_1 = \frac{m_{51} + m_{X02}}{m_{51} + m_{X02} - m_{71}}.$$

Эти формулы отражают расчётный случай, когда сброс головного обтекателя производится в конце работы второй ступени РН.

Рис. 11.16. Схема сброса хвостового отсека частями

Если РН имеет схему с параллельным соединением ракетных блоков, то отделение отработавших боковых блоков может осуществляться по различным схемам.

На рис. 11.17 представлена схема отделения боковых блоков, реализованная на РН типа «Союз». На рисунке введены следующие обозначения: 1 – боковой блок; 2- центральный блок; 3 – тяга; 4 - шариковый пирозамок; 5 – кронштейн; 6 – опорный зуб; 7 - кронштейн сопряжения боковых блоков с центральным; 8 – пружина; 9 - шток; 10 – опорный оголовник (наконечник) бокового блока; 12 – крышка бака; А, Б, В и Γ – положение бокового блока в процессе отделения.

Рис. 1.17. Схема отделения боковых блоков РН типа «Союз» [36]

При подаче команды на выключение двигателей боковых блоков одновременно подаётся команда на пирозамок 4 и тяги 3 освобождаются. Под действием импульса последействия двигателей и за счёт возникновения момента относительно верхних узлов крепления боковые блоки начинают поворачиваться (опорный зуб 5 выходит из кронштейна 6) и отставать от центрального. При выходе оголовников 11 боковых блоков из опорных узлов 7 центрального блока шток 9 выдвигается под действием пружины 8, срабатывают концевые выключатели 10 и выдаются команды на открытие крышек 12 верхних днищ боковых блоков. Газ наддува баков окислителя вырывается по специально профилированным направляющим в сторону центрального го блока и за счёт реактивной тяги R_{Γ} отбрасывает верхние части боковых блоков от центрального.

На рис. 11.18 представлена схема отделения боковых блоков с помощью реактивных двигателей твёрдого топлива. После окончания 238

работы двигателей боковых блоков подаётся команда на пирозамки нижних и верхних узлов крепления ББ к центральному блоку. Одновременно подаётся команда на включение РДТТ разделения (позиции 1 и 2), которые отводят боковые блоки от центрального блока.

Рис. 11.18. Схема отделения ББ с помощью РДТТ

На рис. 11.19 представлена схема отделения боковых блоков с помощью аэродинамических сил. Конусные части обтекателей ББ выполнены несимметричными. После подачи команды на выключение двигателей боковых блоков подаётся команда на разделение пирозамков верхних узлов крепления блоков. Аэродинамические силы, действующие на несимметричные конусные части обтекателей боковых блоков, разворачивают их относительно нижних силовых узлов. При определённых углах разворота срабатывают замки крепления и отделения нижних силовых узлов и пружинные толкатели, благодаря которым боковые блоки отталкиваются от центрального блока.

Существуют схемы отделения боковых блоков на основе рычажных механизмов. Такие схемы представлены, например, в [18].

Рис. 11.19. Схема отделения ББ с помощью аэродинамических сил

При уточнении компоновочной схемы следует также задать схему сброса головного обтекателя.

На рис. 11.20 представлена схема сброса головного обтекателя ракеты космического назначения типа «Союз» с пилотируемым космическим кораблём [20]. На рисунке введены следующие обозначения: *а* – космическая головная часть; *б* – схема увода РДТТ системы аварийного спасения разделительным РДТТ при штатном полете; *в* разворот створок головного обтекателя; 1 – двигательчая установка САС; 2 - РДТТ разворота створок обтекателя; 3 – космический корабль "Союз"; 4 - плавающие опоры спускаемого аппарата (фиксируются в аварийной ситуации); 5 - аварийный стык на ГО; 6 - узлы разворота створок ГО; 7 – ракетный блок "И"; 8 - разделительный РДТТ; 9 - продольный стык ГО; 10 - решетчатые стабилизаторы САС (при штатном полете прижаты к обтекателю, раскрываются после аварийного отделения уводимой части КГЧ); 11 - поперечный стык КГЧ с РН; 12 - створка ГО.

В штатном режиме полёта сначала уводится РДТТ САС (схема б), затем подаются команды на разделение створок ГО и включение РДТТ разворота створок обтекателя. При определённых углах разво-240 рота срабатывают замки крепления створок ГО к переходному отсеку и створки ГО отталкиваются с помощью пружинных толкателей. Если ГО имеют небольшие габариты и массу, то раскрытие створок может происходить с помощью пружинных или пневматических толкателей (на схеме не показаны). Для ГО больших габаритов и массы могут использоваться одновременно и РДТТ разворота створок, и пружинные или пневматические толкатели.

Рис. 11.20. Схема сброса головного обтекателя РКН «Союз» [20]

11.4. Схемы с переливом топлива

Для пакетной схемы перспективным считается организация перелива топлива из боковых блоков в центральный блок. Систему перелива топлива можно реализовать путем соединения соответствующих баков специальными магистралями по принципу сообщающихся сосудов и выдавливания жидкости за счет перепада давлений наддува в баках по заданной временной циклограмме.

Достоинством схемы с переливом является потенциальное совершенство ракеты-носителя по критерию минимума массы. В этом случае вторая ступень (после отделения боковых блоков) начинает работу как бы заново, с баками, полностью заполненными топливом.

К недостаткам схемы с переливом топлива можно отнести, вопервых, дополнительный вес конструкции системы перелива и, вовторых, угрозу пожара из-за возможности пролива компонентов топлива на факел пламени двигателя при отделении ракетных блоков.

Если в ракете-носителе имеется четыре или шесть боковых блоков, то целесообразнее в весовом отношении организовать перелив топлива и отделение боковых ракетных блоков по парам по мере выработки из них топлива, как это схематично показано на рис. 11.21 (для четырех боковых блоков).

Рис. 11.21. Схема перелива топлива и отделения ракетных блоков

При этом перелив топлива следует организовать следующим образом. В процессе работы двигателей всех (или части) ракетных блоков топливо переливается из пары боковых блоков, которые будут отделяться первыми, в центральный блок. Одновременно из цен-242 трального блока топливо переливается в боковые блоки с работающими двигателями. После выработки топлива из первой пары боковых блоков они отделяются и ракета-носитель начинает работу с оставшимися ракетными блоками, полностью заполненными топливом. Затем топливо начинает переливаться из оставшихся боковых блоков в центральный блок.

После выработки топлива из второй пары боковых блоков они отделяются и ракета-носитель начинает полёт без боковых блоков, но с полными топливными баками центрального блока.

Можно показать, что расчетные формулы для схемы, приведенной на рис. 11.21, равносильны расчетным зависимостям для схемы трехступенчатой ракеты с последовательным соединением ракетных блоков без перелива топлива. Только в качестве ракетных блоков первой ступени в этом случае следует рассматривать первую пару боковых блоков (которые отделяются первыми), в качестве ракетных блоков второй ступени - вторую пару боковых блоков (которые отделяются вторыми). В качестве ракетного блока третьей ступени следует рассматривать центральный блок.

Контрольные вопросы

1. Приведите методику уточнения компоновочной схемы ракетыносителя (PH) с последовательным соединением ракетных блоков.

2. По каким приближённым зависимостям производится проектный расчет центра давления РН с целью уточнения компоновочной схемы?

3. Приведите методику уточнения компоновочной схемы PH с параллельным соединением ракетных блоков.

4. Приведите последовательность уточнения габаритов и мест сопряжения ракетных блоков.

5. Какие схемы с унифицированными ракетными блоками Вы знаете?

6. Расскажите о схеме с неразъемными соединениями ракетных блоков.

7. Расскажите о схеме PH с отдельными блоками горючего и окислителя.

8. Преимущества и недостатки схемы с переливом топлива.

12 РАСЧЁТ МАСС ОСНОВНЫХ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ РАКЕТЫ-НОСИТЕЛЯ

Расчет масс основных элементов конструкции ракеты-носителя производится с разной степенью точности в зависимости от этапа проектирования.

1. Предварительный расчет (первое приближение).

- 2. Проектировочный расчет (второе приближение).
- 3. Детальный расчет.

Рассмотрим первые два этапа подробнее.

12.1. Предварительный расчет масс основных элементов конструкции ракеты-носителя

На этом этапе используются статистические данные по относительным массам элементов конструкции ракеты-носителя.

Масса конструкции типового ракетного блока включает следующие составляющие.

1. Масса хвостового отсека

Если ракета на старте опирается на корпус хвостового отсека или силовые потоки от двигателей передаются через корпус хвостового отсека, то масса этого корпуса считается пропорциональной стартовой массе ракеты:

$$\boldsymbol{m}_{XO_i} = \boldsymbol{k}_{XO_i} \cdot \boldsymbol{m}_{0_i}, \qquad (12.1)$$

где $k_{xOi} = 0,004...0,006$ - статистический коэффициент пропорциональности;

*m*_{0*i*} - начальная масса *i*-й ступени.

Если корпус хвостового отсека на старте не нагружен (ракета подвешена, например, за верхние переходные отсеки боковых блоков), то массу такого корпуса можно считать по той же зависимости (12.1), но принять коэффициент пропорциональности $k_{xoi} = 0,002...0,003$.

2. Масса двигателя

Если предполагается разрабатывать новый двигатель, то в первом приближении его масса рассчитывается на основе данных по изделиям-аналогам:

$$m_{\partial \theta} = \frac{\gamma_{\partial \theta} R_{ni}}{g_0} , \qquad (12.2)$$

где γ_{ds} - относительная масса двигателя *i*-й ступени (отношение веса двигателя к его тяге);

R_{ni} - сила тяги двигателя *i*-й ступени в пустоте.

Учитывая, что $R_{1n} = k_{\theta} \cdot R_{01}$ и $R_{01} = g_0 \cdot m_{01} \cdot n_{01}$,

где k_{e} - коэффициент высотности двигателя (для двигателей ракетных блоков первых ступеней $k_{e} = 1,12...1,18$);

R₀₁ - тяга двигателей первой ступени на поверхности Земли;

 n_{01} - начальная перегрузка первой ступени ($n_{01} = 1,15...1,50$), приводим выражение (12.2) к виду

$$m_{\partial s} = \frac{\gamma_{\partial s} k_s R_{01}}{g_0} = \frac{\gamma_{\partial s} k_s g_0 m_{01} n_{01}}{g_0} = \gamma_{\partial s} k_s m_{01} n.$$
(12.3)

Аналогично рассчитываются массы двигателей других ракетных блоков с учётом того, что на двигателях, запускаемых в пустоте, коэффициент высотности не учитывается.

<u>3. Массы окислителя и горючего</u> считаются известными из расчётов масс и объёмов компонентов топлива (см. раздел 7, формулы (9.9) и (9.10)). Напомним, что эти массы рассчитываются по следующим зависимостям:

$$m_{T} = m_{T} \frac{1}{\kappa + 1};$$

$$m_{O\kappa} = m_{T} \cdot \frac{\kappa}{\kappa + 1}.$$

4. Масса конструкции топливных отсеков

Масса конструкции топливных отсеков считается пропорциональной массе топлива:

$$m_{TOi} = k_{TO} \cdot m_{Ti}, \qquad (12.4)$$

где *m_т* - масса топлива i-го ракетного блока;

 $k_{TO} = 0,04...0,06$ - коэффициент пропорциональности, который назначается по статистике.

<u>5. Масса конструкции приборного отсека</u> считается пропорциональной начальной массе ракеты-носителя m_{01} и максимальному значению перегрузки n_{x1}^{max} , которое, как правило, имеет место в конце работы первой ступени:

$$m_{K\Pi O} = k_{K\Pi O} m_{01} n_{x1}^{\max} , \qquad (12.5)$$

где $k_{K\Pi O} = 0,0005...0,0007$ - коэффициент пропорциональности, который назначается также по статистике.

Выразим максимальное значение перегрузки через известные проектные характеристики:

$$n_{x1}^{\max} = \frac{R_{1n}}{g_0 \cdot m_{1k}} = \frac{R_{1n}}{g_0 \cdot m_{01}} \cdot \frac{m_{01}}{m_{1k}} = \frac{k_s \cdot R_{01}}{g_0 \cdot m_{01}} \cdot z_1 = k_s \cdot n_{01} \cdot z_1, \quad (12.6)$$

где *m*₁, - конечная масса первой ступени;

*m*₀₁ - начальная масса первой ступени;

*z*₁ - число Циолковского первой ступени.

В первом приближении можно принять следующие значения проектных характеристик: $k_e \approx 1,15$; $n_{01} \approx 1,3...1,5$. Число Циолковского можно определить, зная начальную массу ступени и массу топлива первой ступени ($z_1 = m_{01}/(m_{01} - m_{T1})$).

Подставляя (12.6) в (12.5), получим

$$m_{K\Pi O} = k_{K\Pi O} \cdot m_{01} \cdot k_e \cdot n_{01} \cdot z_1.$$
(12.7)

<u>6. Масса приборов системы управления</u> (для ракетного блока последней ступени ракеты-носителя) считается пропорциональной начальной массе этой ступени:

246

$$m_{CY_i} = k_{CY_i} \cdot m_{0i}, \qquad (12.8)$$

где $k_{CVi} = 0,002...0,006$ - коэффициент пропорциональности.

Можно также получить статистические зависимости и для расчёта масс других элементов конструкций ракет-носителей.

12.2 Предварительная массовая сводка

По результатам предварительного расчёта масс основных элементов конструкции ракеты-носителя составляется предварительная массовая сводка (в некоторой литературе - весовая сводка), которая выдается смежным подразделениям проектной организации перед началом этапа «Разработка эскизного проекта». Такая сводка приведена в табл. 12.1 для одной из баллистических ракет, созданных для пуска с подводных лодок [14].

Компоновочная схема этой ракеты показана на рис. 12.1. На этом рисунке показаны следующие позиции: 1 – головная часть; 2 – приборный отсек; 3 - переходный отсек; 4, 5 – баки окислителя и горючего второй ступени; 6 – хвостовой отсек второй ступени; 7 – переходный отсек; 8, 9 – баки окислителя и горючего первой ступени; 10 – хвостовой отсек первой ступени. Длина ракеты составляет 19,8 м.

Рис. 12.1. Пример компоновочной схемы двухступенчатой баллистической ракегы с ЖРД для пуска с подводных лодок [14]

Следует заметить, что на последующих этапах проектирования, а именно на этапе выпуска эскизного проекта, когда определены пред-

варительные нагрузки, конструктивно-компоновочная схема, пневмогидравлическая схема, приборный состав систем измерений и управления, предварительная массовая сводка корректируется (по материалам эскизного проекта).

Наименование составной части	Масса, кг
Головной обтекатель	100
Полезная нагрузка	700
РБ второй ступени	
Переходник	50
Приборный отсек	80
Приборы СУ	200
Бак окислителя	190
Окислитель	4810
Бак горючего	130
Горючее	1720
Хвостовой отсек	80
Двигатель	70
Сумма по РБ второй ступени	7330
Вторая ступень	8130
РБ первой ступени	
Переходник	100
Бак окислителя	580
Окислитель	18700
Бак горючего	380
Горючее	6680
Хвостовой отсек	400
Двигатель	400
Сумма по РБ первой ступени	27280
Ракета-носитель в целом	35410

Таблица 12.1. Предварительная массовая сводка [14]

12.3. Проверка значений конструктивных характеристик ракетных блоков

Цель этой проверки – выявить соответствие или несоответствие выбранных по изделиям-аналогам конструктивных характеристик ракетных блоков со значениями этих характеристик, полученных в результате расчета масс конструкций ракеты-носителя.

Напомним, что конструктивная характеристика ракетного блока подсчитывается по одной из следующих зависимостей (которые равносильны):

$$s = \frac{m_E}{m_K} = \frac{m_E}{m_E - m_T} = \frac{m_K + m_T}{m_K},$$
 (12.9)

где *m_Б* - масса ракетного блока с топливом;

m_к - масса конструкции ракетного блока;

m_т - масса топлива в ракетном блоке.

Масса каждого из ракетных блоков рассчитывается по зависимости

 $m_{\rm g} = m_{\rm \chi O} + m_{\rm \Lambda Y} + m_{\rm 6\Gamma} + m_{\rm MO} + m_{\rm 6O\kappa} + m_{\rm T} + m_{\rm K\Pi O} + m_{\rm CY} + m_{\rm \Pi epO} + m_{\rm FO} \,,$

где *m_{x0}* - масса корпуса хвостового отсека;

*m*_{*пу*} - масса двигательной установки;

 $m_{6\Gamma}$ - масса бака горючего;

m_{мо} - масса межбакового отсека;

*т*_{бОк} - масса бака окислителя;

 m_T - масса топлива;

m_{КПО} - масса корпуса приборного отсека (если он имеется в блоке);

*m*_{CV} - масса приборов системы управления;

*т*_{ПерО} - масса переходного отсека;

m_{го} - масса головного обтекателя.

Следует отметить, что при расчете конструктивных характеристик ракеты массу головного обтекателя, массу хвостового отсека второй ступени и массу переходного отсека (от первой ко второй ступени) целесообразно отнести к массе ракетного блока первой ступени, так как в первом приближении с некоторым запасом можно считать, что сброс этих элементов и разделение первой и второй ступеней ракеты происходят примерно в одно и то же время.

Массу переходного отсека последней ступени (от последней ступени к полезной нагрузке и головному обтекателю) следует отнести к массе конструкции последней ступени ракеты-носителя.

После расчета конструктивных характеристик ракетных блоков по формуле (12.9) производится сравнение со значениями конструктивных характеристик ракетных блоков, выбранных по изделияманалогам. При отклонении результатов более чем на 10% проводится вторая итерация расчета масс блоков, в которой уже необходимо использовать расчетные значения конструктивных характеристик ракетных блоков по результатам расчета в первой итерации.

12.4. Проектировочный расчет масс составных частей ракеты-носителя

Проектировочный расчет масс элементов конструкций ракетыносителя включает в себя следующие этапы:

- выбор расчетных случаев;
- расчет нагрузок, действующих на ракету-носитель;
- выбор расчетных сечений ракеты-носителя;
- расчет осевых сил в сечениях ракеты;
- расчет изгибающих моментов:
- расчет приведенной сжимающей силы;
- расчет давления наддува баков;
- расчет массы баков;
- расчет массы сухих отсеков;
- расчет прочих масс ракеты-носителя;

- проверка значений конструктивных характеристик ракетных блоков.

Рассмотрим эти этапы расчета последовательно на примере ракеты с последовательным соединением ступеней и цилиндрическими баками с днищами, выполненными в форме части сферы.

250

12.4.1. Выбор расчетных случаев

Как показывает практика проектирования, массы силовых элементов конструкции ракетыносителя в основном определяются нагрузками, действующими на ракету в момент прохождения максимального скоростного напора со случайным порывом ветра. Направление ветра - перпендикулярно продольной оси PH.

Для типовых ракет-носителей этот расчетный случай соответствует следующим частным характеристикам [23]:

высота полета Н ≈ 10...12 км;

Рис. 12.2. Схема для определения эффективного угла атаки

 α

Vp

- плотность атмосферы $\rho = 0,4 \kappa c / m^3$;

- скорость звука на высоте полета ракеты $a \approx 300 \, \text{м/c}$;

- скорость ракеты-носителя составляет примерно 2 М, где M число Маха; то есть $V_P \approx 2 \cdot a \approx 2 \cdot 300 = 600 \text{ м/c}$,

- программный угол атаки $\alpha_{np} = 0^{\circ}$;

- скорость порыва ветра $u = 90 \, \text{м} / c$.

Максимальный скоростной напор составит:

$$q_{\text{max}} = \frac{\rho \cdot V_P^2}{2} = \frac{0.4 \cdot 600^2}{2} = 0.720 \cdot 10^5 \,\Pi a \,.$$

Эффективный угол атаки от порыва ветра определяется по следующей зависимости (см. рис. 12.2):

$$\alpha_{s\phi} = \operatorname{arctg}\left(\frac{u}{V_P}\right) \approx \frac{u}{V} \,. \tag{12.10}$$

В нашем случае $\alpha_{p\phi} \approx \frac{u}{V_p} = \frac{90}{600} = 0,15 \, pad$.

Однако такой угол атаки считается большим. Он приводит к возникновению большой подъемной силы на конусной части головного обтекателя и, следовательно, к возникновению больших по значениям изгибающих моментов в сечениях ракеты. Это, в свою очередь, приводит к необходимости увеличения сечений силовых конструктивных элементов, воспринимающих эти нагрузки, и следовательно, к увеличению массы конструкции ракеты в целом.

Для уменьшения изгибающих моментов в сечениях ракеты в состав средств бортового управления вводят бортовую систему ограничения поперечных перегрузок. Суть работы этой системы заключается в следующем. В процессе прохождения максимальных скоростных напоров и воздействий порыва ветра в корпусе ракеты появляются поперечные (боковые) перегрузки. При достижении заранее определенных значений поперечных перегрузок включаются управляющие двигатели ракеты, которые "помогают" ракете перейти в так называемое "флюгерное положение". Эффективный угол атаки уменьшается, снижается подъемная сила и, следовательно, силовые элементы ракеты разгружаются. Восстановление программного угла тангажа происходит после угасания порыва ветра. Реально с помощью такого рода систем уменьшить эффективный угол атаки от порывов ветра до 2°...3°.

Следует отметить, что для ракеты "Энергия" из-за особенностей расположения полезного груза нет короткого участка движения с явно выраженным максимумом скоростного напора, где нагрузки наибольшие [47]. Расчетные случаи нагружения по траектории полета охватывали участок движения, где число Маха изменяется в достаточно широком диапазоне - от 0,4 до 2.

Из условий несущей способности конструкции ракеты-носителя были заданы допустимые величины произведения скоростного напора на угол атаки (скольжения). Поэтому в комплекс управления полетом РН были включены алгоритмы управления, использующие информацию по углам скольжения (получаемую с помощью оценок измеренных значений ускорений в различных сечениях по длине РН).

12.4.2. Расчет нагрузок, действующих на РН

Примем следующие допущения.

1. В приближенных расчетах считается, что аэродинамические силы приложены в основном к конусным частям ракеты, решетчатым крыльям или стабилизаторам (рис. 12.3).

Рис. 12.3. Схема для расчета нагрузок от аэродинамических сил

2. Сила лобового сопротивления направлена по оси ракеты (x_{5} - ось базовой системы координат, связанной с PH), а подъемная сила – перпендикулярна продольной оси ракеты (так как угол атаки мал).

3. Касательные напряжения, вызванные действием перерезывающих сил, малы по сравнению с напряжениями, действующими от продольных сил и изгибающих моментов. Поэтому перерезывающие силы не рассматриваем.

Аэродинамическая сила сопротивления определяется по следующей зависимости:

$$X_a = c_x \cdot q_{\max} \cdot S_M, \tag{12.11}$$

где S_M - площадь миделя ракеты (в данном случае площадь поперечного сечения цилиндрической части ракеты);

*с*_г - коэффициент лобового сопротивления.

Для конических частей ракеты и для скорости $\geq 2 \cdot M$ коэффициент лобового сопротивления может быть определен по приближенной зависимости [23]

$$c_x = 2 \cdot \left(\beta^2 + \frac{\alpha^2}{2}\right) \approx 2 \cdot \beta^2, \qquad (12.12)$$

где β - угол полураствора конуса головного обтекателя (рис. 12.3).

Здесь учтено то, что угол атаки при прохождении максимального скоростного напора мал и значительно меньше угла полураствора конуса обтекателя.

Аэродинамическая подъемная сила определяется так

$$Y_a = c_v \cdot q_{\max} \cdot S_M, \qquad (12.13)$$

где *С*_v - коэффициент подъемной силы.

253

Для конических частей ракеты и для скорости $\geq 2 M$ коэффициент подъемной силы может быть определен по следующей приближенной зависимости [23]:

 $c_y \approx 3 \cdot \alpha$, (12.14) где α - угол атаки, который при прохождении максимальных скоростных напоров считается равным эффективному углу атаки α_{sob} .

12.4.3. Выбор расчетных сечений ракеты-носителя

При проектном расчете можно определять нагрузки в ограниченном количестве сечений, элементы которых в основном определяют погонные массы ракеты-носителя. К таким сечениям прежде всего относятся сечения в нижней части головного обтекателя, в нижней части каждого из баков ракеты и сечения сухих отсеков, примыкающих к этим бакам.

12.4.4. Расчет осевых сил в сечениях

Продольная сила, действующая в сечении ракеты-носителя, определяется по следующей формуле (рис. 12.4):

$$N = -X_a - m_{o_q} \cdot n_x \cdot g_0, \qquad (12.15)$$

где m_{oy} - масса отсеченной части ракеты-носителя;

Рис. 12.4. Схема для оценки продольных сил в сечении ракеты

 n_x - продольная перегрузка в рассматриваемый момент времени.

Если рассматриваемое сечение находится ниже баков, из которых расходуется топливо, то при расчете массы

отсеченной части бака необходимо учесть расход компонентов топлива:

$$m_{oq}(t_q) = m_{oq}(t_0) - \dot{m}t_q, \qquad (12.16)$$

где $m_{oy}(t_q)$ - масса отсеченной части без учета выработки топлива;

т - секундный расход топлива;

t_q - время полета ракеты, соответствующее прохождению максимального скоростного напора.

В первом приближении можно считать, что в момент прохождения максимального скоростного напора ($t_q \approx 50...60 c$) баки первой ступени опорожнены наполовину.

Перегрузку в этот момент времени можно определить по следующей зависимости:

$$n_{x} = \frac{R}{g_{0}m(t_{q})} = \frac{k_{q}R_{0}}{g_{0}(m_{0} - \dot{m}t_{q})} = \frac{k_{q}n_{0}g_{0}m_{0}}{g_{0}(m_{0} - \dot{m}t_{q})} = \frac{k_{q}n_{0}}{\left(1 - \frac{\dot{m}}{m_{0}}t_{q}\right)},(12.17)$$

где *R* - тяга двигателя на высоте, соответствующей максимальному скоростному напору (10...12 км);

 $m(t_q)$ - масса ракеты в момент прохождения максимального скоростного напора;

 R_0 - тяга двигателя на поверхности Земли;

 k_q - коэффициент превышения тяги двигателя на высоте H_q , на которой на ракету воздействует максимальный скоростной напор, над тягой двигателя у поверхности Земли;

*m*₀ - начальная масса ракеты;

n₀ - начальная перегрузка ракеты.

Коэффициент превышения тяги двигателя на высоте 10...12 км можно принять равным 1,08...1,12.

Этот коэффициент можно найти следующим образом.

Тяга двигателя в пустоте и тяга двигателя на поверхности Земли связаны следующим образом:

$$R_n = k_g \cdot R_0 \,, \tag{12.18}$$

где k_{R} - коэффициент высотности двигателя.

Разность между тягой двигателя в пустоте и тягой двигателя на поверхности Земли определяется

$$\Delta R = R_n - R_0 = k_s \cdot R_0 - R_0 = (k_s - 1) \cdot R_0.$$
(12.19)

255

Тяга двигателя на высоте H_q зависит от давления $p(H_q)$ на этой высоте и выражается следующим образом:

$$R(H_q) = R_n - \Delta R \cdot \frac{p(H_q)}{p_0}, \qquad (12.20)$$

где $p(H_q)$ - давление атмосферы на высоте H_q , на которой на ракету воздействует максимальный скоростной напор;

*p*₀ - давление атмосферы на поверхности Земли.

Подставляя (12.19) в (12.20), получаем

$$R(H_q) = R_n - (k_s - 1) \cdot \frac{p(H)}{p_0} \cdot R_0 \cdot$$
(12.21)

Делим обе части на R₀, получаем

$$k_{q} = \frac{R(H_{q})}{R_{0}} = \frac{R_{n}}{R_{0}} - (k_{s} - 1) \cdot \frac{p(H)}{p_{0}} = k_{s} - (k_{s} - 1) \cdot \frac{p(H)}{p_{0}}.$$
 (12.22)

Учитывая, что $k_{g} \approx 1,12...1,18$ и для высоты $H_{q} \approx 10...12 \, \kappa m$ отношение $\frac{p(H)}{p_{0}} = \frac{0.40}{1,23} \approx 0,33$, можно получить пределы изменения коэффициента $k_{g} = 1,08...1,12$.

12.4.5. Расчет изгибающих моментов

Результирующая нормальная аэродинамическая сила Y_{a} приложена в центре давления ракеты с координатой $x_{\mu\mu}$ и показана на рис. 12.5 пунктирной линией.

Для того чтобы ракета при воздействии порывов ветра не изменила угол тангажа, необходимо, чтобы моменты от всех внешних сил были уравновешены:

$$Y_a \cdot \left(x_{\mathcal{U}\mathcal{I}} - x_{\mathcal{U}\mathcal{M}} \right) = P_y \cdot \left(x_P - x_{\mathcal{U}\mathcal{M}} \right), \qquad (12.23)$$

где P_v - сила тяги двигателей управления.

Рис. 12.5. Схема для расчета изгибающих моментов

Как отмечалось ранее, в первом приближении можно считать, что центр масс ракеты при прохождении максимального скоростного напора располагается примерно в средней части ракеты по её длине. Размеры конусных частей хвостовых отсеков или стабилизаторы выбираются таким образом, чтобы центр давления в тот же момент времени также находился вблизи центра масс ракеты.

Так как $(x_{LLI} - x_{LIM})$ значительно меньше $(x_P - x_{LIM})$, P_y существенно меньше Y_a . Следовательно, в первом приближении силой P_y можно пренебречь и считать

$$Y_{a1} \approx Y_{a2} \,. \tag{12.24}$$

Условно также можно считать, что силы Y_{a1} и Y_{a2} уравновешиваются силами инерции, которые можно представить в виде распределенной нагрузки:

$$q_m = \frac{Y_1 + Y_2 + P_{\nu}}{L} \approx \frac{2 \cdot Y_1}{L}.$$
 (12.25)

В первом приближении представляем ракету в виде балки, на которую воздействуют сосредоточенные силы и распределенная на-

грузка, показанные на рис. 12.6. Изгибающий момент в сечении *х* можно определить так

$$M \approx Y_{1} x - q_{m} x \frac{x}{2} = Y_{1} x - \frac{2Y_{1}}{L} \cdot \frac{x^{2}}{2} = Y_{1} x \left(1 - \frac{x}{L}\right).$$
(12.26)

Рис. 12.6. Схема для расчёта изгибающих моментов

12.4.6. Расчет приведенной сжимающей силы

Напряжения в какой-либо точке конструкции на боковой поверхности корпуса ракеты будут определяться суммой напряжений от осевых сил и изгибающего момента:

$$\sigma = \sigma_N \pm \sigma_M = \frac{N}{F} \pm \frac{M}{W}, \qquad (12.27)$$

где F - площадь сечения;

W - момент сопротивления.

Напомним, что под приведенной сжимающей силой понимается сила, которая действовала бы на ракету, если бы во всех точках рассматриваемого сечения действовали напряжения, равные наибольшим по значению сжимающим напряжениям.

В нашем случае приведенная сжимающая сила будет следующей (знак минус, указывающий, что это именно сжимающая сила, опущен):

$$N_{np} = \sigma_{cm} \cdot F = \left| \frac{N}{F} + \frac{M}{W} \right| \cdot F = N + \frac{M}{W} \cdot F .$$
(12.28)

Учитывая, что площадь сечения тонкостенного кольца $F = \pi \cdot D \cdot \delta$ и что момент сопротивления для тонкостенного кольца (рис. 12.7) равен

$$W = \frac{\pi \cdot D^2 \cdot \delta}{4}, \qquad (12.29)$$

окончательно получаем

Рис. 12.7. К вопросу о расчете напряжений в корпусе ракеты

$$N_{np} = N + \frac{4 \cdot M}{D} \,. \tag{12.30}$$

12.4.7. Расчет давления наддува баков

Давление наддува баков определим из условия компенсации приведенной сжимающей силы силой растяжения от наддува баков

$$N_{np} = N_{\mu a \phi} \,. \tag{12.31}$$

Продольная сила растяжения, возникающая в баке от наддува, будет следующей:

$$N_{\mu\alpha\delta} = p_{\mu\alpha\delta} \cdot S = p_{\mu\alpha\delta} \cdot \frac{\pi \cdot D^2}{4} \,. \tag{12.32}$$

Подставляя (13.32) в (13.31) и разрешая относительно давления наддува, получаем

$$p_{nao} = \frac{4 \cdot N_{np}}{\pi \cdot D^2}.$$
(12.33)

12.4.8. Расчет массы баков

Расчет массы цилиндрической части бака

Толщина бака рассчитывается в самом опасном сечении – в нижней его части. Давление в этой части бака складывается из давления наддува и гидростатического давления столба жидкости (компонента топлива), которое, в свою очередь, зависит от высоты компонента топлива над рассматриваемым сечением, плотности этого компонента и перегрузки в рассматриваемый момент времени:

$$p_{\delta} = p_{Ha0} + h_T \cdot \rho_T \cdot g_0 \cdot n_x, \qquad (12.34)$$

где h_{T} - высота компонента топлива над рассматриваемым сечением;

 ρ_{τ} - плотность компонента топлива.

Высота компонента топлива над рассматриваемым сечением может быть рассчитана так

$$h_T = h_{T0} - h_{T0} \cdot \frac{t_q}{t_1} = h_{T0} \left(1 - \frac{t_q}{t_1} \right), \tag{12.35}$$

где h_{T0} - высота столба жидкости (компонента топлива) полного бака;

t₁ - время работы первой ступени ракеты-носителя;

t_q - время, соответствующее моменту воздействия на ракетуноситель максимального скоростного напора.

В первом приближении можно принять, что высота компонента топлива над рассматриваемым сечением равна половине высоты цилиндрической части бака, так как в момент прохождения максимального скоростного напора баки, как упоминалось, опорожнены примерно наполовину.

Толщина стенки цилиндрического бака (в нижней его части) рассчитывается по формуле, известной из теории безмоментных оболочек [20]:

$$\delta_{u\sigma} = \frac{f \cdot p_{\sigma} \cdot D}{2 \cdot [\sigma]}, \qquad (12.36)$$

где f = 1, 2...1, 5 – коэффициент безопасности;

D - диаметр цилиндрической части бака;

[σ] - допустимое напряжение конструкционного материала стенки бака.

Удельная масса цилиндрической стенки бака может быть рассчитана так

$$m_{yo}^{uo} = \delta_{yo}^{uo} \cdot \rho_{M}, \qquad (12.37)$$

где ρ_{y} - плотность конструкционного материала стенки бака.

Масса цилиндрической стенки бака может быть рассчитана по следующей зависимости:

$$m_{uo} = k_{uo} \cdot m_{vo}^{uo} \cdot S_{uo} = k_{uo} \cdot m_{vo}^{uo} \cdot \pi \cdot D \cdot l_{uo}, \qquad (12.38)$$

где $k_{\mu o} \approx 1,5$ - коэффициент, учитывающий массу арматуры бака (конструкция датчика расхода и опорожнения бака, кабельный желоб, трубопроводы системы автоматики и наддува и др.);

 l_{uo} - длина цилиндрической части бака;

Расчет массы днищ бака

Толщина нижнего днища (в форме части сферы) рассчитывается также с учетом гидростатического столба жидкости (топлива) [20]:

$$\delta_{\scriptscriptstyle OH}^{\scriptscriptstyle H} = \frac{f \cdot p_{\delta} \cdot R_{\scriptscriptstyle OH}}{2 \cdot [\sigma]}.$$
(12.39)

где $R_{\partial u}$ – радиус днища бака.

Давление p_{ϕ} рассчитывается с учетом высоты днища бака $h_{\phi_{\mu}}$:

$$p_{\delta} = p_{_{Hao}} + (h_{_{T}} + h_{_{\partial_{H}}}) \cdot \rho_{_{T}} \cdot g_{_{0}} \cdot n_{_{x}}$$

Удельная масса оболочки нижнего днища бака равна

$$m_{yo}^{\mu \partial \mu} = \delta_{\partial \mu}^{\mu} \cdot \rho_{\mu}. \tag{12.40}$$

Масса оболочки нижнего днища бака может быть рассчитана по формуле

$$m_{\partial H}^{\prime\prime} = k_{\partial H}^{\prime\prime} \cdot m_{\nu \partial}^{H \partial H} \cdot S_{\partial H}, \qquad (12.41)$$

где $S_{\partial h} = 2 \cdot \pi \cdot R_{\partial h} \cdot h_{\partial h}$ - площадь сферического сегмента ($h_{\partial h}$ - высота днища);

 $k_{\partial n}^{"} \approx 1,5$ - коэффициент, учитывающий массу арматуры нижнего днища бака (заборное устройство, змеевик датчика расхода и опорожнения бака, сетка и др.).

Толщина верхнего днища (в форме части сферы) рассчитывается только от давления наддува по формуле

$$\delta^{a}_{\partial \mu} = \frac{f \cdot p_{\mu a o} \cdot R_{\partial \mu}}{2 \cdot [\sigma]}.$$
(12.42)

Удельная масса и масса оболочки нижнего днища бака могут быть рассчитаны так же, как и для верхнего днища:

$$m_{yo}^{eoH} = \delta_{oH}^{e} \cdot \rho_{M} \,. \tag{12.43}$$

$$m_{\partial \mu}^{\theta} = k_{\partial \mu}^{\theta} \cdot m_{\nu \partial}^{\theta \partial \mu} \cdot S_{\partial \mu}, \qquad (12.44)$$

где $k_{on}^{e} \approx 1,5$ - коэффициент, учитывающий массу арматуры бака (люк-лаз, дренажно-предохранительный клапан, раструб наддува и др.).

Расчет массы бака в целом

Расчет массы бака в целом производится путем суммирования составных масс бака (цилиндрической части и днищ).

12.4.9. Уточненные расчеты массы бака

Выше была представлена методика расчета массы бака, состоящего из трех составных частей: цилиндрической части бака и двух дниш. Причем массы более мелких составных частей учитывались интегрально в составе цилиндрической части бака и двух днищ с помощью коэффициентов $k_{uo} \approx 1,5$ и $k_{ou}^{\mu} \approx 1,5$.

При уточненных расчетах массы бака не ограничиваются делением бака на указанные три составные части, а рассматриваются более детальные составные части этих отсеков:

- массы шпангоутов баков;

- массы магистральных трубопроводов;

- массы тоннельных трубопроводов;

- массы системы наддува (шаров-баллонов с запасами газа для наддува баков, раструбов наддува и др.);

- массы люков-лазов;

- массы дренажно-предохранительных клапанов;

- массы заправочной арматуры и др.

При таком уточненном расчете массы цилиндрической части бака и двух днищ будут рассчитываться по методике, приведенной выше, однако коэффициенты, учитывающие составные части, следует брать следующими: $k_{uo} \approx 1,2$ и $k_{dw}^{"} \approx 1,2$.

Приведем методики расчета массы шпангоутов, массы магистральных трубопроводов и массы тоннельных трубопроводов баков. Методики расчета остальных составных частей баков можно найти в литературе по проектированию ракет.

Расчет массы шпангоутов бака

Расчетная схема представлена на рис. 12.8.

Расчет массы шпангоутов производится отдельно для шпангоута нижнего днища и шпангоута верхнего днища. Покажем процедуру расчета для произвольного шпангоута (верхнего или нижнего).

Рис. 12.8. Схемы для расчета площади шпангоута

Погонные нагрузки на шпангоут от обечайки днища будут зависеть от толщины стенки днища бака и определяться по следующей зависимости (см. рис. 12.8 *a*)

$$N_{1} = \delta_{\partial n}^{c\phi} \cdot [\sigma], \qquad (12.45)$$

где $\delta^{c\phi}_{\partial n}$ - толщина днища сферической формы.

Следует отметить, что эти толщины могут быть разными для верхнего и нижнего днищ.

Проекции погонных нагрузок $N_{\rm I}$ на плоскость шпангоута будут следующими:

$$q_1 = N_1 \cdot \cos \varphi \,. \tag{12.46}$$

Угол ϕ можно получить из геометрических характеристик бака:

$$\varphi = \arcsin\left(\frac{D}{2 \cdot R_{c\phi}}\right),\tag{12.47}$$

263

где $R_{c\phi}$ - радиус сферического днища.

В частном случае, если для проектных расчетов в первом приближении принять $R_{c\phi} = D$ (об этом упоминалось ранее), то можно получить

$$\varphi = \arcsin\left(\frac{1}{2}\right) = 30^{\circ}. \tag{12.48}$$

Рассмотрим напряжения, возникающие в шпангоуте при действии распределенной нагрузки q_1 (см. рис. 12.7 б).

Можно показать, что сжимающие усилия в шпангоуте от действия распределенных погонных нагрузок q_1 на полукольцо шпангоута будут равны действию погонных нагрузок q_1 на длину, равную проекции полукольца шпангоута. То есть расчетные схемы, представленные на рис. 12.7 6 и рис. 12.7 e, будут эквивалентными.

Поэтому можно получить выражения для расчета напряжений сжатия в сечении шпангоута:

$$\sigma_{uun} = \frac{q_1 \cdot D}{2 \cdot F_{uun}} \,. \tag{12.49}$$

Здесь учтено, что нагрузка распределяется на удвоенную площадь сечения шпангоута.

Подставляя (12.45) в (12.46) и далее в (12.49), получаем

$$\sigma_{uun} = \frac{\delta_{\partial u}^{c\phi} \cdot [\sigma] \cdot \cos \varphi \cdot D}{2 \cdot F_{uun}}.$$
(12.50)

Если принять $\sigma_{uan} \approx [\sigma]$, что соответствует наиболее полному использованию прочностных характеристик конструкционного материала при отсутствии потери устойчивости, то можно получить

$$F_{uun} \approx \frac{\delta_{\partial \mu}^{c\phi} \cdot \cos \varphi \cdot D}{2} \,. \tag{12.51}$$

Масса шпангоута рассчитывается следующим образом:

$$m_{un} = k_{un} \cdot F_{un} \cdot l_{un} \cdot \rho_{\scriptscriptstyle M} = k_{un} \cdot F_{un} \cdot \pi \cdot D \cdot \rho_{\scriptscriptstyle M}, \qquad (12.52)$$

где $k_{un} \approx 1,2$ - коэффициент, учитывающий элементы крепления шпангоута бака (к шпангоуту хвостового отсека, межбакового или переходного отсека).

Расчет массы магистрального трубопровода

Сначала определим потребный диаметр магистрального трубопровода d_{MT} . Схема расположения в баке магистрального (1) и тоннельного (2) трубопроводов приведена на рис. 12.9.

Диаметр магистрального трубопровода определяется из условия ограничения по скорости течения жидких компонентов топлива $(V_{KT} = 6...10 \, \text{м/c})$. Объем \hat{W}_{KT} компонента топлива, расходуемого в единицу времени, равен, с одной стороны, произведению клощади сечения трубопровода S_{MT} на скорость течения компонента топлива

 $V_{\rm KT}$, то есть

Рис. 12.9. Схема расположения тоннельного и магистрального трубопроводов в баке

$$\dot{W}_{KT} = S_{MT} V_{KT},$$
 (12.53)

где

$$S_{MT} = \frac{\pi \cdot d_{MT}^2}{4} \,. \tag{12.54}$$

С другой стороны, этот же объем равен отношению расхода массы компонента топлива в единицу времени к плотности компонента топлива:

$$\dot{W}_{KT} = \frac{m_{KT}}{\rho_{KT}} . \tag{12.55}$$

Приравнивая между собой правые части выражений (12.53) и (12.55) и подставляя в это равенство (12.54), получаем уравнение

$$\frac{\pi d_{MT}^2}{4} V_{KT} = \frac{\dot{m}_{KT}}{\rho_{KT}},$$

разрешая которое относительно искомого диаметра трубопровода, получаем

$$d_{MT} = \sqrt{\frac{4\dot{m}_{KT}}{\pi \rho_{KT} V_{KT}}} \,. \tag{12.56}$$

Толщину стенки магистрального трубопровода определим по выражению

$$\delta_{MT} = \frac{f \cdot p_{MT} \cdot d_{MT}}{2 \cdot [\sigma]}, \qquad (12.57)$$

где p_{MT} - давление в нижней части магистрального трубопровода.

Это давление можно найти по следующей зависимости:

$$p_{MT} = p_{\mu a \partial} + \left(h_T + h_{\partial \mu} + L_{MT}\right) \cdot \rho_T \cdot g_0 \cdot n_x, \qquad (12.58)$$

где L_{MT} - длина магистрального трубопровода (которая приближенно равна длине L_{ϵ}).

Удельная масса стенки магь трального трубс тровода и масса магистрального трубопровода рассчитываются так же, как и удельная масса стенки цилиндрического бака и масса цилиндрического бака:

$$m_{yo}^{MT} = \delta_{MT} \cdot \rho_{M}, \qquad (12.59)$$

$$m_{MT} = k_{MT} \cdot m_{yo}^{MT} \cdot \pi \cdot d_{MT} \cdot L_{MT}, \qquad (12.60)$$

где $k_{MT} \approx 1,2$ - коэффициент, учитывающий массу теплоизоляции и элементов крепления магистрального трубопровода.

Расчет массы тоннельного трубопровода

Диаметр тоннельного трубопровода *d*_{*TT*} считается пропорциональным диаметру магистрального трубопровода:

 $d_{TT} = k_{TT} \cdot d_{MT},$

где $k_{TT} \approx 1, 1...1, 2$ - соответствующий коэффициент пропорциональности.

Толщина стенки тоннельного трубопровода определяется из условия устойчивости стенки этого трубопровода к действию внешнего по отношению к этому трубопроводу давления в баке, через который проходит тоннельный трубопровод (см. расчетную схему, представленную на рис. 12.10).

Давление, действующее на нижнюю часть тоннельного трубопровода, рассчитывается по той же зависимости, что и давление, действующее на нижнюю часть бака (см. зависимость (13.34)):

$$p_{TT} = p_{\mu a \partial} + h_T \cdot \rho_T \cdot g_0 \cdot n_x. \qquad (12.61)$$

Рис. 12.10. Расчетная схема для определения толщины стенки тоннельного трубопровода

При этом учитываются соответствующие характеристики компонента топлива и геометрические характеристики бака, через который проходит тоннельная труба.

Толщина оболочки в первом приближении рассчитывается из условия, что допустимые напряжения в материале оболочки (крити-

ческие напряжения при потере устойчивости) примерно в два раза ниже временного сопротивления материала σ_a , то есть

$$[\boldsymbol{\sigma}] = \boldsymbol{\sigma}_{\kappa p} = 0, 5 \cdot \boldsymbol{\sigma}_{\scriptscriptstyle g} \,. \tag{12.62}$$

Используя зависимость (12.57) и подставляя в нее (12.62), получаем

$$\delta_{TT} = \frac{f \cdot p_{TT} \cdot d_{TT}}{2 \cdot [\sigma]} = \frac{f \cdot p_{TT} \cdot d_{TT}}{2 \cdot 0, 5 \cdot \sigma_e} = \frac{f \cdot p_{TT} \cdot d_{TT}}{\sigma_e}.$$
 (12.63)

Удельная масса стенки тоннельного трубопровода и масса тоннельного трубопровода рассчитываются так же, как и удельная масса стенки магистрального трубопровода и масса магистрального трубопровода:

$$m_{y\partial}^{TT} = \delta_{TT} \cdot \rho_{x}; \qquad (12.64)$$

$$m_{TT} = k_{TT} \cdot m_{y0}^{TT} \cdot \pi \cdot d_{TT} \cdot L_{TT}, \qquad (12.65)$$

где $k_{TT} \approx 1,1$ - коэффициент, учитывающий массу гофр и элементов крепления магистрального трубопровода.

Определение массы бака в целом при уточненном расчете

Расчет массы бака в целом производится путем суммирования составных масс бака (цилиндрической части, днищ, магистрального и тоннельного трубопроводов, системы наддува, люков-лазов, дренажно-предохранительных клапанов, заправочной арматуры и др.). Напомним, что при уточненном расчете коэффициенты, учитывающие массы цилиндрической части бака и двух днищ, следует брать следующими: $k_{uo} \approx 1,2$ и $k_{dw}^{"} \approx 1,2$.

12.4.10. Расчет массы сухих отсеков

К сухим отсекам относятся хвостовые, межбаковые, приборные, переходные отсеки и головной обтекатель.

Как показывает опыт создания конструкций сухих отсеков, критические напряжения σ_{xn} в них примерно в два раза ниже, чем временное сопротивление σ_s (с поправкой на коэффициент безопасности), иначе сухие отсеки в условиях ограничения по массе необходимо делать перетяжеленными.

Таким образом, принимаем

$$\sigma_{_{\scriptscriptstyle RP}} = 0,5 \ \sigma_{_{\scriptscriptstyle R}}. \tag{12.66}$$

Условие прочности сухого отсека (по критерию устойчивости)

$$\sigma_{cxc} \le \sigma_{\kappa p}, \qquad (12.67)$$

где σ_{ex} - напряжения сжатия в корпусе сухого отсека.

Учитывая (12.66), условие прочности (12.67) можно заменить следующим условием:

$$\sigma_{corr} \le 0, 5 \cdot \sigma_{g} \,. \tag{12.68}$$

Напряжения сжатия в корпусе сухого отсека рассчитываются как отношение приведенной сжимающей силы N_{np} в рассматриваемом сечении к площади F_{co} силовых элементов конструкции этих отсеков, то есть

$$\sigma_{cw} = \frac{f \cdot N_{np}}{F_{co}}.$$
(12.69)

Подставляя (12.69) в (12.68) и учитывая, что

$$F_{co} = \pi \cdot D \cdot \delta_{co}, \qquad (12.70)$$

где δ_{co} - приведенная толщина сухого отсека (которая представляет собой отношение площади F_{co} к длине образующей сухого отсека), получаем

$$\frac{f \cdot N_{np}}{\pi \cdot D \cdot \delta_{co}} \le 0, 5 \cdot \sigma_s.$$
(12.71)

Откуда находим приведенную толщину сухого отсека

$$\delta_{co} \ge \frac{f \cdot N_{np}}{\pi \cdot D \cdot 0, 5 \cdot \sigma_{a}}.$$
(12.72)

269

Можно показать, что эта толщина будет равна толщине стенки цилиндрической части бака, если бы в этом сечении располагался не сухой отсек, а бак. Покажем это.

Представим выражение (12.72) в таком виде, чтобы в нем формально выделился член, характеризующий давление наддува, если бы вместо сухого отсека находился бак:

$$\delta_{co} \ge \frac{f \cdot N_{np}}{\pi \cdot D \cdot 0, 5 \cdot \sigma_{g}} = \frac{f \cdot \left(\frac{4 \cdot N_{np}}{\pi \cdot D^{2}}\right) \cdot D}{2 \cdot \sigma_{g}}.$$
(12.73)

Учитывая, что выражение, стоящее в скобках в числителе, формально представляет собой давление наддува (см. формулу (12.33)), то есть

$$\frac{4 \cdot N_{np}}{\pi \cdot D^2} = p_{\text{Had}},$$

выражение (13.73) можно переписать следующим образом:

$$\delta_{co} \ge \frac{f \cdot p_{nad} \cdot D}{2 \cdot \sigma_s}.$$
(12.74)

Таким образом, из формулы (12.74) действительно следует, что приведенную толщину обечайки сухого отсека δ_{co} в первом приближении можно принять равной толщине стенки цилиндрического бака (который находился бы на месте сухого отсека), рассчитанной из условия действия внутреннего давления, соответствующего давлению компенсации сжимающих сил в баке.

На основании этого можно сделать один важный для практики проектирования вывод. А именно, расчет приведенной толщины сухого отсека можно не проводить, а принять ее равной толщине бака, к которому примыкает рассматриваемый сухой отсек.

Удельная масса стенки сухого отсека и масса сухого отсека рассчитываются по следующим зависимостям

$$m_{y\delta}^{co} = \delta_{co} \cdot \rho_{\scriptscriptstyle M}, \qquad (12.75)$$

$$\boldsymbol{m}_{co} = \boldsymbol{k}_{co} \cdot \boldsymbol{m}_{yo}^{co} \cdot \boldsymbol{\pi} \cdot \boldsymbol{D} \cdot \boldsymbol{L}_{co}, \qquad (12.76)$$

где L_{co} - длина сухого отсека;

 $k_{co} \approx 1,5$ - коэффициент, учитывающий массу шпангоутов, люков и др.

Особенности расчета массы хвостовых отсеков первых ступеней ракет-носителей

Следует отметить, что массу хвостового отсека первой ступени рассчитывают в зависимости от силовой схемы этого отсека. Так, если хвостовой отсек работает на сжатие только до старта ракеты, а в полете не нагружен, то расчет производится именно по достартовым нагрузкам. Если к хвостовому отсеку прикладываются силы от двигателя, то расчет производится именно по этим силам.

12.4.11. Расчет прочих масс ракеты-носителя

В специальной литературе представлены зависимости, с помощью которых можно рассчитать массы прочих составных частей ракеты-носителя:

- массу теплозащиты днищ баков (для криогенных компонентов топлива);

- массу донной защиты хвостового отсека;

- массу рамы хвостового отсека;

- массу рулевых ЖРД;

- массу кабелей и штепсельных электроразъемов;

 массу трубопроводов высокого давления системы управления и колодок пневмогидроразъёмов и др.

12.5. Детальный расчет

Детальный расчет масс элементов конструкции ракеты-носителя производится на стадии конструирования, когда конфигурация и размеры этих элементов уже определены. В задачу проектирования детальный расчет масс не входит. Однако по результатам этого расчета происходит уточнение инерционных и центровочных характеристик ракеты-носителя.

Контрольные вопросы

1. Какие этапы расчетов масс составных частей ракеты-носителя вы знаете?

2. Приведете методику предварительного расчета составных масс ракеты-носителя.

3. Приведите зависимость для расчета массы хвостового отсека.

4. Какие особенности расчета массы хвостового отсека в зависимости от схемы нагружения Вы знаете?

5. Приведите формулу для расчета массы двигательной установки.

6. Приведите зависимость для расчета массы окислителя и горючего.

7. Приведите формулу для расчета массы конструкции топливных отсеков.

8. Приведите расчетные зависимости для расчета массы конструкции приборного отсека.

9. Приведите зависимость для расчета массы приборов системы управления.

10. Приведете последовательность этапов методики проектировочного расчета масс составных элементов ракеты-носителя.

11. Какой расчетный случай рассматривается при выборе масс конструкций ракеты-носителя? Приведите примерные числовые данные.

12. Какие определяющие нагрузки, действующие на ракетуноситель, учитываются при расчете масс конструкций? Приведите расчетные схемы и расчетные зависимости.

13. Какие расчетные сечения ракеты-носителя рассматриваются при расчете масс элементов конструкций?

14. Приведите схему, расчетные зависимости и последовательность расчета осевых сил в сечениях ракеты.

15. Приведите методику расчета изгибающих моментов в корпусе ракеты. Приведите расчетные зависимости.

16. Дайте определение приведенной сжимающей силы в корпусе ракеты. Приведите расчетные зависимости для определения приведенной сжимающей силы.

13. РАСЧЕТ КООРДИНАТ ЦЕНТРА МАСС И МОМЕНТОВ ИНЕРЦИИ РАКЕТЫ-НОСИТЕЛЯ

13.1. Расчет координат центра масс ракеты

На основании предварительной массовой или лимитно-массовой сводки и компоновочной схемы ракеты-носителя можно определить положение центра масс ракеты. На рис. 13.1 и 13.2 приведены схемы, иллюстрирующие положение системы координат, связанной с корпусом ракеты, и координаты составных частей ракеты.

Координата центра масс ракеты-носителя по оси х подсчитывается по следующей зависимости

$$x_{IDM} = \frac{\sum_{i=1}^{k} m_i \cdot x_i}{\sum_{i=1}^{k} m_i},$$
 (14.1)

где k – количество рассматриваемых составных частей ракеты.

Рис. 13.1. Система координат и схема для расчета положения центра масс ракеты по продольной оси

Рис. 13.2. Система координат и схема для расчета положения центра масс ракеты-носителя в поперечной плоскости

Центр масс ракеты-носителя по осям *у* и *z* подсчитывается по аналогичным зависимостям:

$$y_{LLM} = \frac{\sum_{i=1}^{k} m_i \cdot y_i}{\sum_{i=1}^{k} m_i};$$

$$z_{LLM} = \frac{\sum_{i=1}^{k} m_i \cdot z_i}{\sum_{i=1}^{k} m_i}.$$
(13.2)
(13.3)

В первом приближении в расчет принимаются относительно крупные составные части ракеты, которые, как правило, симметричны относительно оси x. Поэтому для этого этапа расчета можно принять $y_{LLM} = z_{LDM} = 0$.

13.2. Расчет моментов инерции ракеты

Моменты инерции относительно осей x, y и z (см. рис. 13.1 и 13.2) определяются по следующим зависимостям:

274

$$J_{x} = \sum_{i=1}^{k} m_{i} \cdot r_{i}^{2} + \sum_{i=1}^{k} J_{xi}^{c} = \sum_{i=1}^{k} m_{i} \cdot (y_{i}^{2} + z_{i}^{2}) + \sum_{i=1}^{k} J_{xi}^{c}; \qquad (13.4)$$

$$J_{y} = \sum_{i=1}^{k} m_{i} \cdot \left(x_{i}^{2} + z_{i}^{2}\right) + \sum_{i=1}^{k} J_{yi}^{c}; \qquad (13.5)$$

$$J_{z} = \sum_{i=1}^{k} m_{i} \cdot \left(x_{i}^{2} + y_{i}^{2}\right) + \sum_{i=1}^{k} J_{zi}^{c}, \qquad (13.6)$$

где r_i - расстояние от центра масс *i*-го элемента до оси x;

 J_{xi}^{c} , J_{yi}^{c} и J_{zi}^{c} - собственные моменты инерции составных частей РН (относительно осей, параллельных осям ракеты и проходящих через собственные центры масс этих составных частей).

В первом приближении в расчет принимаются относительно крупные составные части ракеты: головной обтекатель, днища баков, шпангоуты, обечайки баков, межбаковые, переходные и хвостовые отсеки, топливо в баках, двигательные установки и т.п. Эти части ракеты, как правило, симметричны относительно оси x. Следовательно, центры масс этих составных частей находятся на оси x и координаты z_i и y_i равны нулю. Поэтому формулы (13.4), (13.5) и (13.6) можно упростить:

$$J_x = \sum_{i=1}^k J_{x\,i}^c \,; \tag{13.7}$$

$$J_{y} = \sum_{i=1}^{k} m_{i} \cdot x_{i}^{2} + \sum_{i=1}^{k} J_{yi}^{c}; \qquad (13.8)$$

$$J_{z} = \sum_{i=1}^{k} m_{i} \cdot x_{i}^{2} + \sum_{i=1}^{k} J_{zi}^{c} .$$
(13.9)

Для симметричных относительно оси x частей ракеты собственные моменты инерции J_{yi}^c и J_{zi}^c равны, поэтому можно ограничиться расчетом момента инерции ракеты носителя только относительно одной оси, например оси y.

Моменты инерции ракеты относительно оси y_{IIM} , проходящей через центр масс ракеты (см. рис. 13.1), определяются по следующей зависимости, которая учитывает смещение осей y и y_{IIM} :

$$J_{YLIII} = J_{ZIIII} = J_{y} - x_{IIM}^{2} \sum_{i=1}^{k} m_{i} = \sum_{i=1}^{k} m_{i} x_{i}^{2} + \sum_{i=1}^{k} J_{yi}^{c} - x_{IIM}^{2} \sum_{i=1}^{k} m_{i} . (13.10)$$

На последующих этапах проектирования (второе приближение) учитывают несимметричность составных частей ракеты и более мелкие составные части. При этом расчет производят по формулам (13.4), (13.5) и (13.6).

13.3. Расчетные таблицы

Расчет координат центра масс и моментов инерции ракеты сводят в таблицу, форма и структура которой представлена табл. 13.1.

Если РН имеет последовательное соединение ракетных блоков, то в первом приближении (предварительный расчет), моменты инерции составных частей ракеты относительно собственных центров масс можно не учитывать.

Это допущение можно принять на том основании, что форма ракеты, как правило, представляет собой удлиненное тело, и расстояния от центров масс составных частей ракеты до оси, относительно которой подсчитывается момент инерции, значительно превосходят размеры составных частей ракеты. Основной же вклад в количественное значение момента инерции PH вносят квадраты расстояний от центра масс составных частей PH до оси координат, относительно которой подсчитывается момент инерции. Расчеты показывают, что отличие в моментах инерции PH с учетом и без учета собственных моментов инерции в этом случае не превышает двух процентов. Причем ошибка уменьшается до полпроцента, если учитываются собственные моменты инерции компонентов топлива (как твердых тел в форме бака),

Если РН имеет параллельное соединение ракетных блоков, то неучёт собственных моментов инерции приводит к ошибке порядка восьми процентов. Если же для этой схемы учесть собственные моменты инерции только компонентов топлива, то ошибка уменьшается до двух процентов.

Тем не менее на последующих этапах проектирования собственные моменты инерции необходимо учитывать.

Таблица 13.1. Расчет координат центра масс и моментов инерции ракеты

№ п.п	Наименование	Масса	Коорд.	$m_i \times x_b$ $\kappa_2 \times M$	$\begin{array}{c} m_i \times x_i^2, \\ \kappa_2 \times M^2 \end{array}$
1	2	3	4	5	6
1	Полезная нагрузка	1500	1,430	2144,86	3066,95
2	Коническая часть ГО	322	1,430	460,43	658,37
				-	
	Блок 3-й ступени				
	<u> </u>				
3	Приборный отсек	56	2,395	134,11	321,18
4	Бак окислителя	151	2,989	451,30	1348,82
5	Межбаковый отсек	112	3,833	429,50	1645,16
6	Бак горючего	186	5,543	1031,40	5715,27
7	Хвостовой отсек	257	7,610	1955,40	14883,03
8	жрд	162	7,610	1232,00	9381,52
9	Рама ЖРД	014	7,610	106,40	810,75
10	Коммуникации	076	5,305	403,10	2139,21
11	Теплозащита днища	121	8,466	1024,80	8672,42
12	Система наддува баков	031	7,610	235,10	1795,23
13	Приборы	126	2,395	301,50	722,66
14	Прочие массы	092	5,305	488,00	2589,57
	Сумма по группе А	1384		7794,00	50024,80
	<u>Группа Б</u>				
15	Окислитель	6681	2,989	19967,00	59678,48
16	Горючее	1202	5,543	6662,50	36934,19
	Сумма по группе Б	7883		26631,00	96612,70
	Сумма по блоку 3-й ступени	9267		34425,00	146637,00
	Блок 2-й ступени				
	Сумма по блоку 2-й ступени	47763		608030	7948250,00

Окончание табл. 13.1

№ п.п	Наименование	Масса ті, кг	Коорд. <i>х_і, м</i>	$m_i \times x_i,$ K2 × M	$mi \times xi^{2},$ $\kappa_{2} \times M^{2}$
1	2	3	4	5	6
	Блок 1-й ступени				
	<u> Tpynna A</u>				

43	Сумма по группе А	13652		573540	24583300
44	Группа Б				
45	Окислитель	106807	27,559	2943490	81119430
46	Горючее	39123	39,360	1539880	60609670
	Сумма по группе Б	14593		4483400	141729000
	Сумма по блоку 1-й ступени	159582		5056900	166312000
	Сумма по всем блокам	216612		5699400	174407000
	Для всей ракеты	218434	26,62	5702005	174411000

Момент инерции PH относительно оси y_{IIM} , рассчитанный по формуле (13.10), составляет 19623000 кг × M^2 .

13.4. Расчет положения координат центра масс ракетыносителя по времени полета

При расчете изменения координаты центра масс в полете составные части ракеты обычно разбивают на две группы, A и E. В группу A относят элементы конструкции, массы и координаты которых не зависят от времени. В группу E относят составные части ракеты, массы которых изменяются в процессе полета. Это в основном расходуемые компоненты топлива, газов наддува и др.

Для определения изменения центра масс ракеты по времени полета составляется специальная таблица, которую называют "Центровочная ведомость". Форма таблицы иллюстрируется табл. 13.2.

№	t,	$m_{O\kappa}(t)$,	$m_{\Gamma}(t)$,	$x_{OKi}(t)$,	$x_{\Gamma}(t),$	$m_{O_{\mathcal{K}}}(t)\cdot x_{O_{\mathcal{K}}}(t),$	$m_{\Gamma}(t)\cdot x_{\Gamma}(t),$	$x_{IIM}(t)$
уч.	c	КГ	КГ	М	М	КГ М	КГ•М	М
П	ервая с	гупень						
0	0,00	106 806	39123	28,53	39,58	3047130	1548420	26,62
1	16,35	96130	35210	29,11	39,87	2798400	1403890	26,59
2	32,70	85455	31299	29,69	40,16	2537240	1257080	26,49
3	49,05	74760	27390	30,28	40,46	2263630	1107970	26,28
4	65,40	64084	23470	30,86	40,75	1977580	956570	25,94
5	81,75	53400	19560	31,44	41,04	1679090	802870	25,44
6	98,10	42723	15649	32,02	41,34	1368160	646880	24,71
7	114,45	32040	11740	32,61	41,63	1044780	488600	23,67
8	130,80	21361	7824	33,19	41,92	708960	328030	22,18
9	147,15	10680	3910	33,77	42,22	360700	165160	20,03
10	163,50	0	0	34,35	42,51	0	0	16,81

Таблица 13.2. Результаты расчета изменения центра масс ракетыносителя по времени полета

Координата центра масс ракеты по оси X подсчитывается по следующей формуле, справедливой для различных моментов времени:

$$x_{IIM}(t) = \frac{\sum_{A} m_i x_i + \sum_{B(O_{\mathcal{K}})} m_{O_{\mathcal{K}i}}(t) x_{O_{\mathcal{K}i}}(t) + \sum_{B(\Gamma)} m_{\Gamma i}(t) x_{\Gamma i}(t)}{\sum_{A} m_i + \sum_{B(O_{\mathcal{K}})} m_{O_{\mathcal{K}i}}(t) + \sum_{B(\Gamma)} m_{\Gamma i}(t)}, \quad (13.11)$$

где $m_{O_{\kappa i}}(t)$ и $m_{\Gamma i}(t)$ - масса окислителя и масса горючего в текущий момент времени t;

 $x_{O_{K}i}(t)$ и $x_{\Gamma i}(t)$ - координаты центров масс окислителя и горючего соответственно в этот же момент времени.

Аналогично рассчитываются центровочные ведомости для других ступеней ракеты. Учитывая, что $m_{o\kappa i}(t) = m_{o\kappa i} - \dot{m}_{o\kappa i} t$ и $m_{zi}(t) = m_{zi} - \dot{m}_{zi} t$, где $\dot{m}_{o\kappa i}$ и \dot{m}_{zi} - секундные расходы массы окислителя и горючего соответственно, а также, что знаменатель этой формулы представляет собой сумму составных частей ракеты (следовательно, массу всей ракеты) в текущий момент времени, можно эту формулу переписать следующим образом:

$$x_{LLM}(t) = \frac{\sum_{A} m_{i} x_{i} + \left[(m_{OK} - \dot{m}_{oKi} t) x_{OKi}(t) \right] + \left[(m_{\Gamma} - \dot{m}_{\Gamma i} t) x_{\Gamma i}(t) \right]}{m_{0} - \dot{m}_{T} t}, (13.12)$$

где m_{τ} - секундный расход топлива (окислителя и горючего вместе).

Продолжительность работы отдельных ступеней можно определить по соотношению

$$T_i = \frac{m_{T_i}}{m_{T_i}}$$
. (13.13)

Для приведенного в табл. 13.1 примера расчета эти характеристики получились следующими:

- секундные расходы топлива:

 $\dot{m}_1 = 892,54 \text{ kr/c};$ $\dot{m}_2 = 169,90 \text{ kr/c};$ $\dot{m}_3 = 15,72 \text{ kr/c};$

- время работы ступеней:

 $T_1 = 163,5 \text{ c};$ $T_2 = 259,0 \text{ c};$ $T_3 = 501,6 \text{ c}$.

По результатам расчета строится график изменения координаты центра масс ракеты по оси *x* в зависимости от времени полета. Пример такого графика приведен на рис. 13.3.

Далее можно несколько точнее оценить так называемый разбег центра масс и центра давления и скорректировать размеры конических частей корпуса ракеты или ввести в конструкцию стабилизаторы, решетчатые крылья или конусные юбки обтекателей двигателя.

Аналогично можно построить график изменения центра масс ракеты-носителя в зависимости от времени работы второй и последующих ступеней ракеты, как это показано на рис. 13.4.

Рис. 13.3. График изменения положения центра масс ракеты-носителя в зависимости от времени работы первой ступени

Рис. 13.4. График изменения положения центра масс ракеты-носителя в зависимости от времени полета трех ступеней

Контрольные вопросы

1. Для какой цели проводятся расчеты координат центра масс и моментов инерции, а также расчеты координат центра масс в зависимости от времени полета ракеты-носителя?

2. Приведите формы таблиц для расчета координат центра масс и моментов инерции ракеты/

3. Приведите систему координат и расчетные формулы для расчета центра масс ракеты относительно осей X_m , Y_m и Z_m .

4. Приведите систему координат и расчетные формулы для расчета моментов инерции относительно осей Y_m и Z_m ракеты.

5. Приведите систему координат и расчетные формулы для расчета моментов инерции ракеты.

6. Приведите расчетные формулы для расчета моментов инерции относительно центра масс ракеты (оси Y_{IIM}).

7. Приведите методику расчета координат центра масс ракетыносителя в зависимости от времени полета первой ступени (разделение масс ракеты на группы А и Б).

8. Приведите расчетные зависимости для расчета координат центра масс ракеты-носителя в зависимости от времени полета первой ступени.

9. Приведите формы таблиц для расчета координат центра масс ракеты-носителя в зависимости от времени полета первой ступени.

14. АВТОМАТИЗАЦИЯ ВЫБОРА ОСНОВНЫХ ХАРАКТЕРИСТИК РАКЕТ-НОСИТЕЛЕЙ

Очевидно, что чем большее количество возможных вариантов проектного облика PH рассмотрено, тем совершеннее может быть выбранный для реализации проект PH. Большое количество вариантов можно рассматривать только с помощью автоматизации проектных работ.

В данном разделе представлено программное обеспечение, с помощью которого можно автоматизировать процесс выбора основных характеристик проектируемых ракет-носителей² и сократить время начального этапа проектирования. Заставка программного обеспечения показана на рис. 14.1.

Рис. 14.1. Заставка программного обеспечения

Программное обеспечение разработано в системе программирования Delphi 7. Оно включает в свой состав частные программы, предназначенные для автоматизации следующих работ:

² В разработке данного программного обеспечения принимали участие аспиранты кафедры летательных аппаратов СГАУ К. Петрухина. А. Четвериков и дипломница И. Сидорова

- оптимального распределения массы ракеты-носителя по блокам и минимизации стартовой массы;

- расчета масс составных частей ракеты-носителя и предварительной массовой сводки;

- расчета положения координат центра масс и моментов инерции проектируемых ракет-носителей;

- поверочных расчетов характеристик движения РН.

14.1. Программа для оптимального распределения массы PH по блокам и минимизации стартовой массы

С помощью данной программы выполняются расчеты по оптимизации масс составных частей ракет-носителей при заданных удельных импульсах, конструктивных характеристиках ракетных блоков и схемы их соединения для различного количества ступеней.

Постановка задач и математические модели рассмотрены в разделе 8 настоящего учебного пособия. Некоторые окна пользовательского интерфейса программы приведены на рис. 14.2 – 14.3.

Выбор схемы соединения ракетных блоков осуществляется в окне программы, представленном на рис. 14.2.

Рис. 14.2. Окно программы для выбора схем соединения ракетных блоков

Ввод исходных данных и вывод результатов расчета производится в окнах программы, которые соответствуют схемам соединения ракетных блоков. Одно из таких окон показано на рис. 14.3. В этом окне представлены результаты оптимизации массы ракетных блоков и минимизации стартовой массы одного из вариантов двухступенчатой РН.

Cipletente. magine encode e	er songers sure file	×
Незед	Протокол расчета Загрузить	Banen
Оптимизация массы РБ Неза	анскичный поверачный расчит 1-й ст. Незавионный поверочный расчет 2-й ст. Графики	
	Введите исходные данные	
Масса полезной нагрузки: т	23.9 Кинструктиеная характеристика [10.963 Дольный интульс толина и денатерия РБ переой ступени, м	c (3043
Характеристическая скорость PH, м/с	19523 Конструктиеная характеристика ракятных блаков первой ступени, з2 двигаться блаков первой ступени, з2	4600
Метод оптимизации Г случайного псиска	Отношение тали 24 ступени и теле 1-й ступени	-
С перебора	Количество статистическии 1000000 🚊	
	Результаты оптимизации Рессигать	
Масса РБ переий ступени, т	360.301 Масса топлива РБ первой ступени, т 327.436 Масса конструкции РБ переой с	лупени, т 32.865
Масса РБ аторой ступени, т	154.290 Масса топлива РБ второй ступени, т 136.397 Масса конструкции РБ второй о	пулени, т 17.893
Стартовая масса РН э	538 391	
	Вспомогательные результаты	
	Отношения насова — x1 = 13.758 Количество случийных реализаций тоглява и масов ПН — x2 = 5.731 — уровлятериющих отраниенсени — Э	
		Далее

Рис. 14.3. Окно программы для оптимизации масс ракетных блоков РН

Данная программа использовалась для оптимизации массы одного из ранних проектных вариантов РН среднего класса повышенной грузоподъёмности. Внешний облик РН представлен на рис. 14.4, а результаты расчёта в табл. 14.1. Стартовая масса этого варианта РН составляла около 543 т, однако он не был реализован в связи с отсутствием отечественных кислородно-водородных двигателей достаточной мощности.

В связи с учётом применения существующих водородных двигателей, а также требований к районам падениям отработавших РБ, проектная масса РБ первой ступени составила 590,4, а второй -52,3 т. Общая стартовая масса этого варианта РН составила 673 т.

Рис. 14.4. Внешний вид РН

14.2. Программа для расчета масс составных частей ракеты-носителя и предварительной массовой сводки

С помощью этой программы выполняются расчеты масс составных частей РН при заданных геометрических характеристиках отсеков и внешнего контура. Математические модели рассмотрены в разделе 12 настоящего учебного пособия.

Окно программы «Проектировочный расчет масс составных частей ракеты-носителя» представлено на рис. 14.5. После выбора схемы РН вводятся исходные данные. При необходимости можно корректировать значения используемых коэффициентов и характеристик конструкционных материалов.

выбор схемы ракеты-носит	ЕЛЯ (ДВЫХСТУ	ПЕНЧАТАЯ РН С ПОСЛЕ ДОВАТЕЛЬНЫМ СОЕДІ	НЕНИЕМ РБ =		
ИСХОДНЫЕ ДАННЫЕ		PE 39 // DTATE PACHETA			
Crannead search ar	115150				
Схартовая масса, кл Масса полезной нагрузки, кл 9765		Предварительная м	ассовая сводка ракеты-		
		HOC	птеля		
Длина ракетыносителя м	35.575	T DU DU DU DU DU DU	The DH and an an an a DH a same as a sub-		
Диаметр ракеты носителя, м 266		совдинением РБ			
Козффициенты и карактерист	ики материалов	Ставтовая масса РН ис	113570		
		Полезная масса РН. кг	9765		
1-4-P6 2-4-P5		Масса головного обтекателя кг) 32		
Констрактивная характераттика	1369	Персый ракетный блок			
Manage parameters from a se	75446				
macca pakarnici o choka, io	2.00	Масса ракетного блока кг	74300		
Днаметр блока, м	2.00	Масса конструкции ко	~300 69975		
Отношична масс окис и горки	2.62	Масса окислиталя ко	50616		
Плотность окислителя кг/куб.м 1140 Плотность горкието, кг/куб.м 800		Масса горючего, кг	19319		
		Масса двигательной установки	кг 3254		
		Масса переходного отсека, кг	155		
Длина переходного отсека, м		Масса межбакового отсека, кг	140		
Desus semifiar concers as 0.92		Macca xeotrosoro otceka Kr	114 59		
	2 72	Месса нижного линица бака окис			
Длина явостового отсека м		Масса рбечайки бака окислител	18 KF 852	29	
Радиусы дниш баков м	24	Масса верхнего шпангочта бака	екислителя, кл 109		
Длина бака окислителя, м	8 573	Масса нижнего шпангоута бака	окислителя, кг 109		
Daws fava commercial	14 823	Масса верхнего днища бака горе	048F0.KF /9		
длянна рака горочего м		Масса нижнего днища бака гори	46FD, KF 88		
Двигательная чстановка		масса оречайки бака горючего.	KF 490		
 проектные параметры из 	вестные параметры	Масса нижнего ирангорта бака	горючего кг 140		
	1520	Масса магистрального трубопр	DB020, Kr 10		
Тягаденгательной установки кН 1720 Удельный импульс м/с 2005		Масса тоннельного трубопрово	DG, KF 12		
		ыторой рекатный блок			
			Det. PH		
Длнна голожного обтекателя, м	28	 How oparie i equiter privecaule seguerreptic. 			
Угол полураствора обтекателя, прак	40.0	Вывод результата в Word			
		in the second se	Deute		

Рис. 14.5. Окно программы «Проектировочный расчет масс составных частей ракеты-носителя»

Для этого необходимо нажать на кнопку «Коэффициенты и характеристики материалов». В результате появляется окно программы, показанное на рис. 14.6.

Расчет производится при нажатии кнопки «Расчет». Результаты расчета представляются в правой части окна, показанного на рис. 14.5. Результаты можно распечатать, нажав на кнопку «Печать», или сохранить, причем в текстовом редакторе Word, если нажать кнопку Вывод результатов в Word.

Козффициенты и характеристики материал	рл		
Казффициенты			
Козффициент превышения тяги деигателя на высоте	1.1	Коз ффициент пропорциональности диаметра тоннального трубопровода диаметру магистрального трубопровода	1.15
Колфонциент сухого отсека, учитывающий массу шпангоутов, люков и т.д.	1.5	Коз ффициент, учитывающий массу гофр и з лементов	1.1
Козффициент, учитывающий массу арматуры бака	1.2	 крепления магногрального трусокровода Коз ффициент безопасности 	1.3
Козффициент, учитывающий массу арматуры нижнего днища баха	1.2	—— Относительная масса двигательной чотановки (отношение веса двигательной установки к его тяти)	
Козффициент, учитывающий массу арматуры верхного онициа бака	1.2	Для переого ракетного блока	0 021
Корфонциент учитывающий элементы крапления	12		0.021
шпангодта бака	11.2	Для третьего ракетного блока	0.021
Эффективный угол атаки от порыва ветра, рад	015	Для четвертого ракетного блока	0.021
Характеристики материалов			
Плотность материала сухих отсеков, кг/куб.м	2700	Плотность материала топлиёныя отсеков, кг/куб.м	2700
8раменное сопротив, материала сухик отсеков, МПа	320	Временное сопротив материала топлиеных отсекое, МПа	320
		חג	[Cancel]
			·

Рис. 14.6. Окно программы «Коэффициенты и характеристики материалов»

Ниже в таблицах приведён пример расчета масс составных частей PH с последовательной схемой соединения ракетных блоков.

Исходные данные по массам и геометрическим характеристикам РН приведены в табл. 14.2, а по характеристикам отдельных блоков и их составным частям – в табл. 14.3. Все ракетные блоки РН имеют баки цилиндрической формы.

Результаты расчета некоторых геометрических характеристик составных частей ракеты-носителя представлены в табл. 14.4, а предварительная массовая сводка - в табл. 14.5.

Параметр	Значения
Стартовая масса РН, кг	163000
Масса полезной нагрузки, кг	4000
Длина РН, м	44
Диаметр головного обтекателя, м	3
Длина головного обтекателя, м	8,34

Таблица 14.2. Исходные данные по массам и геометрическим характеристикам РН
Таблица 14.3. Исходные данные по характеристикам составных частей ракеты-носителя

Характеристики ракетных блоков	РБ первой ступени	РБ второй ступени
Удельный импульс (на земле/в пустоте), м/с	3288/3590	
Конструктивная характеристика	16	10
Масса РБ, кг	130953	24844
Диаметр блока, м	3	3
Отношение масс окислителя и горючего	2,8	2,5
Плотность окислителя, кг/м ³	1140	1140
Плотность горючего, кг/м ³	780	780
Длина переходного отсека, м	0,967	0,967
Длина межбакового отсека, м	0,990	2,036
Длина хвостового отсека, м	3,548	2,075
Радиусы дниш баков, м	2,4	1,5
Длина бака окислителя, м	13,235	3,706
Длина бака горючего, м	6,860	2,263
Тяга ДУ, кН	1715	300

Таблица 14.4. Некоторые геометрические характеристики составных частей РН

Геометрические параметры, мм	РБ первой ступени	РБ второй ступени
Приведенная толщина переходного отсека	3,5	2,5
Приведенная толщина межбакового отсека	5	3
Приведенная толщина хвостового отсека	4	3,5
Толщина верхнего днища бака «О»	3	1,5
Толщина нижнего днища бака «О»	3,5	1,5
Толщина обечайки бака «О»	5	3
Толщина верхнего днища бака «Г»	4	1,5
Толщина нижнего днища бака «Г»	4	2
Толщина обечайки бака «Г»	5	3,5
Толщина стенки магистрального трубопровода	1	1
Толщина стенки тоннельного трубопровода	1	1

Таблица 14.5. Предварительная массовая сводка PH, полученная с помощью разработанного программного обеспечения

Параметр	Значения				
Стартовая масса РН, кг	158910				
Масса полезной нагрузки, кг	4000				
Масса головного обтекателя, кг	79	96			
Массовые характеристики ракетных блоков	РБ первой ступени	РБ второй ступени			
Конструктивная характеристика	18,30	12,84			
Масса ракетного блока, кг	129866	24248			
Масса конструкции, кг	7097	1889			
Масса топлива, кг	122768	22360			
Масса окислителя, кг	90461	15971			
Масса горючего, кг	32307	6388			
Масса двигательной установки, кг	1626	492			
Масса переходного отсека, кг	129	92			
Масса межбакового отсека, кг	189 233				
Масса хвостового отсека, кг	542	277			
Масса приборов, кг	917	174			
Масса верхнего днища бака «О», кг	77	69			
Масса нижнего днища бака «О», кг	90	69			
Масса обечайки бака «О», кг	1860	65			
Масса верхнего шпангоута бака «О», кг	119	60			
Масса нижнего шпангоута бака «О», кг	139	60			
Масса верхнего днища бака «Г», кг	103	69			
Масса нижнего днища бака «Г», кг	103	92			
Масса обечайки бака «Г», кг	887	0			
Масса верхнего шпангоута бака «Г», кг	159	60			
Масса нижнего шпангоута бака «Г», кг	159	79			
Масса магистрального трубопровода, кг	20	3			
Масса тоннельного трубопровода, кг	23	4			

14.3. Программа для расчета положения координат центра масс и моментов инерции РН

Математические модели для этой программы расмотрены в разделе 13 настоящего учебного пособия.

На рис. 14.7 представлено окно для ввода координат элементов в составе РН, а на рис. 14.8 – геометрические характеристики отдельных элементов.

Задать координаты Хі, м		_ [[] ×
Задайте расстояння Хі, м от н соответствующей составной ч	оска РН до пентра масс масти	
Полезная нагрузка	4.6	
Головной обтекатель	4.65	
1-ый РБ 2-ой РБ 3-ий РБ	1	
Группа А Переходный отсек	36.686	
Приборный отсек	20.10	
Верхнее днище бака О	37.886	
Обечайка бака О	42.986	
Нижнее днище бака ()	48.086	
Межбаковый отсек	49 086	
Верхнее днище бака Г	50 026	
Обечайка бака Г	51.786	
Нижнее днище бака Г	54.286	
Хвостовой отсек	56.286	
жрд	59.386	
Группа Б		
Окислитель	42	
Горючее	52	
	Назад Пр	инять

Рис. 14.7. Окно для ввода координат элементов в составе РН

Исходные данные по массам составных частей РН берутся из результатов расчета, полученных с помощью предыдущей программы (см. подраздел 14.2).

8 mm BH ++ 61.1	Головной обтекатель	
Диаметр РН_м 3.8	<i>Цилинаричаская тасть</i> : Внешний диаметр.м	4.35
	Внитренний онамато м	4.3
Полезная нагрузка	Program in	12
Диаметр.м (2.5	DBICUIA,M	
Высота,м 7	Коннеская часть; Рацис м	12.2
	Durana	2.2
	высота,м	1.2
-ый Рб 2-ой РБ		
Приборный отсек	Цилиндрическа	я часть бака
Внешний диаметр,м 3.В	Внешний диамет	пр.м 3.8
Внутренний диаметр.м 3.796	Внутренний диаг	метр,м 3.79
Высота,м 2	Высота,м	4.52
-		
- 20	Межбакаый ото	er
Внешний диаметр.м 3.0	 Внешний диамет 	р,м 3.8
8нутренний диаметр.м 3.796		метр,м 3,79
Высота,м 1.925	Яысота м	1.92
		•
Днища баков О и Г	Хасстовой отсе	SK
Радиус дниша.м	Внешний диаметр	JM 3.8
Высота,м 0.933	Внутренний диаме	тр.м 3.79
	Высота,м	3.77
Цилиндрическая часть бака О		
внешний диаметр.м 3.9	Дангатальная у Разнис м	становка
Внутренний диаметр, м 3.796	Prostan in	U.7
Высота,м 10.265	высота,м	3.1
Topowoo		
Голяноо		
38	3.8	
Циаметр И 1939	0,M	
" D	In arr	

Рис. 14.8. Окно для ввода геометрических характеристик отдельных элементов РН

Результаты расчета по координатам центра масс и моментов инерции выводятся в отдельном окне программы, представленном на рис. 14.9.

1	MLKE	XI.M	MING KETM	Mi202. Kr 112	Je work?	Xic. M	
Полезная нагрузка	Contra.	4 60	109480.00	503608 00	106480 21	56.50	
алсьной обтекатель	11807.4	4 65	54904 23	255304 68	184528.77	56 45	
Pynna A							
Приборный отсях	3897 60	36.69	78341 76	1574669.38	8781 34	.24.41	
Терекодный отсек	4158.02	2010	152541.25	5596128.36	8326.97	41 00	
Беркнее днище бака О	1254.53	37 89	47529 21	1800691 62	2895 94	23.21	
Эбечайка бака 🛙	14291.74	42 99	614344 70	26408221.26	151263 10	19.11	
Нижнее днише бака О	1277.34	48.09	61422 26	2953551.01	2949.61	13.01	
Межбаковый отсек.	3916.28	49 09	192234.42	9436018 80	8270 80	12.01	
Верхнее днище бака Г	1163.29	50 03	581 94 92	2911259.23	2686 25	11.07	
Збечанка бака Г	4163 12	51 79	215591 44	1116461816	14610.07	9.31	
нижнее днише бака Г	118610	54 29	64388.90	3495410.39	2738 92	6.81	
Каюстовой отсен	6382.08	56.29	359221 90	20219164 07	1 9086.60	4 81	
жрд	24583 49	59.39	1459914 91	86699507 07	16136.33	171	
Сунима по группе А	66273 60		3303725.58	172258239 30	237746 91		
gunna 6	1						لت ا
				_	Habar Pacien	1	Далее
	Mi, sr	Mit	í, KI'M	MirXir2, kr*m*2	JK. KI"H"?		
а по всем блоке	• [0	<u>l</u> ū		10	0		
а по Ри	35607.361825	10948	0	503608	106480.208333		
IM.M 3.07464508	11 мыңс 3	66995 856.	Jyumi	273476.06			

Рис. 14.9. Окно для вывода результатов расчета по координатам центра масс и моментам инерции РН

14.4. Программа для поверочных расчетов характеристик движения ракет-носителей

С помощью этой программы проверяется возможность достижения ракетой заданной высоты, скорости полёта в конце активного участка траектории при принятых характеристиках PH, включая количество ступеней, силы тяги двигателей и их изменение с высотой полёта, аэродинамические силы и др. Программа выполняет интегрирование упрощенных уравнений движения PH (2.24) – (2.26) с учетом кривизны поверхности Земли и приближенно-оптимальной программы угла наклона траектории. Интегрирование можно проводить либо методом Эйлера, либо методом Рунге-Кутта 4-го порядка. Окно программы появляется после выбора соответствующей схемы соединения ракетных блоков (см. рис. 14.2), перехода в окно «Выбор массогабаритных характеристик PH» (см. рис. 14.3) и перехода на закладку «Поверочный расчет».

Одна из таких закладок представлена на рис. 14.10. На ней имеются поля для ввода исходных данных и вывода результатов расчета, а также для вывода вспомогательных результатов, которые используются в процессе верификации программы. Все поля окна имеют соответствующие названия. Исходные данные можно вводить самостоятельно или загружать из файла, если предварительно такие файлы были созданы.

										أنجذب			
Докан										Д	998.0		
Оптимизация массы РБ - Независимый пов	ерочный расчет	1-9 01 +	105004000400	поверач	ный расчет	2001							
Ваод искодных данных		1.0	Н, м	. н	Tela rpad	TerallVJ	Xa kH	V. w/c	аЛа	rer ég	m1.r	1	+
Macciel Xaowu BU Urmu I Blar narsera	(finaccessor)	131	45355.74	52339.3	26 13365/	11769433	32859.4	5 1727 70	2908 CE	1.3 81754	0, 314 27	0	
Management of the second second		132	46131.49,	53912.7	25 86125	11769706	31513.3	3 1761 20	2 279352	71 3 05559	19: 310 37	0	
масса полизная нагрузки, т	18	122	46914 550	55520.0	25 59394	11769979	29992.2	11795.23	46,2663.05	21 3 91484	9, 305 47	.0	
Macca ronomismo offer are ne. 1	1.2	134	47705 00	571615	25 33163	11770054	28284 5	9 1829 78	212515.42	6.395536	8 302 57	0	
Масса перечозного отсека с адитерон, т	03	135	48502 921	58837.9	25 07426	11770231	26378.3	2 1864 90	41 2349 55	214 01720	298.67	0	
Масса конструкции ракитист о блока	FT 27	136	49 309 376	60549.7	34 82176	11720409	24260.5	1900 5/	212164/21	6.4.02043	57 294 77	10.	
Hand Barrison and The Lower service	The second secon	137	58121 451	52297 4	24 57406	11770589	22145 4	91 1936 65	211978-49	7:412506	0 290 87	0	
марса топлина в лю тна ступени т	1826	138	50942.35.0	64091 5	.4 33109	11770758	21168 7	2 1973 71	3 1894 00	6 4 18118	01 285 97	15	
Масса в онструкани РБ 2-й ступени т	11	139	51770 (8)	5 50978	24 (19278)	11770955	20070.6	512011-12	91799.14	1.4 23882	212 283 07	9	
Marca	-	140	5,2607-43.	677615	23 659082	11770953	18843.2	3-2049.28	61 1690 74	414 29907	3 279 17	0	
Масса тапинва в Ръ 24 ступени т	131.4	141	53452.010	69558 5	23 62992	11771052	17477 9	3 2087 99	1: 1570-40	814 35900	6.275.27	n	
		142	54304.71	11554.3	23 40525	11771151	15365.6	71 2127 37	11 14:36 42	674 40168	2, 271 37	0	
мезультаты расчета		143	55165.6%	7 356 9 6	23 18499	11771253	14509 7	7+ 0167 42	401307.20	074 49615	9 267 47	.0	
Стартвая масса РН. т	825 17	144	56035 040	75595 U	22 96910	11771348	13840 1	71_2208.16	8 1248 52	414 55261	6: 263 57	υ.	
Контексе значение угла тангажа к	0.857%	145	56912 920	72641.1	22 75752*	11771397	13089 56	5. 2243 61	9 1182 32	5' 4 62101	3 259 67	. D	
местному горизонту, грав	Instantia	146	57799.46	79738.6	22 55020	11771449	12252.44	1 2291 79	6/11/08/10	414 69149	5: 255 77	0	
High a normal (separate sector eccard)	3876 234	147	53694 8113	81 878 3	22 34708	11771503	11322.9	51 2334 72	21025-30	6 4 76416	11 251 87	đ	
		148	59599 121	8 05018	22 1481 04	11771557	10294 84	: 2379 41	8, 933 341	0 4 83311	Э 247 97	0	
Потеря скарости 1-й ступени РН от	11724 544	149	60512 564	6286.9	21 95323.	11771611	9523-100	3. 2422 90	8 864 856	8, 4 91646	O 244 07	0	
account part apoint card, they part	FILLOW	150	61435 301	885573	21.76241	11771653	8929.38	5. 2468 21	41.815.049	214 99631	3.24917	à.	
Потеря скарости 1-й ступены РМ от авйств аводенными сил V1a м/с	11/ 5433	151	62367 52.9	90872.8	21 57559	11771684	8369 469	9 2514 36	2+761-452	51 5 07879	9 238 27	0.	
Contents of concerns 1.0 of contents PM of		152	63309.4115	93234.2	21.39274	11771716	7692 524	2561 37	8 700 655	11 5 16405	3/232/37	0	
противодани на срезе солна динг V10. на/с	6 22243	153	64261 1815	5642.4	21 21390	11771749	6944 416	2609.29	01633218	21 5 25221	8 228 47	0	
Скорость РН в комие участка полета 1 А ступены, ни/с	2707 924	154	65.223 0.215	38038.2	21.03873	11771781	6230 573	265812	9 569 931	2. 5 34344	51 224 57	0	-
Вречня работы ДУ 1-й ступени, с	154 615	4											<u>.</u>
Консиное значение угла кривноны, град	0 904740					Has	1 20	Pac	- 1	Дал			

Рис. 14.10. Окно программного обеспечения, открытое на закладке «Независимый поверочный расчет 1-й ступени»

На рис. 14.11 приведены фрагменты интерфейса для ввода исходных данных на внутренних закладках. Результаты появляются после нажатия кнопки «Расчёт». 294

Массы Харжи ДУ Углы Шаг Дроссел Геонетр	Массы Харжи Д9 Углы Шаг Д	Дроссел Геометр
Максиинальное значение угла атаки при начале гравитационного разворота, град 1.6	Начальная тяга ДУ 1-й ступени Іна поверхности Землян, то	916.5
Массы Харжи ДУ Углы - Шаг - Дроссел Геомет	Тага ДУ РБ 1-й ступени в пустоте, то Р Раскод топлива РБ 1-й ступени, кг/с	3012 45
Mac Decutta no somethin c	сы Харжы ДУ Уллы Шал Дросс	сел Геометр.
Mac	са полезной нагрузки, т	23.8
Численное интегрирование Мак	са головного обтекателя, т	38
Mac Marcal Shinepa	са переходного отсека с адаптером, т	0.3
С метод Рунге-Кутта Ма	сса конструкции РБ 1-й ступени, т	5/0.4
Mac	са топлива в РБ 1-й ступени, т	540
Mac	са конструкции РБ 2-й ступени т	58
Mac	са топлива в РБ 2-й ступени, т	46.5

Рис. 14.11. Фрагменты интерфейса окна программы для ввода исходных данных по характеристикам ракеты-носителя

В результате расчётов определяются параметры движения РН и, в частности, скорость ракеты в конце активного участка траектории и высота полета, строятся графики изменения проектных и баллистических параметров ступеней ракеты-носителя в зависимости от времени движения. Кроме того, предусмотрена возможность сохранения исходных данных и результатов расчета в текстовые файлы и их загрузки. Результаты расчета появляются в левой нижней части окна и в специальном поле окна в виде таблицы (см. рис. 14.10).

После выполнения расчетов для всех ступеней PH на закладке «Графики» можно увидеть графическое представление результатов расчета. Некоторые из таких графиков приведены на рис. 14.12 (графики зависимостей массы PH, высоты полёта, дальности полёта, угла наклона траектории, скорости, скоростного напора от времени полета PH). Результаты расчета можно просмотреть также в протоколе расчета. При желании протокол расчета можно запомнить или распечатать.

Если заданные тактико-технические характеристики не достигаются, то производится коррекция массогабаритных и энергетических характеристик ракеты.

Данное программное обеспечение имеет модульную структуру и открыто для дальнейшего совершенствования.

Рис. 14.12. Графики зависимостей высоты полета, угла наклона траектории, скорости и скоростного напора от времени полета РН

14.5. Разработка циклограммы запуска ракеты

По результатам поверочного расчёта составляется циклограмма запуска РН. Такая циклограмма оформляется в виде рисунков основных этапов полета РН (старт, отделение первой ступени, сброс головного обтекателя и т. д.), расположенных в характерных точках траектории полёта РН, с приведёнными характеристиками движения. Пример такой циклограммы представлен на рис. 14.13.

Рис. 14.13. Циклограмма запуска PH «Рокот» с южнокорейским спутником Kompsat 2 [67].

15. МЕТОДИКА РАЗРАБОТКИ ТВЕРДОТЕЛЬНЫХ МОДЕЛЕЙ РАКЕТ-НОСИТЕЛЕЙ

Разработка проектного облика ракеты-носителя в системе твердотельного моделирования является лишь одним из этапов в цепи автоматизации проектных и конструкторских работ. На основе этого проектного облика в дальнейшем разрабатывается конструкция всех составных частей ракеты. Твердотельные модели используются в качестве основы для построения конечно-элементных моделей и проведения расчетов на прочность, аэродинамических расчетов, расчетов тепловых потоков и тд. Эти же модели используются для технологической подготовки производства, а также для решения многих других вопросов, возникающих в процессе жизненного цикла сложных технических изделий.

15.1. Информационная поддержка жизненного цикла изделий

Сведения о CALS -технологии

В настоящее время проектирование, создание и эксплуатация наукоемких промышленных изделий (ракет-носителей, космических аппаратов и др.) немыслимы без так называемых CALS -технологий.

Термин CALS (Continuous Acquisition and Lifecycle Support — непрерывная информационная поддержка поставок и жизненного цикла) означает совокупность принципов и технологий информационной поддержки жизненного цикла продукции на всех его стадиях. Русскоязычный аналог понятия CALS — Информационная поддержка жизненного цикла Изделий (ИПИ).

CALS-технологии состоят из нескольких основных методов, реализованных в соответствующих автоматизированных системах, которые укрупнённо соответствуют трем группам:

- CAD – (Computer Aided Design) - компьютерные системы автоматизированного проектирования; - САМ – (Computer Aided Manufacturing) - системы автоматизированной подготовки производства;

- CAE – (Computer Aided Engineering) - системы инженерных расчетов и т.п.

Иногда CALS-технологии называют CAD/CAM/CAE - технологиями.

Среди наиболее распространенных систем информационной поддержки жизненного цикла изделий, получивших мировое признание, следует отметить следующие системы: Pro/Engineer, Unigraphics, CATIA и др.

Сведения о РОМ-системах

Одной из ключевых составных частей CALS-технологий является технология PDM (Product Data Management). PDM-технология это технология управления всеми данными об изделии и информационными процессами жизненного цикла изделия. PDM-технология является основой при построении единого информационного пространства для всех участников жизненного цикла изделия.

Наибольший выигрыш от использования PDM-системы лежит в двух областях:

- сокращение времени выхода изделия на рынок;

- повышение качества изделия.

Для реализации PDM-технологии существуют специализированные программные средства, называемые PDM-системами. PDMсистемы, т.е. системы управления данными об изделии, представляют собой новое поколение компьютерных средств для управления всеми связанными с изделием данными и информационными процессами ЖЦ.

Среди задач РDM-системы можно выделить две основные:

- PDM-система как средство интеграции данных на протяжении всего жизненного цикла изделия;

- PDM-система как рабочая среда пользователя.

Данные об изделии включают:

- состав и структуру изделия, геометрические данные, чертежи,

- планы проектирования, планы производства, спецификации, нормативные документы, программы для станков с ЧПУ, результаты анализа, корреспонденцию, данные о партиях изделия и отдельных экземплярах изделия и др.

Основной задачей PDM-системы как рабочей среды сотрудника предприятия является обеспечение доступа сотрудника к нужной ему информации в нужное время в нужной форме.

Это означает, что сотрудник предприятия в процессе своей работы должен постоянно находиться в PDM-системе, а система, в свою очередь, обеспечивать все потребности сотрудника, начиная от просмотра спецификации узла и кончая изменением твердотельной модели детали или утверждением измененной детали начальником.

Рабочая среда сотрудника содержит следующие функции PDMсистемы:

- управление хранением данных и документов;

- управление процессами;

- управление структурой и составом изделия;

- классификация;

- календарное планирование и др.

PDM-система обеспечивает поиск: по значениям свойств (с заданными идентификаторами или характеристиками), по хранящимся в системе документам, по расположению геометрических объектов твердотельной модели изделия.

При управлении доступом к данным в хранилище PDM-система должна осуществлять авторизацию этого доступа. Помимо процедур идентификации и аутентификации пользователя, входящего в систему, существует два направления авторизации доступа: по правам пользователей и по статусу данных.

Среди функций управления процессами можно выделить три основные группы:

-управление работой (эти функции касаются того, что происходит с данными, когда кто-либо над ними работает);

- управление потоком работ (эти функции управляют передачей данных между людьми);

- протоколирование работы (эти функции отслеживают все события и действия, которые происходят при выполнении первых двух групп функций в течение всей истории проекта).

Управление структурой и составом изделия возможно потому, что PDM-система хранит информацию о входящих в состав изделия компонентах, конфигурациях изделия, а также предоставляет воз-300 можность редактирования состава изделия (обычно с применением графического интерфейса, моделирующего конструкторский граф).

Классификация – это функция PDM-системы, с помощью которой можно значительно упростить поиск изделий, отвечающих определенным характеристикам, например документы, чертежи, трехмерные модели, технические публикации и др.

Календарное планирование – это функция PDM-системы, с помощью которой осуществляется автоматизированное разбиение всего проекта на совокупность задач и предоставляется возможность задания взаимосвязей между различными задачами, распределения имеющихся ресурсов по задачам, а также отслеживания хода выполнения отдельных задач и проекта в целом и выявления аномалий.

Системы твердотельного моделирования

Существуют системы твердотельного моделирования, встроенные в большие интегрированные системы Pro/Engineer, Unigraphics, САТІА и др. Они дорогостоящи, требуют для своей работы мощных компьютеров. Для проведения твердотельного моделирования можно использовать и специальные системы (относящиеся к CAD - системам), разработанные как самостоятельные продукты для твердотельного моделирования, например, SolidWorks, Компас и др.

С методической точки зрения не столь важно, какую систему изучать, лишь бы она была общепризнанной. Принципы твердотельного моделирования у многих систем схожи. Освоив одну систему, можно относительно быстро перейти на другую.

15.2. Особенности разработки твердотельных моделей ракеты

Твердотельное моделирование ракеты и ее составных частей предполагает наличие навыков работы в соответствующей системе. Однако, имея соответствующие навыки в моделировании общетехнических систем, не всегда удается грамотно построить модели отсеков ракет-носителей. Так, в ракете присутствуют тонкостенные подкрепленные и неподкрепленные оболочки вращения, которые требуют особых подходов при разработке твердотельных моделей. При этом следует учитывать функциональные особенности этих отсеков, в частности наличие систем крепления и разделения составных частей ракеты. Обязательно должны быть предусмотрены технологические членения отсеков ракетных блоков и учтены технологические вопросы изготовления элементов и их сборки.

Общие методические рекомендации

Допускается на первых этапах строить упрощенные отсеки и узлы, которые будут детализироваться на более поздних этапах проектирования.

1. Прежде чем приступить к твердотельному моделированию, рекомендуется сначала вспомнить конструктивные схемы соответствующих отсеков, посмотрев, например, учебное пособие [33].

2. Желательно освоить какую-либо систему твердотельного моделирования по встроенным учебным пособиям, а также ознакомиться с материалами источника [59], где описаны методы построения твердотельных моделей ракет-носителей.

3. Рекомендуется для моделирования каждого отсека ракетыносителя составлять план действий. При составлении плана следует использовать альтернативные возможности систем твердотельного моделирования, касающиеся последовательности построения твердотельной модели какой-либо сборки:

- создаются модели всех деталей, а затем производится их сборка путем сопряжения отдельных деталей;

- создаются модели некоторых основных деталей, а затем производится построение моделей остальных деталей в сборке.

4. Процесс освоения технологии твердотельного моделирования различных отсеков PH рекомендуется начать с освоения методик построения простых (упрощенных) моделей отсеков ракеты, а затем модернизировать эти модели, учитывая ошибки, которые неизбежно возникают на начальных стадиях освоения методики создания твердотельных моделей тонкостенных конструкций с учетом особенностей конструкции отдельных узлов и сочленений.

5. Необходимо предусматривать возможность сопряжения (в дальнейшем) разработанных отсеков с другими отсеками РН.

6. При моделировании необходимо использовать форму и размеры составных частей РН в соответствии с компоновочной схемой.

7. Желательно предусмотреть возможность быстрого изменения габаритов отсеков РН путем связывания отдельных размеров (модернизация твердотельных моделей РН).

Пример изменения габаритов цилиндрической обечайки с помощью параметрического моделирования иллюстрируется рис. 15.1.

Рис. 15.1. Варианты изменения габаритов твердотельной модели цилиндрической обечайки

При построении моделей отдельных деталей, представляющих собой тела вращения, можно использовать несколько путей.

1. Строится сечение тела вращения, а затем производится построение этого тела путем вращения его сечения.

2. Строится цилиндрическое тело, а затем из него вырезается «лишний» материал.

3. Строится цилиндрическое тело с высотой, равной толщине будущей оболочки, а затем плоская грань цилиндра преобразуется в часть сферы.

4. Строятся плоские листовые детали (заготовки), а затем используется операция «сгиба» с различными радиусами.

При построении тонкостенных элементов иногда весьма эффективно использование опции «тонкостенный элемент».

Следует заметить, что идеология твердотельного моделирования предполагает разработку сначала твердотельной модели, а затем автоматизированное построение чертежей.

Рассмотрим подробнее методики разработки твердотельных моделей отсеков различных типов и других составных частей РН.

15.3. Разработка моделей отсеков ракетных блоков

15.3.1. Разработка моделей топливных баков

При составлении плана построения бака следует использовать следующие альтернативные варианты.

1. Сначала создаются модели шпангоутов, днищ, обечаек и др., а затем производится сборка деталей бака путем их сопряжения.

2. Сначала создаются модели шпангоутов. Они вставляются в сборку, затем производится построение днищ, обечаек и других деталей бака непосредственно в сборке.

3. Сначала создается модель обечайки, она вставляется в сборку, затем производится построение шпангоутов, днищ и других деталей бака непосредственно в сборке.

В качестве примера на рис. 15.2 представлены отдельные твердотельные модели составных частей бака: днища, шпангоуты и обечайка.

Рис. 15.2. Основные детали для сборки цилиндрического бака

Для сопряжения деталей бака рекомендуется использовать осевые линии осесимметричных моделей и их торцевые плоскости. Чтобы исключить осевое вращение моделей сборки, следует осуществить сопряжение соответствующих плоскостей деталей.

На рис. 15.3 представлены твердотельные модели баков с тоннельным трубопроводом. На рис. 15.3 *а* переднее днище и обечайка бака для наглядности показаны полупрозрачными. На рис. 15.3 *б* бак показан в разрезе.

Рис. 15.3. Твердотельные модели баков

Модель кольцевого бака строится из двух моделей цилиндрических оболочек (внешней и внутренней) и двух днищ, представляющих собой оболочки в виде половинок тора. Составные части кольцевого бака показаны на рис. 15.4.

Рис. 15.4. Основные детали для сборки кольцевого бака

15.3.2. Разработка моделей сухих подкрепленных отсеков

Рекомендуется сначала выбрать конструктивную схему сухого отсека для реализации в системе твердотельного моделирования. При составлении плана построения сухого отсека рекомендуется использовать следующие варианты. 1. Создаются модели шпангоутов, стрингеров, обечайки и др., а затем производится сборка деталей сухого отсека путем сопряжения отдельных деталей.

2. Создаются модели шпангоутов, они вставляются в сборку, затем производится построение обечайки, стрингеров и других деталей бака непосредственно в сборке.

3. Создается модель обечайки, она вставляется в сборку, затем производится построение шпангоутов, стрингеров и других деталей бака непосредственно в сборке.

4. Построение сначала сборки обечайки со шпангоутами, а затем построение стрингеров, используя возможности системы твердотельного моделирования для построения ребер.

В качестве примера на рис. 15.5 представлены отдельные твердотельные модели составных частей сухого отсека: стрингера, шпангоута и обечайки.

Рис. 15.5. Основные детали для сборки сухого отсека

На рис. 15.6 представлены твердотельные модели сухих отсеков в сборке. Следует отметить, что методика построения шпангоутов и цилиндрической обечайки для сухих отсеков такая же, как и для баков (см. предыдущий пункт). Что же касается построения стрингеров, то на начальном этапе допускается упрощенное построение в виде уголка без подсечек. В этом случае при сборке модели стрингеров и шпангоутов могут пересекаться между собой.

Рис. 15.6. Твердотельные модели сухих отсеков

15.3.3. Разработка моделей ферменных конструкций

Для реализации моделей ферменных конструкций используются возможности системы твердотельного моделирования в части технологии построения трехмерных эскизов.

Прежде всего необходимо выбрать конструктивную схему ферменной конструкции для реализации и составить план построения модели. При составлении плана рекомендуется использовать следующие варианты.

1. Создаются модели опор, стержней и др., а затем производится их сборка путем сопряжения отдельных деталей.

2. Создаются модели опор и заготавливается трехмерный эскиз осевых линий ребер. Опоры вставляются в сборку (в места, определенные трехмерным эскизом), затем производится построение стержней и других деталей фермы непосредственно в сборке.

При построении эскизов на плоскостях, перпендикулярных наклонным стержням, использовать опции системы твердотельного моделирования, связанные с преобразованием плоскостей.

3. Создается трехмерный эскиз осевых линий ребер и модели стержней. Стержни вставляются в сборку (в места, определенные трехмерным эскизом), затем производится построение опор и других деталей фермы непосредственно в сборке.

На рис. 15.7 представлена твердотельная модель фермы, справа показаны увеличенные опоры фермы.

Рис. 15.7 Твердотельная модель фермы

15.3.4. Разработка моделей элементов крепления двигателей

При составлении плана использовать следующие пути построения сборок.

1. Создаются модели камеры сгорания с обечайкой сопловой части двигателя, опор, стержней и др., а затем производится сборка деталей двигателя путем сопряжения отдельных деталей.

2. Создаются основные детали (например, опоры и камеру сгорания с обечайкой сопловой части двигателя), помещаются в сборку, а затем достраиваются недостающие детали непосредственно в сборке (например, соединительные стержни рамы), используя возможности построения трехмерных эскизов.

При построении эскизов на плоскостях, перпендикулярных наклонным стержням, необходимо использовать опции, связанные с преобразованием плоскостей.

На рис. 15.8 представлены варианты упрощенных твердотельных моделей сборок двигателей и хвостовых отсеков РН в различных ракурсах и сечениях.

Рис. 15.8. Твердотельные модели сборки крепления двигателей и хвостового отсека

15.4. Разработка моделей космических головных частей

Элементы космической головной части представляют собой все те же тонкостенные подкрепленные конструкции. Поэтому на методике построения КГЧ останавливаться не будем.

Так как РН предназначена для запуска полезных нагрузок различного типа, то сборку полезной нагрузки заимствуют или строят в упрощенном виде, обеспечивая узнаваемость по внешнему виду (КА «Зенит», КА «Союз», блоки международной космической станции, космический аппарат наблюдения или связи, космический комплекс для полета к Луне и планетам и др.). На рис. 15.9 *а* представлена упрощенная модель полезной нагрузки (прототип КА «Зенит»).

При составлении плана рекомендуется использовать следующие пути разработки моделей.

1. Строить сначала подсборки (створки головного обтекателя, космический аппарат, переходный отсек и др.), а затем строить сборку в целом путем сопряжения отдельных деталей.

2. Строить сначала модели створок головного обтекателя, как это показано на рис. 15.9 б, и переходного отсека, поместить их в сборку, а затем достроить недостающие части (например, космический аппарат) непосредственно в общей сборке.

Для пилотируемых КА необходимо предусматривать установку двигателей системы аварийного спасения, если таковая не предусмотрена в самом пилотируемом космическом аппарате.

Рис. 15.9. Модели полезной нагрузки и створки ГО

На рис. 15.10 представлены твердотельные модели различных космических головных частей (с разгонным блоком и без него) в различных ракурсах (внешний вид и в разрезе).

Рис. 15.10. Твердотельные модели космических головных частей

15.5. Разработка модели ракеты космического назначения

15.5.1. Сборка ракетных блоков

Твердотельные модели ракетных блоков (РБ) разрабатываются на основе использования построенных отсеков ракеты-носителя: баков, сухих отсеков, ферменных конструкций, двигателей с фермами крепления и переходных отсеков с полезной нагрузкой и створками головного обтекателя.

Строится сначала какой-либо один РБ, например первой ступени. Для построения одинаковых РБ используются возможности копирования (размножения). Для построения РБ второй и последующих ступеней рекомендуется использовать копирование уже созданной модели ракетного блока (если конструкции РБ подобны) и дальнейшая модернизация этой модели путем изменения размеров (или на основе параметрической связи отдельных размеров).

На рис. 15.11 в качестве примера представлены твердотельные модели ракетных блоков (без разреза и с разрезом).

Рис. 15.11. Твердотельные модели ракетных блоков

15.5.2. Сборка ракеты и создание анимационной картины разделения составных частей РН в полёте

Для сборки ракеты космического назначения должны быть созданы твердотельные модели всех составных частей ракеты, как это схематически показано на рис. 15.12.

Рис. 15.12. Твердотельные модели составных частей ракеты

Сборка ракеты осуществляется путем сопряжения отдельных частей. При этом, как упоминалось, створки головного обтекателя не должны сопрягаться с разгонным блоком и космическим аппаратом.

На рис. 15.13 и 15.14 представлены примеры твердотельных моделей ракет-носителей различной конфигурации.

Рис. 15.13. Твердотельные модели РН тандемной и пакетной схем

Рис. 15.14. Твердотельная модель РН с двумя боковыми блоками

В дальнейшем рекомендуется построить основные элементы системы крепления и разделения створок головного обтекателя, разгонного блока (если он предусмотрен в компоновочной схеме) и космического аппарата. На начальных этапах проектирования строить рекомендуется только относительно крупные элементы, такие как толкатели створок головного обтекателя, ракетные двигатели для разделения этих створок, пирозамки крепления космического аппарата на переходном отсеке, толкатели створок ГО или космического аппарата и т.п.

Системы твердотельного моделирования позволяют создавать анимационные ролики. При необходимости можно разработать анимационную компьютерную картину отделения ракетных блоков нижних ступеней, сброса створок головного обтекателя и отделения полезной нагрузки от ракеты-носителя. Эту картину в дальнейшем следует разработать подробнее в части работы средств разделения.

15.6. Определение геометрических и массоинерционных характеристик конструкции ракеты-носителя в системе твердотельного моделирования

Одним из существенных преимуществ построения моделей ракет-носителей в системах твердотельного моделирования является то, что масса, центровочные и инерционные характеристики подсчитываются автоматически. На рис. 15.15 *а* представлено окно системы твердотельного моделирования SolidWorks, иллюстрирующее возможности измерения различных геометрических характеристик деталей и сборок.

			Ropost (
			Единицы измерения Единица измерения длины	
			Сантиметры	
			С Десятичные 2	
			· · ·	7
		I		
eports.		_ X	Начиная система	
I NTPOR	scë			
Зыбранные з лементы	Проекция на		Единица измерения угла	
рань (1@шилино-1)	G 3KDAH		Грацисов	
Грань (2@вери1)	C naperomy/rpase		1. parageon	
	Thockocreat panel		Десятичные 2	
Значения			Просмотреть настройки измерения	
Расстояние 400 00мм	-	2010100	Просмотреть глобальные настройки	
Проекция: 348 74мм		Закрыв	С. Поосмотреть параметры по имолуанию	
Пермально, (эр.этмм)			ripeoneripero resperioriparito grientatione	
Дельта Y: 400.00мм	_	Параметры	Свойства материала	
Дельта Z: 0.00мм	*		5	
-1	- 67	Lfipaðka	Платно 10.001 грамими з	
C	_			
тивная система координат:	— по ямолчанию	<u> </u>	ОК Отмена Справка	

Рис. 15.15. Окна для измерения геометрических характеристик моделей и задания плотности конструкционных материалов

a)

Для определения массы основных элементов, координат центра масс и моментов инерции необходимо в процессе построения моделей задавать плотности материалов соответствующих элементов конструкции. На рис. 15.15 б представлено окно для задания плотности конструкционных материалов.

Для определения массы приборов можно вводить значения средней плотности блоков бортовых систем. Данные по массам, центро-

б)

вочным и инерционным характеристикам будут автоматически получены самой системой твердотельного моделирования. Проектанту остается лишь вызывать соответствующие справочные окна, где имеются результаты расчета масс. Для этого достаточно лишь кликнуть мышкой на кнопку "массовые характеристики". Появляется окно, показанное на рис. 15.16.

§ « Массовые характе	ристики
Печать. Копиров	ать Закрыть Параметры. Пересчитать
Активная система координат	- по умалланию – 📃 💌
Выбранные з лементы:	
Активная система коорд	инат – по умолчанию
Масса = 7712501.88 грам	BOWI
Объем = 7712501875.49 г	кубических Миллиметры
Площадь поверхности =	865802212 15 квадратных Миллиметры
Центр масс: (Миллимет) X = -5.58 Y = 900.13 Z = -0.78	[Iel
Основные оси инерции и	основные моменты инерции: (граммов * квадратных Миллиметрь
$\begin{aligned} & \text{Ix} = (0.03, 1 \ 00, -0 \ 07 \\ & \text{Iy} = (0.17, 0.06, 0 \ 98) \\ & \text{Iz} = (0.39, -0.04, -0.16) \end{aligned}$) Px = 179576206583335.62 Py = 182819576060297.50 5) Pz = 182997210886614.03
Моменты инерции: (грам (@центр масс, выровнен Lxx = 1829886120635 Lyx = 114347323692. Lzx = 21147533899.1	инов * квадратнык Милличиетры] I.с. системой координат] 112.91 Lxy = 11.4347323692.53 Lxz = 211.47533899.11 53 Lyy = 1795956655256489.53 Lyz = -225458059370.09 1 Lzy = -225458059970.09 Lzz = 182808716208035.75
Моменты инерции: (тран Вычисляется с помощыс Іхи = 1892376151020 Іух = 75613228256.46 Іхх = 2118104085714	анов * ка. Миллинитры) активной системы координат. 10.31 kw = 75613228256.48 kz = 21181040857 14 јув = 17959510028005 34 југ = -230663760644.55 јгув = 230863760644.55 јгг = 189057954661229.19
•	_

Рис. 15.16. Окно для измерения массоцентровочных и инерционных характеристик РН

Следует отметить, что корректными массы будут лишь в том случае, если корректно назначались геометрические сечения отсеков и элементов подкрепления. Геометрические же сечения можно подобрать после предварительного расчета масс конструкции.

Поэтому определение массы основных элементов, координат центра масс и моментов инерции ракеты с помощью системы твердотельного моделирования рекомендуется проводить лишь тогда, когда уточнены геометрические параметры моделей и характеристики выбранных материалов.

В заключении данного раздела отметим, что процесс автоматизированного проектирования должен быть построен таким образом, чтобы результаты одного этапа проектирования можно было использовать с минимальной дополнительной обработкой на следующем этапе. В частности, геометрическая модель, построенная в CADсистеме (например SolidWorks), должна являться моделью с исходными данными для конечно-элементного анализа силовой работы конструкции (например, в системе MSC.Nastran). Желающих более подробно изучить вопросы конечно-элементного моделирования конструкций PH отсылаем к учебному пособию [63].

Контрольные вопросы

1. Что такое CALS -технологии?

2. Что такое PDM-системы?

3. Назовите основные большие интегрированные системы информационной поддержки жизненного цикла изделий.

4. Особенности разработки твердотельных моделей ракеты.

5. С какой целью рекомендуется составлять план построения сложных элементов конструкций и их сборок?

6. Приведите методику разработки моделей топливных баков.

7. Приведите методику разработки моделей сухих отсеков.

8. В чем состоят особенности разработки моделей ферменных конструкций?

9. Приведите методику разработки моделей двигательных отсеков.

10. В чем состоят особенности разработки твердотельных моделей космической головной части?

11. Расскажите о последовательности и особенностях разработки твердотельных моделей ракеты-носителя в целом.

12. Расскажите об особенностях расчета координат центра масс и моментов инерции в системе твердотельного моделирования Solid-Works.

16. КОСМИЧЕСКИЕ РАЗГОННЫЕ И АПОГЕЙНЫЕ РАКЕТНЫЕ БЛОКИ

Расширение номенклатуры решаемых задач существующими ракетами-носителями при запуске космических грузов различного назначения привело к созданию нового типа ракетных блоков верхних ступеней РН - космических разгонных и апогейных блоков. В технической литературе иногда их называют разгонными блоками или блоками выведения.

16.1. Космические разгонные блоки

Основные отличия космических разгонных блоков (КРБ) от обычных ракетных блоков состоят в том, что КРБ должны обеспечивать возможность осуществления сложных пространственных маневров в космосе, двигатели разгонных блоков должны запускаться многократно, после завершения работы КРБ должны осуществлять маневры для схода с орбиты и захоронения. Поскольку КРБ должны находиться в открытом космосе относительно длительное время, то они должны содержать в себе бортовые обеспечивающие системы, характерные для космических аппаратов, а именно: систему электропитания, терморегулирования, ориентации и стабилизации и др.

По сути, космические разгонные блоки представляют собой нечто среднее между обычными ракетными блоками и космическими аппаратами.

Выбор компоновочной схемы ракет-носителей с КРБ зависит от компоновочной схемы самого разгонного блока, от габаритов верхних ступеней ракеты-носителя, габаритов обтекателя, габаритов и массы полезных нагрузок. Варианты компоновочных схем разгонных блоков и их включения в состав ракеты-носителя проследим на примерах [34, 39].

Разгонный блок «Л»

Это самый первый разгонный блок, который использовался для отправки полезной нагрузки в район Луны в составе первых модификаций ракеты-носителя «Союз». Компоновочная схема разгонного блока «Л» приведена на рис. 16.1.

1- ферма КА;

2 – плоскость разделения КА с разгонным блоком;

3 – плоскость стыка переходника;

4 - бак окислителя;

5 – бак горючего;

6 - плоскость отделения раз-

гонного блока от фермы;

7 – ферма;

8 – плоскость стыка с РН;

9 – твердотопливный ракетный двигатель;

10 – двигатель 11Д33

Рис. 16.1. Компоновочная схема разгонного блока «Л»

Космический разгонный блок (блок выведения) «Икар»

Этот блок использовался для PH «Союз». Конструктивная схема PБ «Икар» представлена на рис. 16.2, а характеристики – в табл. 16.1. На рисунке введены следующие обозначения: 1 – плата электрического интерфейса; 2- рама с приборами обеспечивающих систем; 3 — приборный отсек; 4 – приборы системы телеметрического контроля; 5 - агрегатный отсек; 6 — химический источник тока; 7 – антенна командной радиолинии; 8 - комплексная двигательная установка (КДУ); 9 - микроЖРД КДУ; 10 – антенна командной радиолинии; 11 – антенна системы телеметрического контроля; 12 – инфракрасный построитель местной вертикали; 13 - переходное устройство для установки полезного груза; 14 – зона полезного груза.

Рис. 16.2. Космический разгонный блок (блок выведения)«Икар»

Таблица 16.1	. Характеристики	разгонного	блока	«Икар»
--------------	------------------	------------	-------	--------

Масса блока выведения, кг	3210
В том числе масса топлива	900
Масса полезного груза, кг	2175
Параметры орбиты выведения:	
h, км	240
Н, км	920
Наклонение, град	52
Высота конечной квазикруговой орбиты	920
полезного груза, км	
Размеры блока выведения	
диаметр, мм	2720
длина, мм	2590
Срок активного существования, час	не менее 30
Завершение работы блока выведения	Увод с конечной орбиты
	или затопление
Тип ракеты-носителя	«Союз»

Конструктивная характеристика разгонного блока «Икар» составляет всего 1,39. Однако при его создании ставилась задача: разработать разгонный блок в кратчайшие сроки и с минимальной стоимостью. Для этого большая часть составных частей была заимствована из приборного отсека одного из космических аппаратов.

Блок выведения (космический разгонный блок) «Волга»

Этот блок предназначен для расширения номенклатуры решаемых задач по выведению полезных нагрузок РН типа «Союз». Общий вид блока показан на рис. 16.3, а характеристики - в табл. 16.2.

Рис. 16.3. Общий вид блока выведения «Волга»

Таблица	16.2. Основные	характеристики	блока	вы-
ведения	«Волга»			

Характеристики	Значения		
Компоненты топлива	АТИН+НДМГ		
Тяга двигателя, Н	3000		
Удельный импульс, м/с	3070		
Масса, кг	<u> </u>		
 в заправл. состоянии 	1056-1656		
- "сухая"	756		
- топливо	300-900		
Габариты, мм			
- диаметр	2720		
- высота	1025		

В качестве двигательной установки на блоке выведения "Волга" используется объединенная двигательная установка (ОДУ) КА, разрабатываемая для космических аппаратов дистанционного зондирования Земли.

Космический разгонный блок «Фрегат»

Этот блок предназначается для использования с ракетаминосителями «Союз», «Зенит», «Протон» и устанавливается под головной обтекатель совместно с полезной нагрузкой.

При создании космического разгонного блока «Фрегат» основное внимание уделялось наибольшей эффективности в весовом отношении. Отношение массы заправленного разгонного блока «Фрегат» к массе его конструкции (конструктивная характеристика) составляет 5,94.

Внешний вид космического разгонного блока «Фрегат» показан на рис. 16.4. [39] а основные характеристики - в табл. 16.3.

Рис. 16.4. Космический разгонный блок «Фрегат» [39]

Характеристики	Величина	
Начальная масса при максимальной заправке, кг	6415-6535	
Конечная масса, кг	980-1100	
Габаритные размеры, мм:		
высота	1500	
диаметр(описанный)	3350	
Маршевая двигательная установка:		
наименование	C5-92	
окислитель	AT (N2O4)	
горючее	НДМГ	
рабочий запас топлива, максимальный, кг	5350	
тяга маршевого двигателя, кН	20	
удельный импульс двигателя, м/с	3285	
максимальное число включений двигателя	20	
ДУ стабилизации, ориентации и обеспечения запуска:		
топливо	гидразин	
рабочий запас топлива, максимальный, кг	85	
количество двигателей	12	
тяга двигателей, Н	50	
удельный импульс двигателей, м/с	2250	

Таблица 16.	5. Основные	характеристики	РБ	«Фрегат»
-------------	-------------	----------------	----	----------

На рис. 16.4 введены следующие обозначения: 1- топливные баки; 2 – приборные контейнеры; 3 – двигатель С5-92; 4 – двигатели системы ориентации и обеспечения запуска (СОЗ); 5 - топливные баки СОЗ; 6 –баллоны с гелием; 7 – химическая батарея.

Конструктивную основу РБ «Фрегат» [39, 41] составляет блок баков маршевой двигательной установки, выполненной в виде шести сваренных между собой сфер одинакового диаметра. Четыре сферы выполняют роль топливных баков, две - герметичных приборных контейнеров. Через сферы проходят восемь силовых штанг. Приборные контейнеры оборудованы системами обеспечения теплового режима.

Одна из возможных компоновочных схем полезной нагрузки с разгонным блоком «Фрегат» под головным обтекателем приведена на рис. 16.5, где 1 - головной обтекатель; 2 - верхний бак PH; 3 - переходник; 4 - полезная нагрузка - малогабаритные спутники; 5 - разгонный блок; 6 - ферма для установки полезной нагрузки.

Рис. 16.5. Компоновка полезной нагрузки с разгонным блоком «Фрегат»

Космические разгонные блоки «Д» и «ДМ»

Эти блоки предназначены для РН «Протон» разработки ГНКПЦ им. М.В.Хруничева и РН «Зенит 3SL» (Морской старт). Внешне эти блоки ничем не отличаются от обычных ракетных блоков. Они размещаются между ракетным блоком верхней ступени РН и полезной нагрузкой, которая закрывается головным обтекателем. Однако внутренняя компоновка у них различная. Баки окислителя разгонных блоков «Д» и «ДМ» имеют форму сферы, а баки горючего – форму тора (рис. 16.6).

Разгонные блоки «КВРБ», «УКВБ»

Эти блоки предназначены для ракеты-носителя «Протон». Компоновочные схемы этих блоков показаны на рис. 16.7 и 16.8. Внешне они также не отличаются от обычных ракетных блоков. Особенностью их конструкции является совмещённые днища, которые введены для уменьшения габаритов разгонных блоков по длине. В качестве компонентов топлива на этих блоках используются жидкий кислород и жидкий водород.

- 1. Приборный контейнер
- 2. Бак окислителя
- 3. Межбаковая ферма
- 4. Средний переходник
- 5. Бак горючего
- 6. ЖРД 11Д58М
- 7. Блок обеспечения запуска
- 8. Нижний переходник

Рис. 16.6. Компоновочный чертеж разгонного блока ДМ

Рис. 16.7. Разгонный блок «КВРБ»

Рис. 16.8. Разгонный блок «УКРБ»

Разгонные блоки «Бриз М» и «Бриз КМ»

Блок «Бриз М» используется для PH «Протон» и имеет особую компоновочную схему, которая показана на рис. 16.9 [39, 41]. На этой схеме введены следующие обозначения: 1- приборный отсек; 2 - центральный блок; 3- сбрасываемый дополнительный блок баков; 4 - бак окислителя (азотный тетраксид); 5 - бак горючего (НДМГ); 6 - рулевые двигатели; 7 - маршевый двигатель 14Д30.

Рис. 16.10. Разгонный блок «Бриз КМ»

Рис. 16.9. Разгонный блок «Бриз М»

Основное отличие разгонного блока «Бриз М» заключается в том, что он имеет дополнительный блок кольцевых баков (по внешнему периметру разгонного блока), который сбрасывается после выработки топлива при проведении определенных маневров. Этим достигается большая эффективность разгонного блока по массе выводимой нагрузки. Центральная же часть разгонного блока «Бриз М» представляет собой разгонный блок «Бриз КМ». Этот блок может эксплуатироваться самостоятельно.

Одна из модификаций блока «Бриз КМ» представлена на рис. 16.10. Этот блок предназначен для запуска полезной нагрузки в составе конверсионной PH «Рокот».

Существуют и другие разгонные блоки, но их компоновочные схемы принципиально не отличаются от рассмотренных.

16.2. Апогейные блоки

Апогейные блоки также представляют собой разновидность разгонных блоков и названы так потому, что включаются, как правило, 326 на апогейных участках высокоэллиптических переходных орбит для поворота плоскости орбиты и перевода КА на другие орбиты, например на геостационарную. Предварительно КА выводится на переходную орбиту обычным ракетным блоком верхней ступени ракетыносителя или разгонным блоком, который затем отделяется от КА.

Компоновочные схемы апогейного блока и космической головной части с разгонным и апогейным блоками для вывода КА «Ямал» на геостационарную орбиту представлены на рис. 16.11 [34].

Основные характеристики

Тяга, кгс	300
Удельный импульс, м/с	3100-3270
Число включений	до 7
Допустимое время полета,	сут. до 10

- 1 плоскость стыка с КА;
- 2 переходная ферма;
- 3 органы управления;
- 4 бак окислителя;
- 5 межбаковая ферма;
- 6 бак горючего;
- 7 двигатель

1 -апогейный блок;

- 2 -головной обтекатель;
- 3 КА "Ямал";
- 4 ферма установки КА;
- 5 разгонный блок ЛМ»
- 6 -опорный отсек;
- 7 переходный отсек;
- 8 ракетный блок «И»

Рис. 16.11. Апогейный блок и космическая головная часть [34]

Использование апогейных блоков как отдельных составных частей средств комплекса выведения полезных нагрузок на высокие ор-

биты оправдано тем, что масса выводимой полезной нагрузки не включает в себя массу полупустого разгонного блока.

16.3 Методика выбора характеристик разгонного блока при модернизации ракеты-носителя

В случае разработки нового проекта, в котором предусматривается космический разгонный блок, ракета-носитель, как правило, проектируется целиком, и масса космического разгонного блока (блока выведения) оптимизируется в составе ракеты.

В случае же модернизации существующей ракеты путем установки на ней блоков выведения (рис. 16.12) неизвестной является лишь масса блока выведения.

Рис. 16.12 Варианты установки разрабатываемых блоков выведения на модернизируемых РН

Пусть поставлена задача разработать блок выведения с такими характеристиками, которые позволили бы вывести полезную нагрузку максимальной массы на заданную орбиту. При этом масса космической головной части, включающей переходник, головной обтекатель и полезную нагрузку, не должна превышать массу, на которую рассчитаны ракетные блоки всех ступеней модернизируемой ракетыносителя.

Задача решается методом последовательных приближений. Ниже приведена методика и алгоритм решения поставленной задачи. Методика и алгоритм иллюстрируются примером модернизации двухступенчатой ракеты.

1. Задаётся масса космической головной части без головного обтекателя ($m_{\Pi H}$). Напомним, что головной обтекатель в расчетах следует отнести к последней, в данном случае ко второй ступени ракеты. В этом случае расчет будет производиться с некоторым запасом по массе или характеристической скорости, так как согласно статистическим данным головной обтекатель сбрасывается на участке работы второй ступени (примерно в средней части временного интервала работы этой ступени).

Пусть, например, рассматривается ракета-носитель со следующими характеристиками масс: масса первой и второй ступеней $(m_{01} + m_{02} + m_{\Pi ep}) = 99,52$ т, масса топлива ракетных блоков первой и второй ступеней соответственно $m_{T1} = 78,9$ т и $m_{T2} = 12,8$ т, масса головного обтекателя $m_{TO} = 0,6$ т. Известны также удельные импульсы ракетных блоков первой и второй ступеней соответственно w_1 и w_2 .

Задаётся масса полезной нагрузки $m_{\Pi H} = 2,1$ т.

2. Рассчитывается потребная характеристическая скорость. Пусть $V_x^{nomp} = 9925$ м/с.

3. Устанавливаются (заимствуются) конструктивные характеристики ракетных блоков модернизируемой двухступенчатой ракеты. Пусть $S_1 = 14.8$ и $S_2 = 7.95$ (с учетом массы головного обтекателя).

4. Задаётся значение конструктивной характеристики разгонного блока по данным статистики. Пусть $S_3 = 6,0$ (примерно как у блока выведения «Фрегат»).

5. Рассчитываются характеристики x_i - отношение массы топлива ракетных блоков m_{Ti} к массе полезной нагрузки $m_{\Pi H}$:

$$x_1 = \frac{m_{T1}}{m_{\Pi H}} = \frac{78.9}{2.1} = 37.57; \ x_2 = \frac{m_{T2}}{m_{\Pi H}} = \frac{12.8}{2.1} = 6.10;$$

Масса топлива разгонного блока m_{T3} пока неизвестна. Она будет найдена после определения параметра x_3 .

6. Составляется функция ограничений типа (8.37), в которой параметр *x*₃ (остальные параметры известны):

$$q(x_{3}) = V_{x}^{pacn} - w_{1} \ln \left(\frac{1 + \sum_{i=1}^{3} \frac{s_{i}}{(s_{i}-1)} x_{i}}{1 + \sum_{i=1}^{3} \frac{s_{i}}{(s_{i}-1)} x_{i} - x_{1}} \right) - w_{2} \ln \left(\frac{1 + \sum_{i=2}^{3} \frac{s_{i}}{(s_{i}-1)} x_{i}}{1 + \sum_{i=2}^{3} \frac{s_{i}}{(s_{i}-1)} x_{i} - x_{2}} \right) - w_{3} \ln \left(\frac{1 + \frac{s_{3}}{(s_{3}-1)} x_{3}}{1 + \frac{s_{3}}{(s_{3}-1)} x_{3} - x_{3}} \right) \le 0. (16.1)$$

7. Составляются ограничения по числам Циолковского

$$\frac{1+\sum_{i=1}^{3}\frac{s_{i}}{(s_{i}-1)}x_{i}}{1+\sum_{i=1}^{3}\frac{s_{i}}{(s_{i}-1)}-x_{1}} > 1; \frac{1+\sum_{i=2}^{3}\frac{s_{i}}{(s_{i}-1)}x_{i}}{1+\sum_{i=2}^{3}\frac{s_{i}x_{i}}{(s_{i}-1)}-x_{2}} > 1; \frac{1+\frac{s_{3}}{(s_{3}-1)}x_{3}}{1+\frac{s_{3}x_{3}}{(s_{3}-1)}-x_{3}} > 1.$$

8. С помощью какой-либо компьютерной математической системы, например Mathcad строится график функции ограничений $q(x_3)$ в зависимости от изменения параметра x_3 . Такой график для нашего примера, обозначенный через $q1(x_3)$, представлен на рис. 16.13 пунктирной линией. На этом графике размерность по оси ординат соответствует размерности скорости, то есть m/c. Значения по оси абсцисс - безразмерные.

9. Проводится анализ полученных результатов. В нашем примере результаты анализа следующие:

а) вариант модернизируемой ракеты-носителя с массой полезной нагрузки $m_{\Pi H} = 2,1$ тонн не позволяет обеспечить потребную характеристическую скорость (дефицит скорости составляет примерно 270 м/с);

хэ Значение параметра х3 Рис. 16.13. Графики функций ограничений

б) достижение потребной характеристической скорости возможно либо при уменьшении массы полезной нагрузки, либо при использовании топлива и двигателей на блоке выведения с более высоким удельным импульсом.

10. Если топливо не меняется, то масса полезной нагрузки уменьшается и расчеты повторяются при новых исходных данных.

Если располагаемая характеристическая скорость ракетыносителя меньше потребной ($q(x_3) > 0$), то масса полезной нагрузки опять уменьшается и расчеты повторяются.

Если располагаемая характеристическая скорость ракетыносителя больше или равна потребной ($q(x_3) \le 0$), то расчет прекращают (условие по функции ограничений выполнено). Последний вариант графика $q(x_3)$ представлен также на рис. 16.13, показан сплошной линией и обозначен через $q2(x_3)$.

11. По результатам анализа последнего графика устанавливают оптимальное значение параметра x_3 , соответствующее минимальному значению функции ограничений. В нашем примере $x_3 = 1,7$. Соответствующая масса полезной нагрузки равна 1,8 т. Запас характеристической скорости составляет примерно 47 м/с, что составляет менее 0,5% от потребной характеристической скорости.

Отметим, что для более точного определения аргумента минимального значения функции (16.1) можно из нее выразить V_x^{pacn} , взять производную, приравнять её к нулю и решить полученное уравнение относительно искомой переменной.

12. Рассчитываются массы составных частей разгонного блока:

- масса топлива разгонного блока:

 $m_{T3} = x_3 m_{\Pi H} = 1,70 \cdot 1,80 = 3,06 [T];$

- начальная (стартовая) масса разгонного блока

$$m_{03} = \frac{S_3}{S_3 - 1} m_{T3} = \frac{6,0}{6,0 - 1} 3,06 = 3,67 \text{ [T]};$$

- масса конструкции разгонного блока

 $m_{K3} = m_{53} - m_{73} = 3,67 - 3,06 = 0,61$ [T].

13. Проверяется выполнение ограничений по массе космической головной части:

$$m_{K\Gamma Y} = m_{03} + m_{\Pi H} + m_{\Gamma O} = 3,67 + 1,8 + 0,6 = 6,07$$
 [T].

Если масса космической головной части превышает массу, на которую рассчитаны первые две ступени ракеты-носителя, то масса полезной нагрузки уменьшается и расчет повторяется до удовлетворения указанных ограничений.

14. Определяется стартовая масса ракеты-носителя с учетом массы разгонного блока и массы космической головной части:

 $m_0 = (m_{01} + m_{02}) + m_{K\Gamma 4} = 99,72 + 6,07 = 105,79 [T].$

Таким образом, в первом приближении стартовую массу модернизируемой ракеты можно принять равной 105,8 тонн, а массу разгонного блока (заправленного топливом) – 3,67 т.

Аналогично подбирают массу разгонного блока и для других конфигураций PH, но с учётом соответствующих функций ограничений, рассмотренных в разделе 8.

В заключение данного подраздела отметим, что с использованием математической системы Mathcad процедура выбора характеристик разгонного блока упрощается и сводится к целенаправленному подбору на рабочем поле системы массы полезной нагрузки и удовлетворению ограничений по стартовой перегрузке PH. Данная процедура будет показана в подразделе 17.4 на конкретных примерах.

Контрольные вопросы

1. Для каких целей предназначены космические разгонные блоки? Назовите типовые разгонные блоки.

2. Приведите компоновочную схему разгонного блока «Л».

3. Расскажите о блоке выведения «Икар».

4. Приведите компоновочную схему разгонного блока «Фрегат». Назовите основные отличия и характеристики этого блока.

5. Приведите компоновочную схему полезной нагрузки с разгонным блоком «Фрегат» (схему космической головной части)..

6. Назовите основные конструктивные отличия разгонного блока ДМ. Приведите компоновочную схему этого блока.

7. Какие компоненты топлива у разгонных блоков «КВРБ» и «УКРБ»? Приведите их компоновочные схемы.

8. Назовите основные отличия разгонных блоков «Бриз М» и «Бриз КМ». Приведите их компоновочные схемы.

9. Для чего предназначены апогейные блоки? Их преимущества и недостатки? Приведите схемы выведения полезных нагрузок с помощью апогейных блоков.

10. Приведите компоновочную схему апогейного блока и космической головной части для вывода космического аппарата «Ямал» на геостационарную орбиту.

11. Изложите основные этапы методики выбора характеристик разгонного блока при модернизации ракеты-носителя.

17. СОВЕРШЕНСТВОВАНИЕ СРЕДСТВ ВЫВЕДЕНИЯ ПОЛЕЗНЫХ НАГРУЗОК В КОСМОС

17.1. Создание серии РН различной грузоподъемности на основе унификации ракетных блоков

В настоящее время во всех странах мира, имеющих ракетнокосмическую технику, наблюдается тенденция создания серии PH различной грузоподъемности на основе унификации ракетных блоков. Стоимость запуска космических грузов при этом уменьшается. Кроме того, появляется возможность выбора модификации PH применительно к конкретной полезной нагрузке. К недостаткам унификации PБ следует отнести: неоптимальное распределение масс по ступеням для различных конфигураций PH (по критерию минимума стартовой массы); унифицированные PБ для каждой конфигурации PH будут иметь отличия, так как расчётные случаи разные, и в этой связи, необходимо испытывать каждую конфигурацию PH отдельно.

На рис. 17.1 представлен проект семейства ракет-носителей «Ангара» [39] грузоподъемностью от 2 до 28, 5 тонн. На рисунке введены обозначения: 1 - универсальный РБ; 2 - центральный блок РБ «Бриз-М»; 3 - РБ второй (третьей) ступени; 4 - РБ «КВРБ»; 5 - РБ «УКРБ».

Основой данного семейства ракет-носителей является универсальный ракетный модуль первой ступени. Из таких модулей может собираться пакет для обеспечения высокой грузоподъемности ракеты. Возможные компоновочные схемы верхних ступеней представленного семейства ракет-носителей показаны на рисунке.

Стартовая масса и масса полезной нагрузки РН семейства «Ангара» при пусках с космодрома «Плесецк» на различные орбиты с углом наклона плоскости орбиты 63 градуса и геостационарную орбиту представлены в табл. 17.1.

На рис. 17.2 показано семейство РН на основе унифицированных РБ, разрабатываемых по теме ОКР «Русь-М». Грузоподъёмность этих РН до 50 т при выведении на низкую опорную орбиту. На РБ первой ступени компоненты топлива «керосин-кислород», а на РБ второй ступени - «водород-кислород».

Рис. 17.1. Семейство ракет-носителей «Ангара» [39]

Таблица 17.1. Х	арактеристики	РН семейства	«Ангара»	[39]
-----------------	---------------	--------------	----------	------

Характери-	Легкий класс		Средний класс	Тяжелый класс	Сверхтяжё- лый класс
стики	«Ангара- 1.1»	«Ангара- 1.2»	«Ангара- 3А»	«Ангара- 5А»	«Ангара-5А» с «УКВБ»
Стартовая масса, т	145	167	478	772	790
Масса ПН, т Н _{кр} =200км, Н _{кр} =5500км, ГСО	2 -	3,7	14 2,3 1,0	24,5 6,6 4,0	28,5 8,0 5,0

Рис. 17.2. Семейство ракет-носителей по теме «Русь-М»

На рис. 17.3 показано семейство РН Китайской Народной Республики [64, 65] грузоподъёмностью от 1,5 до 25 т при выведении на низкую опорную орбиту.

Рис. 17.3. Семейство РН «Великий поход» (Китай)

Это семейство создается на основе ракетных блоков с диаметрами: 2,25; 3,35 и 5 м. Максимальный диаметр головного обтекателя 5,2 м. Компоненты топлива на различных блоках «керосин-кислород» и «водород-кислород».

Имеются и другие проекты создания семейства ракет-носителей на основе РН: «Дельта», «Титан» (США); «Ариан» (Европейское космическое агентство); Н-2А (Японя) и др.

17.2. Модернизация ракет-носителей на базе PH «Союз»

Модернизация РН «Союз» происходит с целью расширения функциональных возможностей и грузоподъемности ракеты, а также сокращения номенклатуры выпускаемых промышленностью вариантов составных частей ракеты (унификация).

В табл. 17.2 представлены рассматриваемые варианты модификации PH «Союз» и некоторые отличия от предыдущих вариантов.

Тип РН	Масса КА, т	Основные отличия
«Союз»	7,150	-
«Союз ФГ»	7,4	Малая модернизация ДУ и ПГС.
		Использование РБ «Фрегат».
		Увеличенные габариты ГО
«Союз -2-1а»	7,4	Модернизация используемых ДУ.
(«Союз-СТ»)		Цифровая система управления.
		Увеличенные габариты ГО.
		Высокая точность параметров орбит выведения
«Союз -2-1 <i>б</i> »	8,35	Замена двигателя третьей ступени на новый дви- гатель разработки КБХА
«Союз -2-2а»		Замена ДУ на боковых блоках на РД 120 (НПО
	11,45	«Энергомаш») и на центральном блоке на НК-33.
		Увеличение массы топлива в центральном блоке.
		Третья ступень - новая разработка.
		Использование разгонного блока «Корвет»
«Онега»	14	Третья ступень «кислородно-водородная» с уве-
L	L	личенным диаметром ракетного блока

Табл. 17.2. Варианты модификации ракеты-носителя «Союз»

Данные по массе КА приведены для низкой опорной орбиты. Более подробные сведения по модификации РН «Союз» приведены в [37]. В рамках международного сотрудничества России с Францией в ГНПРКЦ «ЦСКБ-Прогресс» (г. Самара) разработана модификация ракеты «Союз-2-1а» под индексом «Союз-СТ», которая будет запускаться с французского космодрома «Куру» во Французской Гвиане.

Ранние проекты PH «Союз-2-2а» имели название «Ямал» [37] и «Аврора» [39]. Диаметр верхней части центрального блока А и диаметр ракетного блока И увеличены по сравнению с базовым вариантом до 3,45 м. На второй ступени PH «Союз-2-2а» предполагается устанавливать двигатель HK-33. Массовая сводка PH «Союз-2-2а» приведена в табл. 17.3.

Наименование	ББ	ЦБ	III ст.	РКН
1. Головная часть				11450
- KA	-			9500
- ГО диаметр 4,11 м, длина				1500
11,433 м				
 переходный отсек 				450
2 Сухое изделие	6500	8000	2714	
3. Заправляемые компоненты	67780	118862	23012	
- окислитель	48898	85711	16354	
- горючее	18727	32881	6575	
- жидкий азот	40	72	26	
- сжатый воздух	1	1	0	
 газообразный азот 	2	11	0	
- гелий	51	91	27	
- кислород	4	6	2	
- воздух	1	1	2	
4. Заправленное изделие	74280	126862	25726	312598
5. Стартовая масса изделия	72734	126316	25726	310960
6. Изделие в конце работы I	7808	89490	25726	142282
ступени				
7. РКН в начале работы				126666
II ступени				
8. Изделие в конце работы		9246	25731	44932
II ступени				
9. Изделие в начале работы			25658	35613
III ступени				
10. Изделие в конце работы			2623	12578
III ступени				

Таблица 17.3. Массовая сводка PH «Союз-2-2а»

В этой таблице введены следующие сокращения: ГО - головной обтекатель; ББ - боковые блоки; ЦБ - центральный блок; РКН - ракета космического назначения; III - третья ступень.

На рис. 17.4*а* представлена РН «Союз-2-3», которая является дальнейшей модернизацией РН «Союз-2».

Рис. 17.4. Ракеты-носители "Союз-2-3" и «Союз-1»

Модернизация осуществляется с целью повышения грузоподьемности и расширения номенклатуры запускаемых космических аппаратов.

На рис. 17.46 представлена двухступенчатая РН лёгкого класса «Союз-1» («Союз-2-1в»), которая предназначена для запуска КА со стартовых комплексов РН «Союз-2». Ракета-носитель "Союз-1" разрабатывается на базе РН «Союз-2» этапа 16, со снятием боковых блоков, установкой на центральном блоке двигателя НК-33-1 и применением серийного головного обтекателя с РН "Союз". РН «Союз-1» может запускаться с использованием блока выведения «Волга»

17.3. Методика приближенной оценки грузоподъемности РН, составленных из существующих ракетных блоков

Методика базируется на уравнениях, используемых при оптимизации стартовой массы ракеты-носителя. Рассматривается только одно уравнение, которое получается из функции ограничений путём замены неравенства на равенство. В этом уравнении имеется лишь один неизвестный параметр - масса полезной нагрузки. При составлении уравнения необходимо учитывать количество ракетных блоков, схему их соединения, соотношения сил тяги двигателей и некоторые другие параметры.

Методику рассмотрим на конкретных схемах и примерах.

Схема с параллельным соединением ракетных блоков

Уравнение, построенное на основе функции ограничений для данной схемы (рис. 17.5) будет следующим:

$$V_{x}^{nomp} - \left(\frac{w_{1}w_{2}(1+a)}{w_{2}+w_{1}a}\right) \ln \left(\frac{m_{\Pi H}+2m_{E1}+m_{E1}}{m_{\Pi H}+2m_{E1}+m_{E1}-2m_{T1}-\Delta m_{T2}}\right) - w \ln \left(\frac{m_{\Pi H}+m_{E2}-\Delta m_{T2}}{m_{\Pi H}+m_{E2}-m_{T2}}\right) = 0, \qquad (17.1)$$

где Δm_{T2} - масса топлива, вырабатываемая из центрального блока (блока второй ступени) за время работы боковых блоков.

Рис. 17.5. РН с универсальными РБ пакетной схемы

Остальные обозначения см. в разделе 8.

Масса Δm_{T2} рассчитывается по следующей зависимости:

 $\Delta m_{T2} = t_1 m_{52} \,,$

где t₁ - время работы боковых блоков;

*m*_{*к*²} - расход топлива из блока 2.

Характеристики V_x^{nomp} , m_{51} , m_{52} , m_{T1} , m_{T2} , t_1 и m_{52} считаются известными.

Решая уравнение (17.1) относительно параметра $m_{\Pi H}$, находим массу полезной нагрузки PH, составленной из данных ракетных блоков с известными характеристиками.

Если центральный и боковые ракетные блоки унифицированы (имеют одинаковую конструкцию), то в такой схеме должно быть

предусмотрено дросселирование двигателя центрального блока. В противном случае данная схема равносильна одноступенчатой, что неприемлемо для вывода в космос полезных нагрузок.

Схема с последовательным соединением ракетных блоков

Для оценки грузоподъемности РН с такой схемой соединения (рис. 17.6) решается уравнение вида

$$V_{x}^{nomp} - w_{1} \ln \left(\frac{m_{\Pi H} + m_{E1} + m_{E2}}{m_{\Pi H} + m_{E1} + m_{E2} - m_{T1}} \right) - w_{2} \ln \left(\frac{m_{\Pi H} + m_{E2}}{m_{\Pi H} + m_{E2} - m_{T2}} \right) = 0$$
(17.2)

относительно массы полезной нагрузки.

Пример 1. Оценить грузоподъемность PH, состоящую из одного универсального ракетного блока, заимствованного из PH среднего класса повышенной грузоподъёмности, и блока «И» - из PH «Союз». Масса переходного отсека принята равной 450 кг, масса головного обтекателя – 1500 кг.

Протокол расчёта в системе Mathcad приведён ниже.

Протокол расчета грузоподъемности РН в конфигурации УРБ×1 + блок «И»+ПхО+ПН+ГО

$$\begin{array}{ll} \text{mpn} := 4.6 & \text{Vx} := 2030 - 1350 + 150 & \text{Vx} = 9.53 \times 10^{\frac{3}{2}} \\ \text{R1} := \frac{305.5 + 338.7}{2} & \text{R1} = 322.1 & \text{R2} := 30.38 \\ \text{w1} := \frac{3043 + 3373}{2} & \text{w1} = 3.208 \times 10^{\frac{3}{2}} & \text{w2} := 3250 \\ \text{s1} := \frac{16.8 + 180.000 + 1.500}{16.8 + 1.500} & \text{s1} = 10.836 & \text{s2} := \frac{25.4 + 0.450}{2.330 + 0.45} & \text{s2} = 9.299 \\ \text{x1} := \frac{150}{\text{mpn}} & \text{x1} = 39.13 & \text{x2} := \frac{22.76}{\text{mpn}} & \text{x2} = 4.948 \\ \text{q} := \text{Vx} - \text{w1} \cdot \ln \left[\frac{1 + \frac{\text{s1}}{\text{s1} - 1} \cdot \text{x1} + \frac{\text{s2}}{\text{s2} - 1} \cdot \text{x2}}{1 + \left(\frac{\text{s1}}{\text{s1} - 1} \cdot \text{x1} + \frac{\text{s2}}{\text{s2} - 1} \cdot \text{x2}\right) - \text{x1}} \right] - \text{w2} \cdot \ln \left[\frac{1 + \frac{\text{s2}}{\text{s2} - 1} \cdot \text{x2}}{1 + \left(\frac{\text{s2}}{\text{s2} - 1} \cdot \text{x2}\right) - \text{x2}} \right] \\ \text{q} = -32.861 \\ \text{m0} := 16.8 + 180 + (25.4 + 0.450) + 1.50 + \text{mpn} & \text{m0} = 228.75 \\ \text{g0} := 9.81 & \text{m0} := \frac{(305.5) \cdot \text{g0}}{\text{m0} \cdot \text{g0}} & \text{mx0} = 1.336 \end{array}$$

Принятые обозначения (в соответствии с требованиями системы Mathcad):

mpn – масса полезной нагрузки, т;

Vx – характеристическая скорость, м/с (8030 – круговая скорость на высоте 200 км; 1350 -минимальное значение гравитационных и др. потерь скорости; 150 – запас по характеристической скорости);

R1 - средняя тяга двигателей РБ первой ступени;

R2- сила тяги ракетного двигателя РБ второй ступени;

w1 и w2 –удельные импульсы двигателей соответствующих РБ;

s1 и s2 – конструктивные характеристики РБ;

x1 и x2 – отношение массы топлива РБ к массе конструкции;

q – превышение потребной характеристической скорости над располагаемой;

g0 – ускорение силы земного притяжения;

m0 - стартовая масса PH;

nx0 – стартовая перегрузка.

Анализ результатов показывает, что грузоподъемность РН в данной конфигурации составляет 4,6 т. Если добавить разгонный блок «Фрегат», то грузоподъемность РН увеличится до 5,6 т.

Пример 2. Оценить грузоподъемность РН, состоящую из центрального блока и блока «И», заимствованных из РН «Союз-2-2*a*». Потребную характеристическую скорость примем равной $V_x^{nomp} = 9350$ м/с. Характеристики ракетных блоков следующие: $w_1 = 3091$ м/с, $w_2 = 3260$ м/с, $m_{E1} = 152,938$ т, $m_{E2} = 25,7$ т, $m_{T1} = 141,2$ т $m_{T2} = 22,7$ т. В массу РБ первой ступени включена масса головного обтекателя, а в массу РБ второй ступени - масса адаптера для крепления полезной нагрузки.

Решение уравнения (17.2) приводит к массе полезной нагрузки $m_{\Pi H} = 3,87$ т. Протокол расчёта в этом примере не приводится.

Отметим, что данный метод приближённый и пригоден на начальных этапах проектирования. При доработке конструкции, например при

уменьшении массы силового шпангоута и массы узлов, предназначенных для восприятия и передачи усилий от боковых блоков в РН «Союз-1», можно повысить грузоподъёмность РН рассматриваемой конфигурации.

Расчет грузоподъемности РН с другими соединениями различных ракетных блоков осуществляется аналогично. Для каждой конфигурации РН составляется своё уравнение на основе функций ограничений, рассмотренных в разделе 8.

17.4. Методика оптимизации массы модернизируемых ракетных блоков в составе существующих РН³

Методика заключается в следующем.

1. Задаются масса полезной нагрузки (*m*_{пн}) и потребная характеристическая скорость (V_x^{nomp}) для вывода на заданную орбиту.

2. Задаются (или рассчитываются) характеристики неизменяемых ракетных блоков(РБ) в составе модернизируемой РН: S_i , x_i , α (см. обозначения в разделе 8).

3. Составляется функция $q(x_i) = V_r^{nomp} - V_r^{pacn}$, которая представляет собой разность между потребной и располагаемой характеристическими скоростями РН в зависимости от отношения массы топлива оптимизируемого РБ к массе полезной нагрузки. Вид и сложность функции зависят от конфигурации РН.

4. Подбирается (оптимизируется) масса замещаемых или устанавливаемых дополнительно ракетных блоков (ускорителей) при условии, что $q(x_i) \leq 0$ и значение min $q(x_i)$ близко к нулю.

5. Если $q(x_i) > 0$, то масса полезной нагрузки уменьшается и расчеты повторяются до выполнения условия в пункте 4.

6. Рассчитывается стартовая перегрузка РН, которую желательно иметь в пределах 1.3...1.5.

Если начальная перегрузка выходит из этих пределов, то проект пересматривается.

Проведена верификация методики на основе оценки грузоподъемности существующих ракет-носителей.

Пример 3. Рассчитать максимальную грузоподъемность РН среднего класса повышенной грузоподъёмности при замене двух боковых УРБ на два твердотопливных ракетных блока (ТТРБ) и сохранении водородного РБ (ВРБ).

Прежде всего отметим, что при такой замене РН становится трёхступенчатой. Протокол расчета в системе Mathcad приведен ниже. Конструктивные характеристики ТТРБ приняты с учётом статистики (см. табл. 4.3).

³ Данные исследования проводились совместно с В.А. Широковым. 344

Протокол расчета максимальной грузоподъемности РН в конфигурации УРБ×1 +ТТРБ×2+ВРБ+ПхО+ПН+ГО

Часть обозначений, принятых в этом протоколе для РБ первой, второй ступеней и для РН соответствуют обозначениям в примере 1. Для РБ третьей ступени обозначения аналогичны. Другая часть обозначений следующая:

а – отношение сил тяги двигателей;

q (xi) -- превышение потребной характеристической скорости над располагаемой в зависимости от параметра xi (все остальные параметры известны);

mt1 – масса топлива РБ первой ступени (общая);

mt11 - масса топлива в одном блоке;

mb1 – суммарная масса блоков первой ступени (ускорителей);

mb11- масса одного блока;

mt1, mt2, mt3 – масса топлива соответствующих РБ;

mb1, mb2, mb3 - масса соответствующих ракетных блоков;

mk11 – масса конструкции одного твёрдотопливного блока.

Результаты расчета показывают, что при замене двух боковых УРБ на два твердотопливных стартовых ускорителя максимальная грузоподъемность модернизированной РН «Русь-М» составляет около 17,9 тонн. Масса каждого из двух боковых блоков составляет примерно 49,5 т, масса топлива 44 т, масса конструкции 5,5 т. В данных расчетах удельный импульс и конструктивные характеристики твёрдотопливных ракетных блоков брались по данным статистики.

Пример 4. Рассчитать максимальную грузоподъемность РН среднего класса повышенной грузоподъёмности, если модернизируется водородный ракетный блок второй ступени. Начальная перегрузка должна быть более 1,1; характеристическая скорость РБ первой ступени должна быть не менее 3000 м/с (для разделения ступеней в разреженных слоях атмосферы).

Результаты расчёта приведены в протоколе. Выражение root(q(x2), x2) = 3,742 означает решение уравнения q(x2) относительно параметра x2 при заданных начальных значениях этого параметра (см. x2 := 4). Анализ результатов показывает, что грузоподъёмность модернизированной PH составляет 30 т, масса водородного блока – 128,3 т, начальная перегрузка – 1,22.

Протокол расчета максимальной грузоподъемности РН в конфигурации УРБ×3 + ВРБ+ПН+ГО

Для реализации водородного блока такой массы необходим двигатель (по статистике) с силой тяги примерно в 1000 kH.

17.5. Использование возвращаемых ракетных блоков

Использование возвращаемых ракетных блоков первых ступеней ракет-носителей с посадкой на аэродром позволяет минимизировать отчуждаемые территории, предназначенные для падения ракетных блоков, и проводить запуски с широким спектром азимутов.

Схема возвращения и повторного использования РБ реализована в системе Спейс Шаттл. Спасаются твердотопливные ускорители, которые опускаются на парашюте в океан.

На рис. 17.7 представлены характеристики и показана схема приземления ракетного блока «А» РН «Энергия» [47]. Отметим, что в первых пусках РН спасение блоков не предусматривалось.

Рис. 17.7. Проект возвращаемого ракетного блока «А» РН «Энергия» [47]

Возвращение ракетных блоков имеет свои технические недостатки. Одним из них является снижение грузоподъемности РН вследствие затрат массы на реализацию системы возвращения и посадки (см. данные по массе на рис. 17.7).

На рис. 17.8 представлен проект возвращаемого ракетного блока «Байкал», который предполагалось использовать в качестве первой ступени РН «Ангара» легкого класса [39].

Рис. 17.8. Проект возвращаемого ракетного блока «Байкал» [39] (в качестве первой ступени РН «Ангара» легкого класса)

При старте PH крылья разгонного блока «Байкал» сложены. После отделения от второй ступени PH раскладываются крылья, включаются воздушно-реактивные двигатели и выдвигаются шасси возвращаемого разгонного блока. Посадка осуществляется в автоматическом режиме на специальный аэродром по самолетной схеме.

РН с возвращаемыми ракетными блоками называют еще «частично многоразовые ракетно-космические системы». Причем могут

возвращаться не только первые ступени ракет-носителей, боковые ускорители, но и многоразовые космические самолеты.

Проекты вариантов частично многоразовых ракетнокосмических систем, разработанные РКК «Энергия» (а), КБ «Салют» (б), НПОмаш (в), ЦНИИмаш (г), показаны на рис. 17.9 [39].

Рис. 17.9. Варианты частично многоразовых ракетно-космических систем

Некоторые характеристики данных разработок представлены в табл. 17.4 [39].

В этой таблице введены следующие сокращения: ВРУ - возвращаемый ракетный ускоритель; БВ - блок выведения.

На всех ракетных блоках используется топливо «жидкий кислород - жидкий водород». В варианте (а) РКК «Энергия» используется перелив топлива. В остальных вариантах перелив топлива не используется. В вариантах (а) и (в) на возвращаемых ракетных ускорителях устанавливаются по два турбореактивных двигателя АЛЗ1, которые используются для возврата их на аэродром и посадки.

По данным работы [31] возвращаемые ракетные блоки пока экономически неэффективны. Для практической реализации повторного запуска возвращаемых РБ необходимо создать единую службу, ответственную за поиск, погрузку, транспортировку РБ, составление дефектной ведомости, разработку проекта ремонта возвратившихся блоков. Руководители такой службы должны брать на себя ответственность за заключение о пригодности блоков к дальнейшему использованию.

Разработчик	Вариант (а) РКК «Энергия»	Вариант (б) КБ «Са- лют»	Вариант (в) НПОмаш	Вариант (г) ЦНИИмаш
Год разработки	1996	1997	1995	1995
Стартовая масса, т	674	750	570	548
Масса полезного груза H=200 км, i=51°, т	26	24,1	25	25
Стартовая перегрузка	1,31	1,22	1,37	1,47
Число М при разделен.	8,5	3,24		4,2
Относительная масса полезной нагрузки, %	3,85	3,2	4,38	4,5
Базовые диаметры блоков ВРУ/БВ, м	7,7/5,0 и 3,9	6,3/3,9	6,0/5,6	7/5,4
Габариты РН длина × размах крыла, м	43 ×30	63,9×24,8	46,2×27,0	60 × 22,7
Количество двигателей ВРУ/БВ	5/1	4/2	4/3	5/2
Тип двигателей ВРУ/БВ	РД-0120 /РЛ-0120	РА-0120 /РД-0120	РД-0120/РД- 0120+А56	новые раз- работки
Тяга одного двигателя ВРУ (Рземн/Рпуст) kH	1472/1900	1565/1858	1476/1900	1154/1456
Масса маршевого топ- лива на ВРУ/БВ, т	408,6/105.6	216,8/421,2	320/115	189,1/256

Табл. 17.4. Многоразовые ракетно-космические системы [39]

Контрольные вопросы

1. В чём преимущество серии РН различной грузоподъемности на основе унификации ракетных блоков? Приведите примеры.

2. Расскажите об этапах модернизации ракет-носителей на базе РН «Союз». Приведите некоторые характеристики.

3. Приведите этапы методики приближенной оценки грузоподъемности РН, составленных из существующих ракетных блоков.

4. Приведите методику оптимизации массы модернизируемых ракетных блоков в составе существующих РН.

5. Расскажите о схемах возвращения ракетных блоков. Приведите примеры. Назовите преимущества и недостатки.

18. СОГЛАСОВАНИЕ ХАРАКТЕРИСТИК РАКЕТ-НОСИТЕЛЕЙ, КОСМОДРОМА И СТАРТОВОГО КОМПЛЕКСА

18.1. Ограничения по габаритам в связи с расположением космодромов и транспортировкой ракетных блоков

Если космодром находится на побережье океана, моря или даже крупной реки, то ограничений, как правило, нет. Напомним, что такая транспортировка была организована для блоков PH "Сатурн-V".

Если транспортировка ракетных блоков осуществляется железнодорожным транспортом, то вводятся ограничения, связанные с габаритными размерами вагонов: длина до 20 м и ширина до 4,1 м. Причем если диаметр ракетного блока не более 3,8 м, то транспортировка железнодорожным транспортом возможна без остановки встречного движения, а при диаметре 4.1 м - с остановкой встречного движения.

Если транспортировка блоков РН осуществляется воздушным транспортом, то вводятся ограничения, связанные с грузоподъемностью и габаритами самолета-транспортировщика или вертолетатранспортировщика. Например, при транспортировке ракетных блоков внутри фюзеляжа самолета Ан-124 («Руслан») следует учитывать, что грузоподъемность составляет 120 т, длина грузовой кабины - 41,5 м, ширина - 6,4 м, высота – 4.4 м.

При транспортировке ракетных блоков над фюзеляжем самолета вводятся дополнительные требования, связанные с прочностью самолета, а также с аэродинамическими характеристиками системы «самолет - перевозимая конструкция». Примером воздушной транспортировки может служить транспортировка блоков РН "Энергия" на самолете 3-МТ. Отметим, что бак ракеты-носителя "Энергия" транспортировался в надутом состоянии и для системы "самолет - бак" проводился специальный аэродинамический расчет.

18.2 Выбор количества ступеней РН с учетом зон падения отработавших ракетных блоков

При проектировании новых PH и использовании существующих космодромов необходимо исследовать трассы полёта PБ. Массы топлива ракетных блоков следует выбирать таким образом, чтобы они падали в районы, ранее согласованные с местными органами власти. Иначе приходится нести дополнительные финансовые расходы на отчуждение новых районов падения отработавших PБ.

При проектировании PH, предназначенных для старта с новых создаваемых космодромов, следует учитывать тот факт, что при выводе полезной нагрузки на опорную орбиту двухступенчатыми ракетами-носителями количество районов падения PБ меньше, чем трехступенчатыми. С этой точки зрения оптимальной является двухступенчатая PH (хотя она не оптимальна по стартовой массе). Для двухступенчатой PH необходимо согласовывать лишь районы падения ракетных блоков первых ступеней.

Желательно, чтобы отработавшие ракетные блоки последних ступеней ракеты-носителя не выводились на опорные орбиты, что приводит к засорению космического пространства, а летели бы по суборбитальной траектории и затапливались в акватории Мирового океана. При использовании такой схемы запуска характеристическую скорость двухступенчатой РН выбирают такой, чтобы она была немного меньше орбитальной скорости. Полезная же нагрузка выводится на опорную орбиту в этом случае за счет собственной двигательной установки.

18.3. Согласование характеристик РН с элементами технических и наземных стартовых комплексов

Структурная схема ракетно-космического комплекса, в которую входит стартовый комплекс, была представлена на рис. 1.1. Рассмотрим подробнее назначение, требования, состав и функционирование РКК на примере создаваемого космодрома «Восточный» и проектируемого СК для РН среднего класса повышенной грузоподъёмности.

18.3.1. Требования к ракетно-космическому комплексу

РКК с РН среднего класса повышенной грузоподъемности должен обеспечивать:

- запуски пилотируемых и грузовых транспортных кораблей нового поколения, модулей орбитальных станций и платформ на низкие орбиты и автоматических космических аппаратов на орбиты различных высот и наклонений, включая геопереходные и геостационарные орбиты, а также на отлётные траектории к планетам Солнечной системы;

- возможность проведения пусков в любое время года и суток при температуре окружающего воздуха от --40°C до +50°C, влажности до 98% (при температуре +20°C), атмосферном давлении от 620 до 780 мм рт. ст., скорости ветра у поверхности Земли до 20 м/с.

- хранение, приведение и содержание РН в установленных готовностях, техническое обслуживание и сборку ракет космического назначения, подготовку к пуску и пуски РКН;

- безударный выход РН из стартового сооружения и минимизацию газодинамических, в том числе ударно-волновых нагрузок, тепловых и акустических воздействий струй двигателей на СК и его оборудование.

18.3.2. Требования к стартовому комплексу

Макет стартового комплекса РН среднего класса повышенной грузоподъемности показан на рис. 18.1.

Стартовый комплекс должен содержать командный пункт, хранилища компонентов ракетного топлива и сжатых газов, компрессорных станций, электросеть и др.

Стартовый комплекс должен обеспечивать:

 предстартовую подготовку и пуски РКН с годовой производительностью до 20 пусков (10 пусков на начальном этапе);

- транспортировку РКН на СК и (при необходимости) обратно;

- установку, стоянку, подготовку и запуск РКН;

– трехкратную заправку (со сливом в случае несостоявшегося пуска) РН и ракетных блоков компонентами ракетного топлива;

Рис. 18.1. Стартовый комплекс РН среднего класса повышенной грузоподъёмности [66]

 термостатирование РН и космической головной части воздухом высокого и низкого давления с заданными параметрами по температуре, чистоте и влажности;

 – автоматическое и ручное (в нештатных ситуациях) управление всеми технологическими операциями;

 посадку в пилотируемый транспортный корабль и экстренную эвакуацию обслуживающего персонала в случае возникновения нештатных ситуаций;

- предстартовые работы с КА различного назначения в составе РКН;

– проведение необходимых работ и снятие РКН со стартового сооружения в случае отмены пуска;

 приём и хранение запасов компонентов ракетного топлива и приём (производство) сжатых газов в расчете на один пуск РКН.

18.3.3. Подготовка ракеты космического назначения на техническом и стартовом комплексах

Некоторые операции сборки РКН в монтажно-испытательном корпусе и её транспортировки на СК показаны на рис. 18.2.

Рис. 18.2. Процесс сборки ракеты в монтажно-испытательном корпусе и её транспортировки на СК

Процесс подъёма и установки РКН иллюстрируется на рис. 18.3.

Рис. 18.3. Процесс подъёма, установки ракеты на стартовую позицию и подвода башни обслуживания

На рис. 18.4 представлена РКН в готовности к пуску.

Рис. 18.4. РКН в готовности к пуску

18.4. Согласование схем крепления РН с опорными элементами стартовых сооружений

На РН должны быть предусмотрены узлы сопряжения с опорными элементами стартовых сооружений, которые оказывают влияние на ее компоновочную схему в части передачи усилий от стартовых опор. На рис. 18.5a и 18.56 показаны две из таких схем. На этих рисунках введены следующие обозначения: 1 - фермы для крепления РН; 2 - опоры РН (в районе нижнего силового кольца); 3 - силовое кольцо РН для крепления боковых блоков; 4 - фермы подвески РН; 5 - фермы крепления РН в районе нижних силовых колец.

Если ракета опирается на хвостовой отсек (см. рис 18.5*a*), то он должен быть силовым. Ракета может опираться на специальные опоры 2 в районе нижнего силового кольца. При установке ракеты из ниш пускового стола выдвигаются откидные опорные элементы 1.

При подъёме РН нагрузки на опорные элементы снимаются и они поворачиваются, не мешая дальнейшему движению ракеты.

Рис. 18.5. Схемы крепления РН к опорным элементам стартовых сооружений

Если ракета «подвешена» на элементы фермы 4 (см. рис 18.56), то на уровне этого сечения должны быть установлены силовые кольца 3. Кроме того, ракета может дополнительно крепиться фермами 5 в районе нижних силовых колец.

Если ракета опирается на хвостовые отсеки центрального и боковых блоков одновременно, то должно быть предусмотрено специальное устройство, например стартово-стыковочное (см. схему на рис. 18.6). На этой схеме введены следующие обозначения: 1 – центральный блок; 2 – боковые блоки; 3 – стартово-стыковочное устройство; 4 – окна для газовых струй; 5 – опоры регулируемые; 6 – зоны расположения элементов крепления.

Рис. 18.6. Схема сопряжения РН со стартово-стыковочным устройством

Стартово-стыковочное устройство может транспортироваться и устанавливаться на стартовый стол отдельно от PH или совместно с PH. В последнем случае PH стыкуется со стартово-стыковочным устройством в монтажно-испытательном корпусе и транспортируется совместно с PH.

18.5. Согласование характеристик РН с расположением космодрома и азимутами пуска

18.5.1. Влияние широты расположения космодрома и ограничений по азимутам пуска на потребную характеристическую скорость PH

Ограничения по азимутам пуска связаны с опасностью падения ракетных блоков первых ступеней РН в населенные районы, а также на территории других стран. В любом случае необходимо согласовывать районы падения ступеней с федеральными и местными органами управления или с другими странами. Напомним, что азимут пуска ракет-носителей - это угол на плоскости горизонта в точке старта, отсчитываемый от направления на Север по часовой стрелке до линии пересечения с плоскостью опорной орбиты, на которую выводится полезная нагрузка. Если запуск РН осуществляется не с экваториальных космодромов, то азимуты пуска будут отличаться от углов наклонения плоскостей орбит, на которые выводятся космические аппараты.

Например, первый пуск ракеты-носителя «Энергия» был ориентирован на полет по трассе с азимутом пуска 63,5 градуса, обеспечивающем наклонение орбиты выведения 50,7 градуса [47].

Азимут пуска РН (без учета вращения Земли) можно рассчитать по следующей зависимости [22]:

$$A = \arcsin\left(\frac{\cos i}{\cos \varphi_0}\right),\,$$

где *i* – угол наклонения опорной орбиты;

 φ_0 - широта точки старта РН (или расположения космодрома).

При проектных расчётах приращений потребной характеристической скорости PH достаточно лишь знать углы наклонения орбит, на которые выводятся полезные нагрузки PH с тех или иных космодромов. На рис. 18.7 представлены значения углов наклонения плоскостей орбит, на которые могут быть выведены КА при запуске PH с космодрома Байконур (слева) и с космодрома Плесецк. С космодрома «Восточный» предполагается осуществлять запуски КА на опорные орбиты с базовыми наклонениями 51,7°, 63°, 72°, 83° и 98°.

Если РН выводит КА на орбиту с другим углом наклонения, то следует сопоставить этот угол с углами орбит, которые может обеспечить запуск РН с конкретного космодрома, и выбрать наиболее близкие по значениям углы. Поворот плоскости орбиты до нужного угла должен обеспечиваться в дальнейшем разгонным блоком или двигательной установкой самого КА. Если поворот осуществляется разгонным блоком РН, то разность между этими углами наклонения плоскостей орбит и следует учитывать в расчете характеристической скорости РН (см. раздел 6, п. 6.1.8).

В свою очередь, изменения в потребной характеристической скорости влияет на стартовую массу проектируемой РН при фикси-
рованной полезной нагрузке или на массу полезной нагрузки при фиксированной стартовой массе PH.

Рис. 18.7. Углы наклонения плоскостей орбит КА для космодромов Байконур (слева) и Плесецк (справа)

18.5.2. Особенности запуска КА на солнечно-синхронные орбиты

У солнечно-синхронных орбит суточный угол поворота плоскости орбиты (прецессии долготы восходящего узла орбиты) равен суточному углу прохождения Земли относительно Солнца в плоскости эклиптики. Этот угол остается неизменным в процессе полета КА в течение нескольких лет. Наклонение плоскости орбиты *i* солнечносинхронных орбит всегда больше $\pi/2$.

На солнечно-синхронные орбиты запускаются, как правило, КА дистанционного зондирования Земли, в частности аппараты детального наблюдения. Преимущество ССО заключается в том, что КА находится на фиксированной широте наблюдения в одно и то же время суток. При этом освещенность Солнцем объектов наблюдения не изменяется от витка к витку. При разработке схемы запуска КА на ССО следует учитывать некоторые особенности космодромов. Например, на космодроме Плесецк возможен запуск с углом наклонения плоскости орбиты 98 градусов в северном направлении, а на космодроме Байконур - 95,4° в северном и 97,43° в южном направлении (см. рис. 18.2). При других наклонениях, близких к наклонениям ССО, трасса полета РН проходит над густонаселёнными районами или на территории иностранных государств. В последнем случае требуются дополнительные межгосударственные соглашения.

Например, 26 июля 2006 г. с космодрома Байконур стартовала конверсионная PH «Днепр» (на базе межконтинентальной баллистической ракеты P36M). Трасса была проложена в южном направлении для выхода на солнечно-синхронную орбиту с наклонением 97,43 градуса. Район падения ракетного блока первой ступени находился на территории Туркмении. Ракетный блок второй ступени должен был упасть в Индийский океан южнее острова Мадагаскар. Однако пуск был аварийным, остатки PH и полезной нагрузки упали примерно в 125 км южнее города Байконур на территорию Казахстана [46].

18.5.3. Особенности запуска космических аппаратов на экваториальные орбиты

Если запуск космических аппаратов на экваториальные орбиты (с углом наклонения плоскости орбиты, близким к нулю градусов) проводить с космодрома Байконур при обеспечении минимального угла наклона плоскости орбиты, то плоскость орбиты КА необходимо изменять на 51,6 градуса, что требует увеличения потребной характеристической скорости на 1,389 км/с, если поворот осуществлять в апогее орбиты, переходной к геостационарной.

На потребную характеристическую скорость РН также оказывает влияние скорость вращения поверхности Земли, которая на экваторе составляет 463 м/с, а на широте Байконура (46 градусов) – 321 м/с.

Поэтому с точки зрения энергетики запуск спутников на экваториальные орбиты выгоднее производить с космодромов, находящихся вблизи экватора. Например, космодром Куру (во Французской Гвиане) расположен на широте 5° 18' северной широты. Можно осуществлять запуск и с плавучей платформы (совместный проект США, 362 России, Норвегии и Украины - компания «Морской старт»), место старта которой находится в координатах: широта - 0°, долгота (западная) - 154°.

Однако при определении места запуска российских КА на экваториальные орбиты следует учитывать, что при запуске их с космодромов или плавучих платформ, расположенных вблизи экватора, необходимо задействовать морские средства транспортировки, что требует дополнительных затрат.

18.6. Морской старт

Преимущества морского старта заключаются в том, что имеется возможность запуска ракет с экватора и отсутствует необходимость в отчуждении территорий для падения ракетных блоков. Кроме того, старт можно осуществлять с любой долготы Мирового океана.

К недостаткам можно отнести необходимость иметь дополнительные морские системы транспортировки, обслуживания и запуска PH, которые являются дорогостоящими.

На рис. 18.8 представлена схема старта, которая реализована ракетно-космической корпорацией «Энергия» совместно с Украиной (PH «Зенит») и некоторыми другими странами [39].

Рис. 18.8. Схема морского старта [39]

18.7. Воздушные старты

Старты ракет космического назначения с самолета имеют преимущества и недостатки.

К преимуществам можно отнести то, что начальная масса РКН, стартующей с самолета, на 25...40 % ниже начальной массы ракеты, стартующей с поверхности Земли с той же полезной нагрузкой, так как запуск осуществляется с самолета, летящего на высотах 10...17 км со скоростью от 0,8 М до 2,5 М (М - число Маха).

Количество ракетных блоков при таком способе запуска требуется, как правило, меньше, чем при старте с Земли. Причем количество невозвращаемых ракетных блоков минимально.

Не требуется стационарных стартовых устройств. Можно осуществлять запуск РКН с акватории Мирового океана, что не требует отчуждения территорий для падения отработавших РБ. Запуск можно осуществлять практически с любых широт, в том числе и с экватора, что особенно важно для запуска геостационарных КА.

К недостаткам воздушных стартов относится высокая стоимость самолётных стартовых комплексов.

В настоящее время существует несколько такого рода проектов. Основные характеристики некоторых из них приведены в табл. 18.1.

Характеристики	Ан-124	Ту-160	Ty-160	Ту-22	МиГ-31
Тип ракеты	«Полет»	«Бурлак»	«Штиль-За»	«Скиф»	Ракета ПРО
Начальная масса ракеты, т	102	32	46,6	17	7,5
Масса КА на опорн. орбите, кг	4000	770	1200	340	200
Угол тангажа при сбросе, град.	25	0	25	25	20
Высота сброса, км	10	12,5	12,5	17	16

Таблица 18.1. Основные характеристики некоторых проектов стартов с самолета

На рис. 18.9 представлена классификация воздушных стартовых комплексов. Ракета или другие составные части для запуска полезных 364

нагрузок в космос могут располагаться над самолетом, под самолетом или внутри фюзеляжа самолета.

Рис. 18.9. Классификация воздушных стартовых комплексов

Иллюстративные материалы по некоторым проектам стартов с самолета представлены на рис. 18.10.

Рис. 18.10. Проекты воздушных стартов

На рис. 18.10*а* представлена компоновочная схема самолетного старта по проекту «Молния» [39]. В качестве самолета-носителя используется Ан-225 («Мрия»), грузоподъемность которого составляет 250 т, топливный бак и космический самолет располагаются над фюзеляжем самолета.

На рис. 18.106 представлена схема старта с самолета Ту-160. Ракета подвешена под фюзеляжем самолета между двигателями и стойками шасси.

На рис. 18.10*в* представлена схема компоновки и запуска РН по проекту Головного и Волжского конструкторского бюро РКК «Энергия». Для этого самолёт Ан-124 переоборудован и получил номер Ан-124-100. Ракета устанавливается внутри фюзеляжа. Сброс ракеты осуществляется на высоте 10...12 км путем её выдвижения из фюзеляжа назад. Затем ракета разворачивается, осуществляется запуск двигателя и полёт по заданной программе изменения угла тангажа.

Рис. 18.11. Компоновочная схема противоспутниковой ракеты

На рис. 18.10г представлена схема самолетного старта по проекту МАИ (руководитель проекта профессор Малышев Г.В.).

Этот комплекс предназначен для запуска малоразмерных КА. В качестве самолета-носителя используется самолет-перехватчик МиГ-31, который предназначался ранее для запуска противоспутниковых ракет. Схема противоспутниковой ракеты, модернизированной для запуска малоразмерных КА, представлена на рис. 18.11.

Отличительной чертой данной ракеты является использование комбинированного топлива. В качестве окислителя используется жидкий кислород, а в качестве горючего – каучук. Окислитель располагается в отдельных баках и поступает под давлением в камеру сгорания, непосредственно в которой располагается твердое горючее.

18.8. Оценка весовой эффективности воздушных стартов

18.8.1. Постановка задачи

Стартовая масса ракеты-носителя и масса её полезной нагрузки зависят от многих взаимовлияющих факторов: грузоподъёмности дирижабля или самолёта, высоты и скорости их полёта, угла наклона траектории ракеты в момент старта, количества ступеней ракеты, схемы соединения и включения ракетных блоков, используемых компонентов топлива и двигателей, программы изменения угла наклона траектории [41].

Поэтому минимизация начальной массы РН при заданной массе полезной нагрузки или максимизация массы ПН при заданной стартовой массе РН должна проводиться с учётом взаимовлияния элементов технической системы «дирижабль – ракета-носитель» или «самолет – ракета-носитель». Задача минимизации стартовой массы РН осложняется ещё и тем, что на начальных этапах проектирования многие характеристики, которые необходимо использовать в расчетах, окончательно не определены. Поэтому целесообразно иметь методику хотя бы приближённой минимизации стартовой массы РН, которая требовала бы небольшое количество исходных данных.

В качестве критерия весовой эффективности рассматриваемых видов стартов будем использовать стартовую массу PH. Общая постановка задачи будет такой же, что и при оптимизации стартовой массы РН при наземном старте (см. подраздел 8.3). Разница будет лишь в том, что при воздушных стартах потребная характеристическая скорость будет меньше, чем при наземном старте.

Поэтому суть методики заключается в определении потребной характеристической скорости V_x для PH, стартующей с Земли, дирижабля или самолёта, и расчёте массы стартовой массы m_0 с учётом оптимального распределения массы PH по ступеням.

18.8.2. Определение потребной характеристической скорости для РН при воздушном старте

Проведем определение потребной характеристической скорости V_x с учетом ее экономии в связи с воздушным стартом. Экономия характеристической скорости возникает, во-первых, из-за старта PH с некоторой высоты и, во-вторых, из-за того, что дирижабль или самолет летят с определённой скоростью.

В свою очередь, экономия характеристической скорости из-за старта PH с некоторой высоты имеет две составляющие:

- из-за изменения потенциальной энергии PH ΔV_1 ;

- из-за уменьшения потерь скорости от гравитационных, аэродинамических сил и сил противодавления на срезе сопла двигателя ΔV_2 .

Экономия характеристической скорости из-за изменения потенциальной энергии РН

Скорость ΔV_1 рассчитывается как разность идеальных потребных характеристических скоростей при наземном и воздушном стартах:

$$\Delta V_1 = \sqrt{\frac{\mu_3}{r_{oo}} \left(\frac{2r_{oo}}{R_3} - 1\right)} - \sqrt{\frac{\mu_3}{r_{oo}} \left(\frac{2r_{oo}}{R_3 + H_c} - 1\right)},$$

где H_c - высота старта РН.

В правой части этого выражения первый член представляет собой идеальную потребную характеристическую скорость при старте с

поверхности Земли (см. формулу (2.10)), а второй член – идеальную потребную характеристическую скорость с учетом высоты старта.

Расчеты показывают, что значение ΔV_1 мало. Например, для высоты старта 12 км ΔV_1 составляет всего лишь 14,7 м/с, а для высоты 17 км – 20,8 м/с. Поэтому в первом приближении её можно не учитывать.

Экономия характеристической скорости из-за уменьшения потерь скорости от гравитационных и других сил

Скорость ΔV_2 можно определить, зная потребную характеристическую скорость РН для достижения высоты воздушного старта. По данным [50] для достижения высот 10...12 км и для различного количества ступеней и схем соединения ракетных блоков РН эта скорость составляет $\Delta V_2 = 500...600$ м/с.

Значение ΔV_2 можно также приближённо оценить, если учесть, что основные потери скорости PH связаны с действием сил гравитации, а угол наклона траектории меняется от 90° на небольших высотах до 40°...50° градусов на высотах 10...12 км. По статистике [50] для различных PH (исключая конверсионные) время достижения таких высот составляет 60...70 секунд (PH «Союз» - 64 с, PH «Зенит» -63 с, PH «Энергия» - 65 с). Среднее значение угла наклона траектории составляет 67°...70°. Следовательно, потери скорости от действия гравитации составят: $\Delta V_G = g_0 t \sin(65^\circ - 70^\circ) \approx 520...610$ м/с.

Более точно значение ΔV_2 можно получить, интегрируя уравнения движения конкретной РН. Для проектных расчетов достаточно интегрирования упрощённых уравнений движения типа (2.16).

Экономия характеристической скорости в связи с полетом дирижабля или самолета с определённой скоростью

Обозначим эту скорость через ΔV_3 . При пуске PH с дирижабля следует учесть, что при старте ракеты он может двигаться только горизонтально и его скорость, как правило, не превышает 200 км/час или 55,5 м/с. Реальная экономия скорости ΔV_3 будет несколько

меньше скорости дирижабля, так как РН должна сменить направление полета с горизонтального на наклонный.

Рассмотрим пуск PH с самолёта. В работе [41] отмечается, что перед пуском PH самолёт должен сделать горку с максимально возможным углом наклона траектории, который составляет $20^{\circ} ... 30^{\circ}$. Время интенсивного разворота PH составляет примерно 20 секунд при изменении угла наклона траектории PH от стартового значения до оптимального программного $50^{\circ} ... 60^{\circ}$ [41]. Реальная экономия ΔV_3 будет также несколько меньше скорости самолета, однако в процентном отношении ее следует ожидать большей из-за начального угла наклона траектории, чем при горизонтальном пуске PH с дирижабля.

Для этого введём эмпирический коэффициент k_{cc} , который учитывает снижение скорости РН по сравнению со скоростью носителя (дирижабля или самолёта) при изменении угла наклона траектории.

Тогда экономия характеристической скорости будет

$$\Delta V_3 = k_{cc} V_{HOC} ,$$

где V_{нос} - скорость носителя (дирижабля или самолёта).

По экспертным оценкам автора для дирижабля $k_{cc} \approx 0.8$, а для самолёта $k_{cc} \approx 0.9$.

Суммарная экономия потребной характеристической скорости при воздушном старте равна

 $\Delta V = \Delta V_1 + \Delta V_2 + \Delta V_3 \,.$

Тогда потребная характеристическая скорость при воздушном старте составит

 $V_{x\,\theta c}^{nomp} = V_{x\,\theta c}^{nomp} - \Delta V ,$

где V_{x+c}^{nomp} - потребная характеристическая скорость при наземном старте.

18.8.3. Результаты расчётов и их анализ

Расчёты проведены по методике, изложенной в подразделе 8.3. Целевая функция имеет вид (8.30), а функция ограничений вид (8.37). Расчёты и оптимизация проводились с использованием системы Mathcad. На рис. 18.12 представлены результаты расчётов стартовой массы PH с последовательным соединением ракетных блоков при наземном и воздушных стартах.

двухступенчатые РН, горючее - водород; трехступенчатые РН, горючее - керосин

Рис. 18.12. Влияние вида старта и топлива на начальную массу PH при заданной массе полезной нагрузки

Рассмотрены две группы РН: трёхступенчатые с компонентами топлива «керосин - жидкий кислород» и двухступенчатые с компонентами топлива «жидкий водород - жидкий кислород». Цифры над столбиками диаграммы означают стартовую массу ракет-носителей.

Масса полезной нагрузки во всех случаях была одинакова - 2,5 т. Предварительно масса полезной нагрузки варьировалась и была по-

добрана таким образом, чтобы начальная масса трехступенчатой РН при наземном старте составляла примерно 100 тонн, что облегчает сравнение начальных масс РН в процентах.

Высота полёта для самолетов со скоростью 0,185 М, 0,83 М и 2,0 М составляла 12 км, для самолета со скоростью 4,0 М принималась равной 17 км. Конструктивные характеристики РБ первой, второй и третьей ступеней трехступенчатой РН составляли соответственно: s1=12, s2=10, s3=8, а для двухступенчатой - s1=10, s2=8.

Анализ результатов показывает, что чем больше скорость и высота полёта дирижабля или самолёта, тем меньшая масса PH требуется для вывода фиксированной полезной нагрузки. Наиболее эффективным в весовом отношении является старт с гиперзвукового самолета при M=4 с компонентами топлива «жидкий водород - жидкий кислород».

Однако следует отметить, что использование водорода в качестве горючего РН влечёт за собой увеличение габаритов по сравнению с РН, использующими в качестве горючего керосин. Это увеличение происходит несмотря на уменьшение стартовой массы РН и объясняется тем, что средняя плотность топлива с учётом соотношения компонентов у пары «керосин - жидкий кислород» выше, чем у пары «жидкий водород – жидкий кислород» примерно в пять раз (1000 кг/м³ и 200 кг/м³ соответственно).

На рис. 18.13 представлены результаты расчётов объемов РН для исходных данных, использовавшихся при расчете масс. Анализ результатов показывает, что потребный объём для реализации РН, использующих водород, значительно превышает объём РН, использующих керосин. Поскольку габаритные размеры РН могут быть критичными при использовании конкретных типов самолётов с учётом расположения РН по отношению к фюзеляжу (над фюзеляжем, внутри фюзеляжа, под фюзеляжем), то при выборе компонентов топлива с учётом удельного импульса и средней плотности топлива необходимо использовать комплексный критерий эффективности типа (7.24).

Рис. 18.13. Влияние вида старта и топлива на объем РН при заданной массе полезной нагрузки

Кроме того, при проектировании необходимо учитывать, что самолёты должны включать дополнительное оборудование для подпитки постоянно испаряющихся низкокипящих компонентов топлива. Это оборудование сложнее и тяжелее в случае, когда в качестве горючего используется жидкий водород.

Проблема практической реализации проектов воздушных стартов связана с экономическим аспектом создания сложной технической системы, в которой появляются новые элементы, в том числе дирижабли или самолеты специального назначения. Они для своего создания и эксплуатации требуют не меньших ресурсов (финансовых, материальных и людских) и времени, чем создание PH с наземным стартом. Поэтому при принятии окончательного решения о реализации тех или иных проектов воздушного старта, необходимо проводить подробные исследования по оценке экономической эффективности.

18.9. Полностью многоразовые многоцелевые авиационно-космические системы

В качестве «первой» ступени в полностью многоразовых многоцелевых авиационно-космических системах используются гиперзвуковые самолеты-носители. В качестве второй (возвращаемой) ступени используется многоразовый космический самолет.

В гиперзвуковых самолетах, используемых в качестве самолетовносителей, как правило, имеются две группы двигателей:

- обычные турбореактивные двигатели, с помощью которых самолет взлетает и разгоняется до скорости, соответствующей примерно 3...3,5 М (М - число Маха);

- прямоточные воздушно-реактивные двигатели (ПВРД), с помощью которых самолет может разгоняться до 6 М.

Необходимость в двух группах двигателей вызвана тем, что ПВРД могут запускаться только при большой начальной скорости набегающего потока воздуха (0,8 М и выше).

Имеются также проекты одноступенчатых полностью многоразовых космических ракетопланов. Однако стартовая масса их велика. Так по проекту РКК «Энергия» [39] для доставки полезной нагрузки 10 тонн на низкую орбиту стартовая масса такого ракетоплана составляет 1400 тонн. Он взлетает вертикально, а осуществляет посадку горизонтально.

18.10. Запуск малогабаритных космических аппаратов

Для запуска малогабаритных космических аппаратов, обладающих малой массой, использование отдельных РН нецелесообразно. Экономичнее всего запускать такие аппараты совместно с «большими и тяжелыми» аппаратами. Такой метод запуска еще называют «попутным».

Впервые такого рода запуски осуществлялись в рамках развития творчества студентов. Например, в 80-х и в 90-х годах 20-го века были запущены студенческие спутники Московского авиационного института, Куйбышевского авиационного института – КуАИ (впоследствии Самарского государственного аэрокосмического университета) 374 и др. Такие спутники решали относительно простые задачи. В частности, спутник «Пион» КуАИ (руководитель проекта профессор Ю.Л.Тарасов) был неуправляемым, имел форму сферы и определенный баллистический коэффициент. Этот спутник запускался совместно с КА «Зенит» (ЦСКБ, г. Самара) и предназначался для исследования состояния разреженной атмосферы по результатам его торможения, которое оценивалось с помощью наземных радиолокационных средств.

В настоящее время, в связи с развитием элементной базы микроэлектроники, наблюдается тенденция минимизации массы и габаритов спутников с сохранением функциональных возможностей. В этой связи многие организации (в том числе и некоторые университеты) кооперируются с предприятиями ракетно-космической отрасли для попутного запуска своих спутников.

Рис. 18.14. МКА «Аист» и его установка на КА «Фотон».

В принципе, малогабаритные спутники можно запускать попутно практически со всеми «тяжелыми» спутниками, если у ракетносителей имеется небольшой резерв массы по полезной нагрузке.

На рис. 18.14 и 18.15 показаны варианты установки студенческого малого космического аппарата научного назначения «Аист», совместной разработки СГАУ и «ЦСКБ-Прогресс» (г. Самара) на КА «Фотон» и в переходном отсеке ракеты-носителя.

Рис. 18.15. Установка малого космического аппарата «Аист» в переходном отсеке РН

Контрольные вопросы

1. Каким образом влияют широта расположения космодрома и ограничения по азимутам пуска на потребную характеристическую скорость PH?

2. Расскажите об особенностях запуска КА на солнечносинхронные орбиты.

3. Расскажите об особенности запуска КА на экваториальные орбиты.

4. Какие элементы РН требуют согласования с элементами технического и наземного стартовых комплексов?

5. Расскажите о морском старте. Преимущества и недостатки.

6. Приведите схемы стартов с самолета с примерами.

7. Приведите этапы методики оценки весовой эффективности РН при стартах с дирижабля и самолетов.

8. Как определяется потребная характеристическая скорость PH при воздушном старте?

9. Охарактеризуйте влияние воздушного старта и топлива на начальную массу и габариты РН при заданной массе полезной нагрузки.

10. Расскажите о полностью многоразовых многоцелевых авиационно-космических системах.

11. Расскажите о запусках малогабаритных КА в качестве попутных нагрузок РКН.

ЗАКЛЮЧЕНИЕ

В настоящем учебном пособии рассмотрены основы проектирования ракет-носителей. Основное внимание уделено вопросам выбора основных характеристик и проектного облика ракет-носителей.

Многие вопросы в этом учебном пособии не затрагивались из-за ограниченности объема пособия, многочисленности частных вопросов и сложности решаемых проблем при создании новых типов ракет-носителей.

Желающих более подробно изучить вопросы проектирования ракет-носителей отсылаем к списку использованных источников.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Справочник по расчету самолета на прочность [Текст]. / М. Ф. Астахов, А. В. Караваев, С. Я. Макаров и др. - М.: Оборонгиз, 1954. - 708 с.

2. Основные данные иностранных управляемых и неуправляемых снарядов и ракет (по материалам иностранной печати) [Текст]. - Ротапринт бюро научно-технической информации ЦАГИ, -декабрь 1958 г.

3. Ракеты-носители, спутники и космические ЛА США (по материалам иностранной печати) [Текст]. Обзоры. Переводы. Рефераты. – ЦАГИ. 1963. № 83, -43 с.

4. Основные данные зарубежных управляемых снарядов (по материалам иностранной печати) [Текст]. - Ротапринт бюро НТИ ЦАГИ, июнь 1964.

5. Основные данные зарубежных управляемых снарядов (по материалам иностранной печати) [Текст]. - Ротапринт бюро научно-технической информации ЦАГИ, декабрь 1964.

6. Основные данные зарубежных управляемых снарядов (по материалам иностранной печати) [Текст]. - Ротапринт бюро научно-технической информации ЦАГИ., 1967.

7. Инженерный справочник по космической технике [Текст]. / Ред. коллегия: И. И. Караваев, А. А. Кудряшов, А. П. Лимаренко и др.; / под общ. ред. А. В. Солодова. - М.: Министерство обороны, 1969. -693 с.

8. Конструкция управляемых баллистических ракет [Текст] / под ред. А. М. Синюкова и Н. И. Морозова. - М.: Воениздат, 1969. – 444 с.

9. Фертрегт, М. Основы космонавтики [Текст]. / М.Фертрегт; пер. с англ. А.Н. Рубашова; под ред. А.А. Космодемьянского. - М.: Просвещение. 1969. - 302 с.

10. Белоконов, В.М. Конспект лекций по динамике полёта. - Куйбышев: КуАИ, 1970.

11. Проектирование и испытания баллистических ракет [Текст]. / под ред. В.И. Варфоломеева и М.И. Копытова. - М.: Воениздат, 1970. - 302 с.

12. Дракин, И. И. Основы проектирования беспилотных ЛА с учетом экономической эффективности [Текст]. - М.: Машиностроение, 1973. – 224 с.

13. Москаленко Г.М. Инженерные методы проектирования в ракетодинамике [Текст]. - М.: Машиностроение, 1974. – 392 с.

14. Шеверов, Д. Н. Проектирование беспилотных летательных аппаратов [Текст]. /Д.Н.Шеверов. - М.: Машиностроение, 1978. – 264 с.

15. Феодосьев, В. В. Основы техники ракетного полета [Текст]. / В.В.Феодосьев. - М.: Наука. Главная редакция физико-математической литературы, 1979. – 496 с.

16. Альбом основных характеристик зарубежных ракет-носителей и баллистических ракет [Текст]. Сост. Доц. В. М. Белоконов. - Куйбышев, КуАИ; 1979. - 82 с.

17. Творческое наследие академика Сергея Павловича Королева [Текст]: Избранные труды и документы / под общей ред. акад. М.В.Келдыша. - М.: Наука, 1980. - 592 с.

18. Ракеты-носители [Текст] / под ред. проф. С.О. Осипова. - М.: Военное изд-во министерства обороны СССР, 1981. - 315 с.

19. Основы проектирования летательных аппаратов (транспортные системы) [Текст]. Учебник для технических вузов /В.П.Мишин, В. К. Безвербый, Б.М. Панкратов [и др.]; под ред. В. П. Мищина. – М.: Машиностроение, 1985. - 360 с.

20. Конструкция и проектирование космических летательных аппаратов [Текст]. Учебник. / Н.И. Паничкин, Ю.В.Слепушкин [и др.]. – М.: Машиностроение, 1986. - 344 с.

21. Друшляков, Ю. И., Ежкова И. В. Теоретические основы программирования [Текст]: учеб. пособие / Ю.И.Друшляков, И.В.Ежкова. – М.: МАИ, 1986. -61 с.

22. Белоконов, В.М. Расчет характеристик летательных аппартатов с применением ЭВМ [Текст]: учеб. пособие / В.М.Белоконов, В.А.Вьюжанин. – Куйбышев: КУАИ, 1987. – 68 с.

23. Основы строительной механики ракет [Текст]. / Л. И. Балабух, К. С. Колесников, В. С. Зарубин [и др.] - М.: Высшая школа, 1989. –496 с.

24. Андреев, С. В. Баллистические ракеты [Текст]. / С.В.Андреев. – Самара: ООО «Книга», 2011. – 244 с.

25. Сердюк, К.В. Транспортные средства обеспечения космических программ [Текст]. / К.В. Сердюк, Н.В. Толяренко, Н.Н. Хлебникова; под ред. Акад. В.П. Мишина. - Итоги науки и техники. Сер. «Ракетостроение и космическая техника». М.: ВИНИТИ, 1990. Том II/ - 276 с.

26. Томилов, В. Н. Основы устройства и управления полетом ЛА [Текст]: учеб. пособие /В.Н.Томилов. – Куйбышев: КуАИ, 1991. – 96 с.

27. Основы конструирования ракет-носителей [Текст]. Учебник для студентов втузов / под ред. В. П. Мишина и В. К. Карраска. – М.: Машиностроение, 1991. – 416 с.

28. Голубев, И. С. Проектирование конструкцй летательных аппаратов [Текст]: учебник для студентов втузов / И.С.Голубев, А.В.Самарин. - М.: Машиностроение, 1991. -512 с.

29. Кобелев, В.Н., Милованов А.Г. Ракеты-носители [Текст]: учеб. пособие / В.Н.Кобелев, А.Г.Милованов. – Москва: МАТИ, 1993. - 183 с.

30. Пневмогидравлические системы летательных аппаратов [Текст]. учеб. пособие. / Л. Г. Лукашев, А. Г. Прохоров, В. М. Сайгак [и др.]. - Самара: СГАУ, 1993. – 61 с.

31. Советкин, Ю.А., Щербина Д.В. Предложения "ЦСКБ-Прогресс" по оценке эффективности многоразового использования блоков первых ступеней ракет-носителей [Текст] / Ю.А.Советкин, Д.В.Щербина // Полёт, 2009. № 8.

32. Куренков В.И. Выбор основных проектных характеристик и конструктивного облика ракет-носителей с использованием системы твердотельного моделировния [Текст]: учеб. пособие / В.И.Куренков. – Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2006. – 178 с.

33. Юмашев, Л. П. Устройство ракет-носителей (сухие отсеки и топливные баки) [Текст]: учеб. пособие. – Самара:Самар. гос. аэрокосм. ун-т, 1995. – 57 с.

34. Ракетно-космическая корпорация "Энергия" имени С. П. Королева. - М.: МЕНОНСОВПОЛИГРАФ, 1996. - 672 с.

35. Методические и организационно-технические вопросы надежности космических аппаратов [Текст]: конспект лекций / В.И.Куренков, В.И. Кузнецов, В.М. Сайгак и [др.]. – Самара: Самар. гос. аэрокосм. ун-т, 1997. – 42 с.

36. Юмашев, Л. П. Устройство ракет-носителей (вспомогательные системы) [Текст]: учеб. пособие / Л.П.Юмашев. – Самара: Самар. гос. аэрокосм. ун-т, 1999. – 190 с.

37. Развитие космических средств выведения среднего класса типа «Союз» [Текст]. / Д.И.Козлов, Г.Е.Фомин, В.Н.Новиков [и др.] / В сб. науч. Техн. ст. – Самара: ГНПРКЦ «ЦСКБ-Прогресс», 1999. С. 13-21.

38. Карпенко, А. В. Отечественные стратегические ракетные комплексы [Текст] / А.Ф. Уткин, А.Д. Попов / под ред. акад. РАН В. Ф. Уткина. – СПб.: Невский бастион - Гангут, 1999. -288с.

39. Уманский, С. Ракеты-носители. Космодромы [Текст]. / под ред. Ю.Н. Коптева. М.: Изд-во «Рестарт+», 2001. - 216 с.

40. Гущин, В. Н. Информационно-компьютерная технология (ИКтехнология) разработок летательных аппаратов [Текст] / В.Н.Гущин. – Жуковский: Авиационный печатный двор, 2001. – 248 с.

41. Баллистические ракеты и ракеты-носители [Текст]: пособие для студентов вузов / О. М. Алифанов, А. Н. Андреев, В. Н. Гущин [и др.]; под ред. О. М. Алифанова. - М.: Дрофа, 2004. - 512 с.

42. Космонавтика. Энциклопедия /Гл. редактор В.П.Глушко. – М.: «Советская энциклопедия», 1985 – 528 с.

43. Куренков, В. И. Методы расчета и обеспечения надежности ракетно-космических комплексов [Текст]: учеб. пособие / В. И. Куренков, В. А. Капитонов – Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2007. – 320 с.

44. Советкин, Ю. А. Технико-экономический анализ летательных аппаратов [Текст]: учеб. пособие / Ю.А.Советкин. – Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2006. - 137 с.

45. Гонин, Г. Б. Космические съемки Земли [Текст] / Г.Б.Гонин. – Л.: Недра, 1989. – 252 с.

46. Копик, А. Авария «Днепра» [Текст]. // Новости космонавтики, 2006, № 9. с. 44-51.

47. Губанов, Б.И. Триумф и трагедия "Энергии". Размышления главного конструктора [Текст] / Б.И.Губанов. Том 3: "ЭНЕРГИЯ" - "БУРАН" -Нижний Новгород: Изд-во НИЭР, 1998.

48. Соболев, И. Лунная принцесса. Япония запускает самый крупный лунный аппарат нашего времени [Текст] / И.Соболев // Новости космонавтики. 2007. №11.

49. Кучейко, А. Япония наращивает систему космической разведки [Текст] / А.Кучейко. // Новости космонавтики, 2006, №11.

50. International reference guide to space launch systems. Third edition. Steven J. Isakowitz, Joseph P. Hopkins Jr., Joshua B. Hopkins. Corporate Sponsors Lockheed Martin Corporation The Boeing Company. Published and distributed by American Institute of Aeronautics and Astronautics (AIAA) 1801. Alexander Bell Drive, Suite 500 Reston, Virginia 20191-4344.

51. Усовершенствованый метан-кислородный ЖРД [Текст]. - ЭИ ЦНТИ «Поиск» от 10.12.2007.

52. Основы проектирования летательных аппаратов (транспортные системы) [Текст]. Учебник для технических вузов /В.П.Мишин, В. К. Безвербый, Б.М. Панкратов [и др.]; под ред. А.М.Матвеенко и О.М.Алифанова. – М.: Машиностроение, 2005. - 375 с.

53. Концепция развития российской пилотируемой космонавтики [Текст] // Новости космонавтики. 2006, №7 (282). Т. 16.

54. Афанасьев И., Воронцов Д. «Еще немного, еще чуть-чуть…» [Текст] /И.Афанасьев, Д.Воронцов. // Новости космонавтики, 2009, №10. С. 28-31.

55. Афанасьев, И.. «Энергомашу» - 80 лет [Текст] / И.Афанасьев. // Новости космонавтики, 2009, № 7, с 52-53.

56. Чёрный, И. Представлен новый японский носитель [Текст] / И.Чёрный. // Новости космонавтики, 2009, №4, с. 56.

57. Сихарулидзе, Ю. Г. Баллистика летательных аппаратов [Текст] / Ю.Г.Сихарулидзе – М: Наука. Главная редакция физико-математической литературы, 1982. – 352 с.

58. Куренков, В. И., Юмашев Л.П. Выбор основных проектных характеристик и конструктивного облика ракет-носителей [Текст]: учеб. пособие / В.И.Куренков, Л.П.Юмашев; под ред. чл.-кор. РАН Д. И. Козлова. – Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2005. - 240 с.

59. Соллогуб, А.В. SolidWorks: технологии трехмерного моделирования / А. В. Соллогуб, З. А. Сабирова. – СПб.: БХВ-Петербург. 2007. – 352 с.

60. Чёрный, И. Огненная колесница для принцессы [Текст] / И.Чёрный. // Новости космонавтики/ 2007, №11 (298). С. 25-26.

61. International reference guide to space launch systems. Third edition. Steven J. Isakowitz, Joseph P. Hopkins Jr., Joshua B. Hopkins. Corporate Sponsors Lockheed Martin Corporation The Boeing Company. Published and distributed by American Institute of Aeronautics and Astronautics (AIAA) 1801. Alexander Bell Drive, Suite 500 Reston, Virginia 20191-4344.

62. ГОСТ 2.103-68 (2001, с изм. 2 2006): ЕСКД. Стадии разработки [Текст]. – М.: Изд-во Стандартов. 2006.

63. Моделирование конструкций ракетно-космической техники методом конечных элементов в среде MSC.NASTRAN с использованием системы твёрдотельного моделирования Solidworks [Текст]: учеб. пособие / К. В. Пересыпкин, В. П. Пересыпкин, Е. А. Иванова – Самара: Из-во Самар. гос. аэрокосм. ун-та, 2006. - 214 с.

64. Мохов, В. Новые китайские ракеты-носители из модулей [Текст] / В.Мохов // Новости космонавтики. 2006, № 10 (285), том 16. С. 47.

65. Чёрный И. Перспективные китайские ракеты-носители или «Великий поход» [Текст] / И. Чёрный. // Новости космонавтики. 2008, - № 11 (310). Том 18. С. 48.

66. Розанов, В. Вести с Восточного / В.Розанов // – Новости космонавтики, 2011, № 01 (336). Том 21. С. 65.

67. Кучейко, А. Корейский спутник метрового разрешения [Текст] / А.Кучейко // Новости космонавтики, 2006. № 9 (284). Том 16.

68. Апазов, Р.Ф. Баллистика управляемых ракет дальнего действия [Текст] /Р.Ф.Апазов, С.С.Лавров, В.П.Мишин. – М.: Наука, 1966, 308 с.

69. Апазов, Р.Ф. Методы проектированитя траекторий носителей и спутников Земли [Текст] /Р.Ф.Апазов, О.Г.Сытин. – М.: Наука, 1966, 308 с.

70. Марленский, А. Д. Основы космонавтики. [Текст]: учеб. пособие / А.Д.Марленский – М.: Просвещение, 1985, 160 с.

ПРИЛОЖЕНИЕ А

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КУРСОВЫХ И ДИПЛОМНЫХ ПРОЕКТОВ

А1. Основные этапы курсового проектирования РН

Необходимым и достаточным условием качественного и своевременного выполнения курсового проекта по выбору основных характеристик и конструктивного облика ракеты-носителя является знание учебного материала, изложенного выше.

Кроме того, студент должен пользоваться полученными ранее знаниями по основам устройства и конструкции летательных аппаратов, прочности, аэродинамике, динамике полета, технологии производства летательных аппаратов, безопасности жизнедеятельности и экономике ракетно-космической отрасли.

Задания

Каждому студенту предлагается спроектировать ракетуноситель, выводящую космический аппарат заданной массы на определенную орбиту или траекторию полета к Луне или планетам.

Варианты заданий представлены в табл. А1. В этой таблице аббревиатура МКС – международная космическая станция, КК - космический комплекс.

Каждому студенту выдаётся индивидуальное задание, отличающееся массой выводимого космического аппарата и параметрами орбит. В задании приводятся сроки выполнения отдельных этапов. Рекомендуемая форма бланка задания приведена в приложении Б (см. задание в примере выполнения курсового проекта и оформления пояснительной записки.

Таблица А1. Варианты заданий

No	Magaa	Высота	Высота	Наклонение	
1990	KA T	перигея,	апогея,	орбиты,	Назначение КА или КК
Bap.	KA, I	KM	KM	гр ад	
1	0,5	574	574	97,66	КА наблюдения
2	0,5	670	670	98,0	КА наблюдения
3	1,0	730	730	98,3	КА наблюдения
4	1,0	350	1300	37	КА наблюдения
5	1,0	2000	2000	103	КА наблюдения
6	1,0	500	20000	65	КА связи
7	1,5	600	40000	62,8	Исследовательский КА
8	1,5	20000	20000	64	Метеорологический КА
9	1,5	40000	40000	0	Стационарный КА
10	2,0	500	200000	0	Исследовательский КА
11	2,0	650	40000	51	Исследовательский КА
12	2,0	36000	36000	0	Стационарный КА
13	3.0	650	40000	55	Исследовательский КА
14	3,0	40000	40000	0	Стационарный КА
15	4,0	600	40000	62,8	Исследовательский КА
16	4,0	2002	2002	104,85	КА наблюдения
17	5,0	36000	36000	0	Стационарный КА
18	5,0	500	20000	65	КА связи
19	6,0	350	1000	63	КА наблюдения
20	6,0	730	730	98,3	КА наблюдения
21	7,0	788	788	98,5	КА наблюдения
22	7,0	400	400	64	Пилотируемый КА
23	8,0	400	400	64	Пилотируемый КА
24	10	400	400	64	Пилотируемый КА
25	12	400	400	64	Грузовой корабль
26	15	400	400	64	Грузовой корабль
27	20	400	400	64	Модуль МКС
28	20	200	200	46	КК для полета к Венере
29	25	400	400	64	Модуль МКС
30	25	200	200	64	КК для полета к Марсу
31	30	500	500	64	Модуль МКС
32	30	200	200	64	КК для полета к Луне
33	40	400	400	64	Модуль МКС
34	40	200	200	64	КК для полета к Юпитеру
35	50	400	400	64	Модуль МКС
36	50	200	200	55	КК для полета к Венере
37	70	400	400	64	Модуль МКС
38	70	200	200	63	КК для полета к Марсу
39	100	400	400	52	Модуль МКС
40	100	200	200	57	КК для полета к Луне

Начальный этап курсового проектирования

После получения задания студент анализирует его и приступает к выполнению. Выбор основных характеристик и проектного облика проектируемой РН осуществляется в последовательности, которая приведена в задании.

Перед разработкой каждого раздела курсового проекта студент должен изучить или повторить соответствующий материал учебного пособия.

Требования по подробности изложения теоретического материала в пояснительной записке

Не рекомендуется в пояснительной записке приводить теоретический материал в подробном изложении, как в учебном пособии. Достаточно в каждом разделе приводить постановки задач, критерии выбора, делать ссылки на источники по методам решения. Обязательно следует приводить расчётные схемы, результаты расчётов и выводы по ним.

Разработка тактико-технических требований в учебных курсовых и дипломных проектах

Для учебных курсовых проектов допускается составлять тактико-технические требования в упрощенной форме в виде одной таблицы. Форма такой таблицы приведена в примере выполнения курсового проекта и оформления пояснительной записки (см. табл. Б2.1). Во второй графе таблицы должны быть приведены ссылки на нормативные документы отрасли или принятые решения комиссий различных уровней по каждому конкретному пункту ТТТ. При выполнении учебного курсового проекта допускается упрощенное обоснование, как это показано в примере.

Рекомендации при выборе топлива в курсовых проектах

1. Рекомендуется использовать, как правило, жидкие двухкомпонентные ракетные топлива. В некоторых обоснованных случаях можно использовать твёрдотопливные ускорители. По возможности использовать разработанные ранее и эксплуатирующиеся в настоящее время ракетные блоки, например, от твердотопливных баллистических ракет.

2. Не рекомендуется на нижних ступенях PH использовать топлива с токсичными компонентами.

Требования по разработке предложений по пневмогидравлической системе

Пневмогидравлические системы студенты ракетно-космических специальностей изучают ранее в соответствующих дисциплинах специальности. Поэтому в курсовом проекте необходимо лишь подобрать подходящую пневмогидравлическую схему для одного из ракетных блоков проектируемой РН, описать вкратце её состав и функционирование. Рекомендуется использовать ПГС из монографий и учебных пособий, например из [8, 19, 30, 52] и др. источников.

Требования по разработке предложений по системам крепления и разделения составных частей РН

Системы крепления и разделения составных частей РН студенты также изучают ранее. Поэтому в курсовом проекте необходимо ограничиться разработкой следующих частных схем:

- крепления РН в элементах стартовых устройств;

- крепления и разделения ракетных блоков;

- крепления и разделения створок головного обтекателя;

- крепления и разделения полезной нагрузки (космического аппарата или разгонного блока с КА);

- крепления и разделения хвостовых отсеков (для сбрасываемых отсеков).

Необходимо также описать функционирование систем разделения всех составных частей ракеты.

Требования к описанию конструкции и функционирования ракеты в полете

В данном разделе курсового проекта должно быть представлено описание конструкции РН и его составных частей, а также функционирование РН в полете. В этом описании, по сути, должны быть представлены вкратце все предыдущие этапы разработки проекта, включая выбранное топливо, схему соединения ступеней, компоновку отдельных отсеков, ракеты в целом и т.п.

Описание конструкции следует начинать в последовательности расположения крупных составных частей ракеты космического назначения, как правило, по схеме «снизу-вверх».

При описании конструкции отсеков необходимо охарактеризовать все элементы, представленные в предварительной массовой сводке, например для бака: обечайки, днища, шпангоуты, тоннельные трубопроводы.

Описание функционирования РН в полёте следует начинать с момента выдачи команды «Пуск», разрыва всех механических (элементов крепления ракеты к стартовому столу), электрических, гидравлических и пневматических связей и включения в работу бортовых систем.

При описании функционирования рекомендуется рассмотреть основные этапы, сделав, например, следующие заголовки:

- функционирование ракеты-носителя на этапе полета первой ступени;

- функционирование ракеты-носителя на этапе полета второй ступени;

- функционирование ракеты-носителя на этапе полета третьей ступени;

- функционирование ракеты-носителя в случае возникновения аварийной ситуации до отделения головного обтекателя;

- функционирование ракеты-носителя в случае возникновения аварийной ситуации после отделения головного обтекателя.

При описании функционирования каждого из ракетных блоков необходимо рассмотреть вопросы:

- включение и выключение двигателей;

- управление по каналам тангажа, рыскания и крена;

- схема разделения ракетных блоков;

- срабатывание элементов системы крепления и разделения;

- торможение ракетных блоков.

При описании работы системы аварийного спасения ракетыносителя, предназначенной для запуска пилотируемых КА, необходимо описать последовательность этапов работы этой системы, начиная с момента возникновения аварийной ситуации и кончая моментом приземления спускаемого аппарата.

Промежуточный контроль

Предварительный отчет о выполнении каждого этапа курсового проекта оформляется в виде отдельных страниц в текстовом редакторе Microsoft Word. При этом необходимо делать соответствующий заголовок, например: "Выбор потребной характеристической скорости". В конце каждого раздела делаются соответствующие выводы.

Преподаватель во время предварительной приёмки отдельных этапов курсового проекта может делать замечания, как по существу изучаемого вопроса, так и по форме представления отчетного материала. При этом студент должен ответить на контрольные вопросы, которые приведены в конце разделов учебного пособия.

Не рекомендуется принимать отчеты студентов за последующие этапы курсового проекта, если не приняты отчеты за предыдущие, так как последующие этапы основаны на знании теоретического материала предыдущих.

Оформление пояснительной записки

Для оформления пояснительной записки в окончательном варианте студент, как правило, объединяет листы отчетов о выполнении отдельных этапов курсового проекта (если нет ошибок), добавив титульный лист, задание, реферат, содержание, заключение, список использованных источников и приложение.

Во введении пояснительной записки к курсовому проекту даётся обоснование необходимости создания ракеты-носителя данного класса, в заключении должны быть приведены основные выводы. В приложении должна быть приведена компоновочная схема PH.

Защита курсового проекта

На защиту курсового проекта должны быть представлены пояснительная записка и файлы твердотельной модели ракеты-носителя, а также анимационный файл, иллюстрирующий полёт РН и разделение составных частей.

Защита курсового проекта, как правило, проводится публично с присутствием преподавателей и студентов. Навыки работы студентов 388

с системой твердотельного моделирования контролируются с помощью демонстрации разработок на компьютере.

Студентам могут задаваться вопросы, касающиеся теоретических основ разработки курсового проекта, и вопросы, связанные с возможностью реализации принятых в проекте решений.

При досрочном выполнении курсового проекта его защита по усмотрению преподавателя может проходить в упрощенной форме, без подробного обсуждения проекта.

А2. Типовые вопросы, рассматриваемые в дипломных проектах

Ниже приведены типовые вопросы, которые рекомендуется отразить при выполнении дипломного проекта по теме «Проектирование ракеты-носителя».

1. Выбор схемы полета и баллистический расчет (расчет потребной характеристической скорости с учётом космодрома).

2. Аэродинамический расчет.

- 3. Чертеж общего вида (1 лист формата А1).
- 4. Выбор расчетных случаев.
- 5. Расчет нагрузок на аппарат (эпюры N, Q, M).
- 6. Подбор сечений силовых элементов конструкции.

7. Разработка конструктивно-компоновочной схемы РН (3-4 листа формата A1).

8. Разработка чертежа отсека ракетного блока (бака, хвостового отсека, приборного отсека или переходного отсека - 2-3 листа формата A1).

9. Разработка конструкции отсека проектируемой ракеты в системе твердотельного моделирования (1-2 листа формата A1). По согласованию с преподавателем может быть проведен расчет на прочность одного из отсеков проектируемой ракеты с помощью системы конечно-элементного моделирования NASTRAN.

10. Перечень наземных и лётных испытаний для подтверждения работоспособности и надежности изделия.

11. Монтажные работы с изделием (схема монтажных работ).

12. Особенности функционирования изделия при эксплуатации.

13. Описание изделия (конструкция, бортовые системы, список готовых изделий, список элементов конструкции, изготавливаемых смежными организациями, перечень конструкционных и других материалов).

14. Вопросы технологии изготовления РН (перечень технологических процессов, используемых при эксплуатации изделия, чертеж приспособления для сборки, клепки, сварки, испытаний и т.п. - 1-2 листа формата A1).

15. Оценка эффективности изделия (экономический расчет - 1 лист формата А1).

16. Вопросы безопасности жизнедеятельности и охраны окружающей среды.

Приведенные вопросы изучались студентами по дисциплинам специальности по различным кафедрам:

- летательных аппаратов;

- динамики полета и систем управления;
- гидроаэродинамики;
- прочности летательных аппаратов;

- производства летательных аппаратов и управления качеством в машиностроении;

- безопасности жизнедеятельности;

- организации производства.

В дипломном проекте по результатам поверочного расчёта рекомендуется представить циклограмму запуска ракеты-носителя. приложение б

ПРИМЕР ВЫПОЛНЕНИЯ КУРСОВОГО ПРОЕКТА И ОФОРМЛЕНИЯ ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ⁴

по дисциплине «Автоматизация проектирования и конструирования летательных аппаратов»

Учебная специальность 160801 «Ракетостроение»

⁴ В соответствии с СТО СГАУ 02068410-004-2007. Общие требования к учебным текстовым документам [Текст]. – Самара: СГАУ, 2007.

Государственное образовательное учреждение высшего профессионального образования

«Самарский государственный аэрокосмический университет имени академика С. П. Королева (национальный исследовательский университет)»

Кафедра летательных аппаратов

ВЫБОР ОСНОВНЫХ ХАРАКТЕРИСТИК И ПРОЕКТНОГО ОБЛИКА РАКЕТЫ-НОСИТЕЛЯ

Курсовой проект по дисциплине «Автоматизация проектирования и конструирования летательных аппаратов»

Вариант 22

Выполнил: студент Выполнил: студент гр. 1508 Шумков А.П. _____(роспись, дата)

Руководитель проекта: профессор Куренков В.И. _____(роспись, дата)

Оценка

2011

Кафедра летательных аппаратов

ЗАЛАНИЕ

на курсовое проектирование по дисциплине "Автоматизация проектирования и конструирования ЛА"

Студент Шумков А.П. Группа 1508 Вариант 22

Спроектировать PH, выводящую КА или КК массой m_{ка} = 7 т на орбиту

 $H_{\pi} = 400$ км, $H_{\alpha} = 400$ км, i = 39,2 град и (или) старту к

ПЕРЕЧЕНЬ ВОПРОСОВ, ПОДЛЕЖАЩИХ РАЗРАБОТКЕ

1. Провести сбор и обработку статистических данных по РН.

2. Разработать тактико-технические требования проектируемой РН.

3. Рассчитать потребную характеристическую скорость.

4. Осуществить выбор топлива по критерию минимума относительной массы полезной нагрузки и по комплексному критерию.

5. Определить стартовую массу ракеты, количество ступеней и оптимальное распределение масс по ракетным блокам.

6. Вычислить предварительные объемно-габаритные характеристики РН и разработать компоновочную схему РН.

7. Разработать твердотельную модель PH в системе Solidworks.

8. Рассчитать массы основных элементов конструкции РН по статистическим зависимостям и составить предварительную массовую сводку.

9. Рассчитать координаты центра масс и моментов инерции РН с учетом расхода топлива первой ступени (центровочная ведомость).

10. Обосновать и выбрать состав бортовых систем РН. Разработать предложения по пневмогидравлической системе и системе разделения.

11. Провести описание конструкции и функционирования РН в полёте, системы разделения и бортовых систем РН.

12. Оформить пояснительную записку в соответствии с СТП СГАУ.

N₽	Солержание этапа	MAR TROFFSMALL	Объем	Срок
п/н	Содержание этапа	глая программы	в%	вып.
	Сбор и обработка статистических данных	Kvstrn.doc	10	3 нед.
2	Тактико-технические требования	Kvttt.doc	20	4 нед.
3	Определение характеристической скорости	Umchar99.exe	25	5 нед.
4	Выбор топлива	Umwt99.exe	30	6 нед.
5	Определение стартовой массы и масс блоков	Umrm.exe	40	7 нед.
6	Компоновочная схема	Microsoft Excel	50	8 нед.
7	Твердотельная модель РН	SolidWorks	70	9 нед.
8	Расчет масс элементов	Umrmk.exe	75	10 нед.
9	Весовая сводка и центровочная ведомость	Excel, SolidWorks	80	11 нед.
10	Выбор бортовых систем РН		85	12 нед.
11	Описание конструкции и функционирования		90	13 нед.
12	Оформление пояснительной записки	Microsoft Word	100	14 нед.

Сроки разработки и трудоемкость выполнения отдельных этапов

Преподаватель В.И.Куренков

Дата выдачи задания 14.02.11

ΡΕΦΕΡΑΤ

Курсовой проект по дисциплине «Автоматизация проектирования и конструирования летательных аппаратов»

Пояснительная записка: 47 с, 16 рис., 12 табл., 8 источников.

Графическая документация: компоновочная схема РН (в приложении).

Твердотельная модель РН: в электронном виде, выполненная в системе твердотельного моделирования SolidWorks (файлы прилагаются).

Анимационный фильм: разделения ракетных блоков, головного обтекателя и полезной нагрузки (файлы прилагаются).

РАКЕТА-НОСИТЕЛЬ. СТАТИСТИЧЕСКИЕ ДАННЫЕ, ТАКТИКО-ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ. ПОТРЕБНАЯ ХАРАКТЕРИСТИЧЕСКАЯ СКОРОСТЬ, ТОПЛИВО. MACCA. ХВОСТОВОЙ КОМПОНОВКА. РАКЕТНЫЙ БЛОК. OTCEK, МЕЖБАКОВЫЙ ОТСЕК. ПРИБОРНЫЙ ТОПЛИВНЫЙ БАК. ПЕРЕХОДНЫЙ ОТСЕК, ПОЛЕЗНАЯ ОТСЕК. НАГРУЗКА, ГОЛОВНОЙ ОБТЕКАТЕЛЬ, ТВЕРДОТЕЛЬНАЯ МОДЕЛЬ, SOLID WORKS, ВЕСОВАЯ СВОДКА, ЦЕНТРОВОЧНАЯ ВЕДОМОСТЬ, СИСТЕМЫ, КОНСТРУКЦИЯ. ФУНКЦИОНИ-БОРТОВЫЕ СИСТЕМА АВАРИЙНОГО СПАСЕНИЯ. РОВАНИЕ. ПНЕВМОГИДРАВЛИЧЕСКАЯ СИСТЕМА, СИСТЕМА КРЕПЛЕНИЯ И РАЗЛЕЛЕНИЯ.

Собраны и обработаны статистические данные по ракетамносителям заданного класса. Разработаны тактико-технические требования для проектируемой ракеты-носителя, рассчитана потребная характеристическая скорость. Осуществлен выбор топлива ракетных блоков и определена стартовая масса ракеты. Вычислены объемногабаритные характеристики, разработана компоновочная схема и построена твердотельная модель ракеты-носителя в системе SolidWorks. Рассчитаны массы основных элементов конструкции, координаты центра масс и моментов инерции ракеты-носителя. Проведен выбор бортовых систем и описано их функционирование.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ Б	396
БІ СБОР И ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ ПО	
РАКЕТАМ-НОСИТЕЛЯМ ЗАДАННОГО КЛАССА	397
Б2 РАЗРАБОТКА ТАКТИКО-ТЕХНИЧЕСКИХ ТРЕБОВАНИЙ	402
БЗ ОПРЕДЕЛЕНИЕ ПОТРЕБНОЙ ХАРАКТЕРИСТИЧЕСКОЙ	
СКОРОСТИ	406
Б4 ВЫБОР ТОПЛИВА	412
Б5 ОПРЕДЕЛЕНИЕ МАССЫ РАКЕТНЫХ БЛОКОВ И	
СТАРТОВОЙ МАССЫ РАКЕТЫ-НОСИТЕЛЯ	415
Б6 ПРЕДВАРИТЕЛЬНАЯ КОМПОНОВКА	421
Б6.1 Определение предварительных габаритов ракеты	421
Б6.2 Компоновка отсеков ракеты-носителя	424
Б7 РАЗРАБОТКА ТВЕРДОТЕ́ЛЬНОЙ МОДЕЛИ РАКЕТЫ	428
Б8 РАСЧЕТ МАСС ЭЛЕМЕНТОВ РАКЕТЫ-НОСИТЕЛЯ	435
Б9 РАСЧЕТ ЦЕНТРОВОЧНЫХ ХАРАКТЕРИСТИК И	
МОМЕНТОВ ИНЕРЦИИ	438
Б10 ОБОСНОВАНИЕ И ВЫБОР БОРТОВЫХ СИСТЕМ	444
Б10.1 Пневмогидравлическая система ракетного блока пер-	
вой ступени	444
Б10.2 Системы крепления и разделения составных частей ра-	
кеты-носителя	446
БІ І КОНСТРУКЦИЯ И ФУНКЦИОНИРОВАНИЕ РАКЕТЫ	448
Б11.1 Конструкция ракеты-носителя	448
Б11.2 Функционирование ракеты-носителя в полете	451
ЗАКЛЮЧЕНИЕ Б	455
Б СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	456
ПРИЛОЖЕНИЕ БА	459
КОМПОНОВОЧНАЯ СХЕМА РАКЕТЫ-НОСИТЕЛЯ	457

введение б

Данный курсовой проект посвящен начальному этапу проектирования ракет, а именно выбору основных проектных характеристик и конструктивного облика проектируемой ракеты-носителя.

В настоящее время создание ракет-носителей невозможно без компьютерной поддержки их жизненного цикла. Одним из элементов компьютерной поддержки является автоматизация проектирования и конструирования ракет-носителей.

Использование элементов автоматизированного проектирования и конструирования летательных аппаратов повышает качество проекта, сокращает сроки создания изделий, уменьшает суммарные затраты на создание и эксплуатацию ракетно-космической техники.

В настоящем курсовом проекте проведен выбор основных проектных характеристик и предложен конструктивный облик ракетыносителя, выводящей пилотируемый космический аппарат массой 7 тонн на круговую орбиту высотой 400 км с углом наклонения плоскости орбиты 64 градуса. При этом использовались элементы автоматизированного проектирования и конструирования.

В основных разделах пояснительной записки представлены результаты выбора основных проектных характеристик и конструктивного облика проектируемой ракеты-носителя. Собраны и обработаны статистические данные по ракетам-носителям заданного класса. Разработаны тактико-технические требования, рассчитана потребная характеристическая скорость. Осуществлен выбор топлива ракетных блоков и определена стартовая масса ракеты. Вычислены объемногабаритные характеристики, разработана компоновочная схема и построена твердотельная модель ракеты-носителя в системе SolidWorks. Рассчитаны массы основных элементов конструкции, координаты центра масс и моментов инерции ракеты-носителя. Проведен выбор бортовых систем и описано их функционирование.

В приложении представлен пример выполнения курсового проекта и оформления пояснительной записки.
Б1 СБОР И ОБРАБОТКА СТАТИСТИЧЕСКИХ ДАННЫХ ПО РАКЕТАМ-НОСИТЕЛЯМ ЗАДАННОГО КЛАССА

Поскольку на орбиту требуется вывести пилотируемый космический аппарат массой 7 тонн, то необходимо учесть массу элементов системы аварийного спасения (САС), которая по статистике для данного класса космических аппаратов равна 1500 кг ($m_{CAC} = 1500$ кг). Таким образом, принимаем, что расчетная масса полезной нагрузки составляет 8,5 тонн ($m_{TH} = 8,5$ [т]).

Статистические данные представлены в таблицах Б1.1 и Б1.2. В этих таблицах приняты следующие обозначения:

 H_{α} - высота в апогее, км;

Н_π - высота в перигее, км;

w_i - удельный импульс (эффективная скорость истечения газа в двигателе *i*-й ступени), м/с;

$$S_{mi} = \frac{m_{Ei}}{m_{Ei} - m_{Ti}} = \frac{m_{Ei}}{m_{Ki}} = \frac{m_{Ki} + m_{Ti}}{m_{Ki}} = 1 + \frac{m_{Ti}}{m_{Ki}}$$
 - теоретическая кон-

структивная характеристика блока *i*-й ступени (m_{K_i} - масса конструкции ракетного блока *i*-й ступени (без топлива);

*m*_{Бі} - масса блока *і*-й ступени (полностью заполненной топливом);

*m*_{*T i*} - масса топлива ракетного блока *i*-й ступени;

 $S_1 = \frac{m_{E1} + m_{FO}}{m_{E1} + m_{FO} - (1 - k_{\mu})m_{T1}}$ - расчетная конструктивная ха-

рактеристика блока 1-й ступени (головной обтекатель условно относится к массе ракетного блока первой ступени потому, что он сбрасывается, как правило, сразу же после отделения ракетных блоков первой ступени; если ракетных блоков первой ступени несколько, то масса ГО распределяется на них поровну; $m_{\Gamma O}$ - масса головного обтекателя);

 k_{μ} - коэффициент незабора топлива; $n_{0i} = \frac{R_i}{m_{0i}g}$ - начальная перегрузка *i*-й ступени; R_i - тяга двигателя *i*-й ступени, кН; m_{0i} - начальная масса *i*-й ступени; g - ускорение силы тяжести, м/с; $P_0 = \frac{m_0}{m_{\Pi H}}$ - относительная масса полезной нагрузки ракеты;

*m*₀ (или *m*₁)- стартовая масса (начальная масса 1-й ступени); *m*_{пн} - масса полезной нагрузки;

 $z_i = \frac{m_{0i}}{m_{0i} - m_{Ti}}$ - число Циолковского *i*-й ступени;

 $p_i = \frac{m_{0i}}{m_{\Pi H i}}$ - отношение массы *i*-й ступени ракеты к массе ее по-

лезной нагрузки;

$$P_{M} = \frac{m_{0}}{F_{M}}$$
 - нагрузка на мидель, кг/м²;

 F_{M} - площадь миделя ракеты, м²;

$$\gamma_{ABi} = \frac{m_{ABi} \cdot g}{R_i}$$
 - относительная масса двигателя *i*-й ступени;

*т*_{лві} - масса двигателя *і*-й ступени;

$$\kappa_i = \frac{m_{OK}}{m_{\Gamma}}$$
 - относительная масса окислителя в блоке *i*-й ступени;

*m*_{OK} - масса окислителя ракетного блока *i*-й ступени;

 m_{Γ} - масса горючего ракетного блока *i*-й ступени;

$$\xi_{\Pi P i} = \frac{m_{\Pi P i}}{m_{E i}}$$
 - относительная масса приборов в блоке *i*-й ступени;

*m*_{ПРі} - масса приборов в блоке *і*-й ступени;

$$\lambda_{P} = \frac{l_{0}}{d_{0}}$$
 - удлинение ракеты;

 l_0 - полная длина ракеты, м;

 d_0 - диаметр ракеты, м;

$$\lambda_{E_i} = \frac{l_{E_i}}{d_{E_i}}$$
- удлинение блока *i*-й ступени;

- *l*_{Бі} длина ракетного блока *i*-й ступени;
- *d*_{Бі} диаметр блока *і*-й ступени.

MBILATHOON-METAVER	WITTEN HANTI AND LAND
nguurie	
Стотистипеские	
2	
in ye	

Manaca	Harmenne	I. whapse	90° - '200	Jern	NUME IS, NU	<i>Д</i> 63	COMPONENTIAL POWER	06010		Maco	DOLLE DUNIN	111 'Jug		Bpcas
STROUMCO	cmpmenter	60.6m	don	H_a	H_{π}	R _H , xH	Tonnuso	We, 24	HI IN	mo	ms	mŢ	т ду	pabor.
	Hd	38		300	300				11.3	635				
C 444 14	cm. yckop.	26,2	3,05			10673	Tsepô.mon.	2433			464	384		120
INMON-ILL C.	I cm.	21.6	3,05			2258	Aspad50/ NO4	2884			120	113,9	0,89	158
CILLA	2 cm.	8,25	3,05			445	Aspod-50/ NO.	3080			31,8	29,6	0,57	204
	3 cm.	4,6	3.05			11	A3pod-50/ NO.	3100			8,3	5.4	0,104	300
	Hd	57,1		200	200				13,7	495				
3enton, CCCP	I cm.	33	3,9			7259	Kepoc/Oz	3310		81	353	318,8	6,53	
	2 cm.	10,4	3,0	1		912	Kepoc./O1	3435		-	86,8	80,6	0.7	
	Hd	47,38		00+	400				۵۵	215				
Apuan L-3S,	I CML	18.4	3,8	ż		236,6	HIMTIN204	2536			165	150	6,27	150
ELDO, ESRO	2 cm.	11,47	2,8	0		592	HIIMT/N204	2796			35	30	1.81	150
	3 cm	8,86	2,8			59	H2.J02	4218			7	ó	0,15	563
ł	PH	43,7		330	380				8,35	317				
C0103,	Enor E-II	19,2	2,68			4032	Kepoc./02	2600			182	160,8	4'4	
FOCCIDICKUR	DROK A	27,1	2,95			1079	Kepoc./02	3000			100	90,3	1.1	
mindacan	BAOK M	6,7	2,65			200	Kepac/O2	3237			25,4	22,3	0,45	
Tuman 4B	PH	62,2	5,31	36000	5500				5.7	939,3				
«Lenmaep-G»,	YCH SRMU	34,28	3,2			2*6361	88%HTPB				2*315,7			137
CULLA	1	24	ŝ			2*1214	A-SOVAT				162,8			146
	2	9,4	ŝ			463	A-SOVAT				39,3			206
	Центавр РБ					2*73,4	O2/H2				23,5			
«H II»,	PH	49							6,0	260				
FIONALE	I cm	23	4,0			915	02 / HZ				97	85		320
	II cm	10	4,0			103	02 / HZ				18,6	15,9		537
	ускоритети	23	1,8			2*1570	meepdoe				2#70	2*59		95

K			1,9	1,8	2					1,87	1,87	4,5		2,27											
749			0,004	0,013	0,014		600'0	0,008		0,026	0,03	0,025		110'0	0,01	0,015									
52		5,5	16,58	12,74	2,81		8,96	8,97		9,43	6,6	6,6		7,69	9,43	7,64							7.35	5,83	5,95
S.		5,8	19,67	14,46	2,86		10,32	9,76		11	7	7		8,58	10,31	8,19	14,71	14,69	13,58	9,85			8,08	6,89	6,36
R ₀		1.71	1,35	0,89	0,38		1,5	0,86		1,12	1,21	0,4		1,3	0,81	0,60							0,78	0,456	1,59
Izwymif Ma	86,91					41,44			18,96				68,41				26,75					20,69			
ы		2,53	ŝ	2,38	1,39		2,81	2,31		3,31	2.5	1,67		2,03	3,02	2,76									6,36
a	56,2	3,83	3,44	2,7	1,77	36,13	3,64	2,76	26,88	4,56	3,41	1,9	46,62	2,4	3,97	3,76				Annalyse of		40,3			
2p Josef	12,46	8,59	7,08	2,71	1,51	14,64	8,46	2,67	12,47	4,84	4,1	3,16	14,81	2'16	9,19	2,52	11,705	10,713	7,417	3,13		12,5			
Назначение спутени	PH	cm. ycxop.	l cm.	2 cm.	3 cm.	PH	I cm.	2 cm.	PH	1 cm.	2 cm.	3 cm	PH	Brow 5-A	ENOK A	Bridk M	РН	Vck SRMU	1	7	Центавр РБ	PH	I cm	II cm	Ускорители
Марка, страна	Tuman-III C,	CLUA				Зенит,	CCCP		Apuan L-3S,	ELDO,	ESRO	(C0103,	Российская	Tedepayus		Tuman 4B	«Tehmaen-G»	CILLA			«H H»	RIDHULS		

Таблица Б1.2 - Безразмерные статистические данные по ракетам-носителям

401

Б2 РАЗРАБОТКА ТАКТИКО-ТЕХНИЧЕСКИХ ТРЕБОВАНИЙ

Разработка тактико-технических требований (ТТТ) к конкретной проектируемой ракете-носителю базируется на общих технических требованиях, предъявляемых к разрабатываемым ракетам-носителям.

Тактико-технические требования представлены в табл. Б2.1.

Таблица 5.7.

Наименование пунктов	Обоснование
1. Требования по назначению	
1.1. Тип ракеты – ракета-носитель	Задание
1.2. Назначение - запуск пилотируемого	Задание
космического аппарата (КА)	
1.3. Масса полезной нагрузки 7 т (масса	Задание
KA) + 1,5 (масса CAC), итого 8,5 т	
1.4. Параметры орбиты:	Задание
 высота в перицентре - 400 км; 	
 высота в апоцентре - 400 км; 	
 угол наклона орбиты - 64 град. 	
2. Требования к надежности	
2.1. Вероятность безотказной работы - не	Результаты расчетов по
ниже 0,99 с доверительной вероят-	нормированию надежно-
ностью 0,9	сти
3. Требования к эксплуатации, удобству	
технического обслуживания, ремонту и	
хранению	
3.1. Пуск ракеты-носителя производить с	Решение Генерального
космодрома Байконур	конструктора
3.2. Диапазон температур при пуске: от -40	Требования ОТТ в части
до +40 С°	эксплуатации
3.3. Относительная влажность при пуске от	Требования ОТТ в части
30 до 90 %	эксплуатации
3.4. Наибольшая скорость ветра при пуске	Требования ОТТ в части
не более 15 м/с	эксплуатации
3.5. Сборку ракеты проводить на техниче-	Требования ОТТ в части
ской позиции	эксплуатации
3.6. Сборку ракеты проводить в МИК в	Опыт эксплуатации
горизонтальном положении	
3.7. Обеспечить подход к блокам оборудо-	Гребования ОГТ в части
вания без расстыковки отсеков	удооства техоослуживания

Тактико-технические требования

Продолжение таблицы 5.7

Наименование пунктов	Обоснование
3.8. Допустима расстыковка блоков ракеты	Требования ОТТ в части
для замены крупногабаритных составных	удобства технического
частей РН	обслуживания
3.9. Время сборки РН и подготовки к выво-	Требования ОТТ в части
зу из МИК - не более 10 суток	хранения
3.10. Хранение ракеты в собранном состоя-	Требования ОТТ в части
нии не более 30 суток	хранения
3.11. Заправку ракеты проводить перед	Криогенные компоненты
стартом	топлива
3.12. Время на приведение РН в готовность к запуску на стартовом комплексе. – не более 1 суток	
3.13. Относительная влажность при хране-	Требования ОТТ в части
нии: от 30 до 90 %	хранения
3.14. Хранение ракеты - по блокам в пыле-	Требования ОТТ в части
влагонепроницаемой укупорке	хранения
3.15. Длительное хранение ракеты осуще-	Требования ОТТ в части
ствлять в специальном хранилище	хранения
3.16. Допустимо хранение ракеты в течение 10 лет	Требования ОТТ в части хранения
3.17. Диапазон температур при хранении:	Требования ОТТ в части
от +5 до +30 С°	хранения
3.18. Время хранения ракеты в заправлен- ном состоянии не более 3 суток	Криогенные компоненты топлива
4. Требования к транспортабельности	
4.1. Транспортировка ракеты железнодо-	Габариты блоков РН
рожным транспортом в специальном ваго-	меньше габаритов вагона.
не	Низкая стоимость.
4.2. Диапазон температур при транспорти-	Требования ОТТ в части
ровке - от -40 до +40 С°	транспортабельности
4.3. Относительная влажность при транс-	Требования ОТТ в части
портировке- от 30 до 90 %	транспортабельности
5. Требования к безопасности	
5.1. Наличие САС	
5.2. Обеспечить безопасность при изготов- лении деталей, узлов РН и РН в целом	Требования БЖД
5.3. Обеспечить безопасность при транс-	Требования ОТТ в части
портировке	БЖД при транспортировке
5.4. Обеспечить безопасность при сборке ракеты	Требования БЖД
5.5. Обеспечить безопасность при заправке ракеты топливом	Требования ОТТ в части БЖД

Продолжение таблицы 5.7

Наименование пунктов	Обоснование
5.6. Обеспечить безопасность при различ-	Требования ОТТ в части Бж п
Кого рода проверках ракеты	Треборания ОТТ в насти
US TORVERSETER REPORT TORCHUNCE	экологии
компоненты топлива	SKOHOLMA
6. Требования к стандартизации	
и унификации	
Обеспечить взаимозаменяемость деталей,	Обеспечение ремонтопри-
узлов и отсеков	годности
7. Требования к технологичности	
7.1. Для баков применять высокопрочные	Требования ОТТ в части
свариваемые алюминиевые сплавы	технологичности
8. Конструктивные требования	
8.1. Соединение ступеней - последователь-	Решение Генерального
ное	конструктора.
8.2. Длина ракеты - не более 57 м	Результаты расчета
	(Вначале - по прототипам)
8.3. Длина ракетного блока первой ступени	Результаты расчета
не более 28 м	(Вначале - по прототипам)
8.4. диаметр ракетных олоков – 4,0 м	Результаты расчета
	(Вначале - по прототипам)
в.5. Предельный диаметр ракеты в сооран-	Табаритные ограничения
	Троборания, СК
о.о. Обеспечить прочность ракеты при ко-	Греоования ОТТ в части
	ний по процности
- для баллонов 2 0 [.]	
- лля сухих отсеков 1 2.	
- для ответственных силовых узлов 2.0	
<u>о п. н.</u>	0.6
8.7. Двигатели на жидком топливе	Обеспечение точности
Q Q Tarring	выведения ка
а.а. Гопливо:	Опыт эксплуатации.
первал ступень.	пизкая стоимость.
горючее – керосин РГ-1:	
вторая ступень:	
окислитель - жидкий кислород;	
горючее – жидкий водород;	
третья ступень:	
окислитель - жидкий кислород;	
горючее – жидкий водород.	

Окончание таблицы 5.7

Наименование пунктов	Обоснование
8.9. Баки РН должны быть герметичными. При проверке герметичности допустимо	Требования нормативно- технической документации на герметичность баков
натекание не более 2.10 Вт	
8.10. Для негерметичных отсеков приме- нять высокопрочные несвариваемые сплавы	
8.11. Для негерметичных отсеков допус- кается применение композиционных ма- териалов	Низкая удельная масса
8.12. Негерметичные отсеки РН и стыки должны быть пыле влагонепроницаемы	Требования ОТТ
8.13. Использовать теплозащиту на дни- щах баков с криогенными компонентами топлива	Предохранение от конден- сации влаги в межбаковых и переходных отсеках
8.14. Использовать теплозащитные по- крытия на конусных поверхностях ГО и перехолных отсеках РН	Обеспечение теплового ре- жима при полете РН
9. Технико-экономические требования	
9.1. Стоимость затрат на разработку с учетом затрат на наземный комплекс	2000000 тыс. руб.
9.2. Стоимость изготовления опытного образца, предназначенного для ЛКИ	800000 тыс. руб.
9.3. Затраты на обеспечение пуска	300000 тыс. руб.
9.4. Предполагаемые объёмы изготовле-	Результаты маркетинговых
ния РН в серийном производстве - 12 из-	исследований по анализу
делий в год	рынка
9.5. Предусмотреть изготовление ракеты на универсальном оборудовании	Низкая стоимость
9.6. Допустимо использование в произ- водстве уникального оборудования	Решение главного технолога
10. Требования к составным частям РН	
10.1. Система наведения - активная, ра-	Малая масса.
диолокационная с использованием БЦВМ	Расширенные возможности
11. Требования к сырью, материалам и	
комплектующим	
Применять только материалы отечест-	Независимость от иностран-
венного производства	ных производителей

БЗ ОПРЕДЕЛЕНИЕ ПОТРЕБНОЙ ХАРАКТЕРИСТИЧЕСКОЙ СКОРОСТИ

Потребная характеристическая скорость ракеты-носителя определяется по следующей зависимости:

$$V_X^{nomp} = V_{Xu\partial}^{nomp} + \Delta V_G + \Delta V_A + \Delta V_P + \sum_{i=1}^n \Delta V_i , \qquad (E3.1)$$

где V_{X ид}^{nomp} - идеальная потребная характеристическая скорость;

 ΔV_{G} - потери скорости на преодоление силы тяжести Земли;

 ΔV_A - потери скорости на преодоление аэродинамических сил сопротивления;

 ΔV_P - потери скорости от противодавления на срезе сопла двигателя;

 ΔV_i - приращение характеристической скорости на проведение *i*-го маневра;

n – количество маневров.

На начальных этапах расчета можно принять

$$\Delta V_G + \Delta V_A + \Delta V_P \approx 1350...1650 \quad m/c.$$
 (63.2)

Расчет потребной характеристической скорости РН, необходимой для вывода КА на круговую опорную орбиту

Рассчитаем потребную характеристическую скорость РН, необходимую для вывода КА на круговую опорную орбиту высотой 200 км:

$$V_{\chi uo}^{nomp} = \sqrt{\frac{\mu_3}{r_{oo}} \left(\frac{2 \cdot r_{oo}}{R_3} - 1\right)} = \sqrt{\frac{3,986 \cdot 10^5}{6371 + 200} \left(\frac{2 \cdot (6371 + 200)}{6371} - 1\right)} = 8029 \text{ m/c},$$

где $\mu_3 = 3,986 \cdot 10^5 \ \kappa m^3 / c^2$ - гравитационная постоянная Земли;

r₀₀ – радус-вектор опорной (круговой орбиты);

R₃- средний радиус Земли (6371 км).

Радиус-вектор опорной (круговой) орбиты вычисляем по зависимости:

 $r_{OO} = R_3 + H_{OO},$

где H_{oo} - высота опорной орбиты.

Этапы расчета потребной характеристической скорости ракеты-носителя на проведение маневров

Вывод КА на круговую орбиту высотой 400 км с заданным углом наклонения плоскости орбиты разделим на три этапа:

- вывод на промежуточную эллиптическую орбиту;
- поворот плоскости орбиты;
- вывод на круговую рабочую орбиту.

Расчет потребной характеристической скорости для вывода КА на промежуточную эллиптическую орбиту

Схема выведения с круговой опорной орбиты на переходную (промежуточную) эллиптическую орбиту высотой 400 км приведена на рисунке Б3.1.

Рисунок Б3.1 - Схема перевода КА на эллиптическую орбиту

Сначала рассчитаем скорость КА (и ракетных блоков верхних ступеней) на опорной орбите:

$$V_{oo} = V_1 \sqrt{\frac{R_3}{r_{oo}}} = 7,910 \cdot \sqrt{\frac{6371}{(6371+200)}} = 7,790 \text{ km/c},$$

где V₁ - первая космическая скорость (7910 м/с);

*r*_{oo} – радиус-вектор опорной (круговой) орбиты.

Затем рассчитаем скорость КА в перигее эллиптической орбиты:

$$V_{\pi} = V_{I} \sqrt{R_{3} \left(\frac{2}{r_{\pi}} - \frac{1}{a}\right)} = 7,91 \sqrt{6371 \left(\frac{2}{6571} - \frac{1}{6671}\right)} = 7,847 \text{ [KM/c]},$$

где r_{π} - радиус перигея орбиты ($r_{\pi} = r_{oo} = 6371 + 200 = 6571$ [км]);

а - большая полуось орбиты (
$$a = \frac{r_{\pi} + r_{\alpha}}{2} = \frac{6571 + 6771}{2} = 6671$$
 км).

В последнем выражении r_a - радиус апогея орбиты:

 $r_{\alpha} = R_3 + H_{\alpha} = 6371 + 400 = 6771$ км.

Приращение скорости для перехода КА с опорной орбиты на переходную эллиптическую орбиту рассчитывается как разность скорости КА в перигее эллиптической орбиты и скорости КА на круговой опорной орбите, то есть

$$\Delta V_1 = V_{\pi} - V_{oo} = 7,847 - 7,790 = 0,057$$
 [км/с].

Расчет потребной характеристической скорости, необходимой для поворота плоскости орбиты

Схема для расчета приращения характеристической скорости, необходимой для изменения плоскости орбиты на угол φ , представлена на рисунке БЗ.2. На этой схеме $\overline{V_1}$ - первоначальный вектор скорости КА, $\overline{V_2}$ - вектор скорости КА после изменения плоскости орбиты на угол φ , $\overline{\Delta V_2}$ - приращение характеристической скорости для изменения угла плоскости орбиты.

Рисунок Б3.2 - Схема для расчета приращения скорости КА, необходимой для изменения плоскости орбиты

Отметим, что поворот выгоднее проводить в апогее эллиптической орбиты, где скорость космического аппарата минимальна. Поэтому сначала рассчитаем скорость полета космического аппарата по эллиптической орбите в точке апогея:

$$V_{\alpha} = V_{I} \sqrt{R_{3} \left(\frac{2}{r_{\alpha}} - \frac{1}{a}\right)} = 7,91 \sqrt{6371 \left(\frac{2}{6771} - \frac{1}{6571}\right)} = 7,615 \ [\text{KM/c}].$$

Для определения угла φ_{Π} поворота плоскости орбиты необходимо сопоставить заданный угол наклонения φ_{3ad} , который в нашем случае равен 64 градусам, и угол φ_{Bus} плоскости орбиты, на которую выводится КА с учетом ограничений по азимуту пуска ракетносителей. Например, с космодрома Байконур большая часть запусков осуществляется на орбиты с плоскостью наклонения 51,6 градуса.

Рассчитаем угол поворота плоскости орбиты:

 $\varphi_{\Pi} = \varphi_{3a\delta} - \varphi_{Bbb} = 51,6-39,2 = 12,4$ [градуса.]

Для спутников, запускаемых с космодрома Байконур с углом наклона плоскости орбиты 51,6 градуса, приращение скорости для перевода КА в плоскость экватора составит

$$\Delta V_2 = 2 \cdot V_{\alpha} \cdot \sin \frac{\varphi_{\Pi o \theta}}{2} = 2 \cdot 7,615 \cdot \sin \frac{12,4^{\circ}}{2} = 1,644 \text{ [KM/c]}.$$

409

Расчет потребной характеристической скорости для перевода КА на рабочую орбиту

Схема перевода КА с переходной эллиптической орбиты на высокую круговую (рабочую) орбиту высотой 400 км приведена на рисунке Б3.3.

Рисунок Б3.3 - Схема перевода КА с эллиптической орбиты на высокую круговую орбиту

Рассчитаем сначала скорость КА на высокой круговой орбите с высотой, соответствующей радиусу апогея эллиптической орбиты:

$$V_{\kappa p2} = V_1 \sqrt{\frac{R_3}{r_{\alpha}}} = 7,91 \sqrt{\frac{6371}{6771}} = 7,673$$
 [KM/c].

Тогда приращение скорости ΔV_2 , которая необходима для перевода космического аппарата на высокую круговую орбиту в точке перигея эллиптической орбиты, будет следующей:

$$\Delta V_2 = V_{\kappa p2} - V_{\alpha} = 7,673 - 7,615 = 0,058 \text{ [KM/c]}.$$

Определение потребной характеристической скорости РН для запуска КА на рабочую орбиту

Приращения скорости для проведения маневров для нашей задачи уже известны.

По формуле (БЗ.1) с учетом (БЗ.2) получаем

$$V_X^{nomp} = V_{Xu\partial}^{nomp} + \Delta V_G + \Delta V_A + \Delta V_P + \sum_{i=1}^{n} \Delta V_i =$$

= 8,029 + 1,500 + 0,057 + 1,644 + 0,058 = 11,288 [km/c].

Приведенные выше расчеты проводились с помощью системы Mathcad.

Ниже приведен протокол с результатами расчета потребной характеристической скорости РН, произведенными с помощью прикладной программы UMCHAR99.EXE.

Протокол расчета характеристической скорости РН

Студент: Shoumkov A.P. Высота опорной орбитыНопор=	200.00 KM
Скорость на опорной орбите	7 79KH/C
Потери скорости при запуске на опорную орбиту .DUпот=	1.70км/с
Затраты скорости:	
Для перехода с кр.орбиты в перигее на вытянутую DUna:	0.06KM/c
Для поворота в апогее	1.66км/с
Для перехода на круговую орбиту в апогесDUкрат	0.06км/с
Для перехода с кр.орбиты в апогее на вытянутуюDUnn=	0.00км/с
Для перехода на круговую орбиту в перигееDUкрп=	0.00км/с
Характеристическая скорость	

Анализ результатов, полученных с помощью расчета в системе Mathcad и по программе UMCHAR99.EXE, совпадают с точностью до трех значащих цифр.

Б4 ВЫБОР ТОПЛИВА

Выбор топлива при проектировании ракет имеет особое значение, так как топливо в основном определяет тип применяемого двигателя, массу и габариты ракеты. Следует иметь в виду, что 80-92% стартовой массы ракеты приходится на долю топлива.

Выбор топлива с учетом конструктивных характеристик ракеты

В учебном пособии [1] показано, что минимальное значение отношения начальной массы ракеты к массе полезной нагрузки p будет соответствовать наиболее выгодному в весовом отношении топливу при фиксированных значениях характеристической скорости ракеты ($V_x = const$):

$$p \to \min |_{V_x = const,}$$
 (54.1)

где $p = \frac{m_0}{m_{\Pi H}}$ - отношение начальной массы приведенной односту-

пенчатой ракеты к массе полезной нагрузки.

Там же получено следующее выражение для расчета значения отношения начальной массы ракеты к массе полезной нагрузки *p*:

$$p = e^{\frac{\nu_x}{w}} \frac{1}{\frac{3 \cdot f \cdot p_A \cdot \rho_M}{2 \cdot \sigma_{AOH} \cdot \rho_T} \left(1 - e^{\frac{\nu_x}{w}}\right) - e^{\frac{\nu_x}{w} \cdot \gamma_{AV} n_0 + 1}},$$
 (54.2)

где - V_x - характеристическая скорость;

w - удельный импульс топлива;

f - коэффициент безопасности;

*р*_П - давление в баке;

 $\rho_{\scriptscriptstyle M}\,$ - плотность конструкционных материалов топливных баков;

 $\sigma_{\pi O \Pi}$ - допустимые напряжения;

 ρ_{τ} - средняя плотность топлива;

n₀ - начальная перегрузка;

*γ*_{*ПУ*} - относительная масса двигательной установки.

Варьируемыми параметрами будут удельный импульс топлива (w) и средняя плотность топлива ρ_r .

Результаты расчета отношения начальной массы ракеты к массе полезной нагрузки по формуле (Б4.2) приведены в таблице Б4.1.

Таблица Б4.1 - Результаты расчета отношения начальной массы ракеты к массе полезной нагрузки

Компоненты топлива	Средняя плотность топлива, кг/м ³	Удельный импульс, м/с	Отношение массы ступени к массе ее полезной нагрузки
Керосин + жидкий кислород	1000	3000	3.03
Жидкий водород + жидкий кислород	200	4500	2.20
НДМГ+ четырехокись азота	1280	2600	3.59

Для расчета были приняты следующие исходные данные, одинаковые для всех расчетных вариантов:

характеристическая скорость приведенной одноступенчатой ракеты 3000 м/с;

плотность конструкционного материала бака 2700 кг / м³;

допустимое напряжение в стенке бака 200 МПа;

среднее давление в баке 0,30 МПа;

начальная перегрузка 1,5;

относительный вес двигателя 0,002.

Для приведенных исходных данных лучший показатель относительной массы полезной нагрузки получился у пары компонентов топлива: "жидкий водород - жидкий кислород".

Выбор топлива по комплексному критерию эффективности

Для проектирования современных ракет-носителей используется следующий комплексный критерий эффективности:

$$W = \sum_{i=1}^{n} (k_i \cdot W_i) \to \max, \qquad (54.3)$$

где W_i - частные показатели эффективности;

k, - удельный вес i-го частного показателя эффективности;

n - количество частных показателей эффективности.

В качестве частных показателей эффективности в данном курсовом проекте выбраны следующие показатели:

*W*₁ - показатель, характеризующий удельный импульс топлива;

*W*₂ - показатель, характеризующий токсичность топлива;

*W*₃ - показатель, характеризующий среднюю плотность топлива;

*W*₄ - показатель, характеризующий стабильность топлива;

*W*₅ - показатель, характеризующий наличие производственной базы;

 W_6 - показатель, характеризующий необходимость наличия специальной производственной базы;

*W*₇ - показатель, характеризующий стоимость топлива.

Расчеты по комплексному критерию эффективности проводились с использованием табличного процессора Microsoft Excel. Исходные данные и результаты расчета приведены в таблице Б4.2.

Из анализа результатов видно, что лучшим топливом по данному критерию является пара: "керосин - жидкий кислород".

		W_1	W_2	W_{3}	W ₄	W_5	W	W ₇		
Топлі	MBO		Удель	ный ве	с частн	ого кри	терия, /	k	JIV	
		0,1	0,3	0,2	0,1	0,1	0,1	0,1] "	
Окислитель	Горючее					_	_			
Жидкий	Жидкий	1	1	01	0.5	0.6	01	03	0.57	
кислород	водород	I	1	0,1	0,5	0,0	0,1	0,5	0,51	
Жидкий	Керосин	07	00	0.8	0.7	0.8	0.7	0.8	0.83	
кислород	Керосин	0,7	0,2	0,0	0,1	0,0	0,7	0,0	0,05	
Азотная	HIMT	0.5	0.2	1	0.8	04	0.2	0.2	0 47	
кислота	1444VII	0,5	0,2		0,0	, , ,	0,2	0,2	0,47	

Таблица Б4.2 - Результаты экспертной оценки частных показателей и расчета комплексных показателей эффективности топлива

Сравнение результатов выбора топлива, выполненных по различным методикам, и выводы

Анализируя результаты расчета, делаем следующие выводы.

1. Результаты, полученные по различным методикам, не противоречат друг другу.

2. Наиболее эффективное топливо по двум критериям – «жидкий кислород - керосин».

3. Немного уступает ему пара «жидкий кислород - жидкий водород».

В данном курсовом проекте были выбраны следующие компоненты топлива:

первая ступень: окислитель - жидкий кислород;

горючее – керосин РГ-1;

вторая ступень: окислитель - жидкий кислород; горючее – жидкий водород;

третья ступень: окислитель - жидкий кислород; горючее – жидкий водород.

Б5 ОПРЕДЕЛЕНИЕ МАССЫ РАКЕТНЫХ БЛОКОВ И СТАРТОВОЙ МАССЫ РАКЕТЫ-НОСИТЕЛЯ

При оптимизации стартовой массы ракеты-носителя варьировались не только массы ракетных блоков, но и рассматривались схемы с последовательным и параллельным соединением ракетных блоков первой и второй ступеней. Кроме того, анализировалось влияние на стартовую массу ракеты компонентов топлива.

Ниже представлены результаты оптимизации масс ракетных блоков для последовательной схемы соединения ракетных блоков первой и второй ступеней и следующих компонентов топлива: на первой ступени - «жидкий кислород - керосин», на второй и последующих ступенях - «жидкий кислород - жидкий водород». Такая схема и такие компоненты топлива являются оптимальными по критерию минимальной массы с учетом требований надежности.

Расчетная схема представлена на рисунке Б5.1.

Рисунок Б5.1 - Расчетная схема РН

Выбор осуществлялся по следующему критерию:

$$p \to \min \left| q_i \le 0; \quad i = \overline{1, n}, \right|$$
 (55.1)

где $p = \frac{m_0}{m_{\Pi H}}$ - отношение начальной массы ракеты к массе полезной

нагрузки;

 $q_i \leq 0; \quad i = \overline{1, n}$ - функции ограничений.

Целевая функция будет следующей:

$$p_0 = \frac{m_0}{m_{\Pi H}} = 1 + \sum_{i=1}^{N} \frac{s}{(s-1)} \cdot x_i , \qquad (B5.2)$$

где x_i - отношение массы топлива ракетного блока к массе полезной нагрузки, то есть

$$x_i = \frac{m_T}{m_{\Pi H}} \dots$$
(B5.3)

Функция ограничения по характеристической скорости имеет вид:

$$V_{X}^{nomp} - w_{1} \ln \left(\frac{1 + \sum_{i=1}^{N} \frac{s_{i}}{(s_{i}-1)} x_{i}}{1 + \sum_{i=1}^{N} \frac{s_{i}}{(s_{i}-1)} x_{i} - x_{1}} \right) - \frac{1}{1 + \sum_{i=1}^{N} \frac{s_{i}}{(s_{i}-1)} x_{i} - x_{1}} - \frac{1}{1 + \frac{s_{2}}{(s_{2}-1)} x_{2} + \frac{s_{3}}{(s_{3}-1)} x_{3}}}{1 + \frac{s_{2}}{(s_{2}-1)} x_{2} + \frac{s_{3}}{(s_{3}-1)} x_{3} - x_{2}} - \frac{1}{1 + \frac{s_{3}}{(s_{3}-1)} x_{3}}}{1 + \frac{s_{3}}{(s_{3}-1)} x_{3} - x_{3}} \ge 0, \quad (B5.4)$$

где V_X^{nomp} - потребная характеристическая скорость ракеты-носителя;

*s*_i - конструктивные характеристики ракетных блоков;

*w*₁ и *w*₂ - удельные импульсы топлива первой и второй ступеней соответственно.

Кроме того, следует составить функции ограничений, исходя из реализуемых в настоящее время значений чисел Циолковского (см. далее в протоколе расчета).

Зададимся также ограничением по скорости в конце работы первой ступени ракеты-носителя, так как на первой ступени используется топливо «жидкий кислород-керосин», а на второй ступени - «жидкий кислород - жидкий водород».

Функция ограничений по скорости в конце работы двигателей первой ступени примет следующий вид:

$$wl \cdot ln\left(\frac{1 + \frac{sl}{sl - 1} \cdot xl + \frac{s2}{s2 - 1} \cdot x2 + \frac{s3}{s3 - 1} \cdot x3}{1 + \frac{s1}{s1 - 1} \cdot xl + \frac{s2}{s2 - 1} \cdot x2 + \frac{s3}{s3 - 1} \cdot x3 - xl}\right) \ge 3000.$$

417

Затем решается задача математического программирования (Б5.1) с учетом (Б5.2) и (Б5.4). В результате определяются оптимальные значения параметров x_i^* ($i = \overline{1, N}$).

Далее рассчитываются следующие массы составных частей ракеты-носителя (в последовательности и по формулам, приведенным ниже):

- масса топлива і-го ракетного блока

$$m_{Ti} = m_{\Pi H} \cdot x_i; \tag{B5.5}$$

- масса і-го ракетного блока

$$m_{Ei} = \frac{s_i}{(s_i - 1)} \cdot m_{Ti};$$
 (E5.6)

- масса конструкции і-го ракетного блока

$$m_{Ki} = m_{Bi} - m_{Ti},$$
 (55.7)

- стартовая масса ракеты-носителя

$$m_0 = m_{IIH} + \sum_{i=1}^{N} m_{Ei}$$
 (E5.8)

Полученные массы будут оптимальными.

Для решения задачи математического программирования использовалась система Mathcad. Статистические данные брались из прототипов. Протокол решения задачи представлен ниже. Условные обозначения понятны из аббревиатуры (mb - масса блока; mt - масса топлива; mka - масса КА или полезной нагрузки и т.п.). Знаки пунктуации (точки вместо запятых, нет знаков препинания и т.п.) соответствуют системе Mathcad.

Протокол расчета в системе Mathcad

Конструкционные характеристики ракетных блоков: s1 := 7.69 s2 := 12.33 s3 := 9.43Масса полезной нагрузки mpn := 8.50Потребная характеристическая скорость Vx := 11260Удельные импульсы w1 := 3000 w2 := 4500 w3 := 4500 Целевая функция $f(x1, x2, x3) := 1 + \frac{s1}{s1-1} + \frac{s2}{s2-1} + \frac{s3}{s3-1}$ Начальные значения варьируемых параметров x1 := 15 y2 := 10 y3 := 4Ограничения Given Ограничения по числам Циолковского $\frac{1+\frac{s1}{s1-1}+\frac{s2}{s2-1}+\frac{s3}{s3-1}}{1+\frac{s1}{s1-1}+\frac{s2}{s2-1}+\frac{s3}{s3-1}-x2} > 1$ $\frac{1+\frac{s3}{s3-1}}{1+\frac{s3}{s3-1}-x3} > 1$ Функция ограничений $Vx - wl \cdot ln \left(\frac{1+\frac{s1}{s1-1}+\frac{s2}{s2-1}+\frac{s3}{s3-1}}{1+\frac{s1}{s1-1}+\frac{s2}{s2-1}+\frac{s3}{s3-1}-x1}\right) - w2 \cdot ln \left(\frac{1+\frac{s2}{s2-1}+\frac{s3}{s3-1}}{1+\frac{s2}{s2-1}+\frac{s3}{s3-1}-x2}\right) - w3 \cdot ln \left(\frac{1+\frac{s3}{s3-1}-x3}{1+\frac{s3}{s3-1}-x3}\right) \le 0$

Функция минимизации Xm := Minimize(f, x1, x2, x3)

Вектор оптимальных параметров $Xm = \begin{pmatrix} 20.190 \\ 5.684 \\ 1.385 \end{pmatrix}$

Минимальное значение функции $f(Xm_0, Xm_1, Xm_2) = 31.949$ Оптимальные значения масс ракетных блоков

$$x1 := Xm_0 \cdot mpn$$
 $x1 = 171.665$
 $x2 := Xm_1 \cdot mpn$ $x2 = 48.315$
 $x3 := Xm_2 \cdot mpn$ $x1 = 11.770$

Оптимальные значения масс ракетных блоков:

$$mb1 := \frac{s1}{s1 - 1} \cdot xt1 \qquad mb1 = 197.325$$
$$mb2 := \frac{s2}{s2 - 1} \cdot xt2 \qquad mb2 = 52.579$$

 $mb3 := \frac{s3}{s3-1} \cdot xt3$ mb3 = 13.166

Оптимальные значения стартовой массы ракеты-носителя: mol := mpn + mbl + mb2 + mb3 mol = 271.571

Выбор количества ступеней

Произведем выбор количества ступеней ракеты-носителя путем расчета стартовой массы PH, выполненного с различным количеством ступеней. Результаты расчета представлены на рисунке Б5.2.

Рисунок Б5.2 - Выбор количества ступеней РН

Из графика видно, что наиболее выгодным по критерию минимальной стартовой массы является вариант PH с тремя ступенями.

Следует отметить, что на стадии предварительных расчетов был получен аналогичный график для пакетной схемы соединения ракетных блоков первой и второй ступеней с теми же компонентами топлива на ступенях, что и в случае схемы «тандем». Однако стартовая масса ракеты с использованием пакетной схемы была несколько больше, чем стартовая масса ракеты по схеме «тандем». В частности, для «трехступенчатого пакета без перелива топлива» расчетное значение стартовой массы ракеты оказалось равным 399 т (сравни с массой 271,6 т по схеме «тандем»).

Таким образом, для дальнейшей проработки был выбран вариант РН с тремя ступенями, соединенными последовательно, и компонентами топлива:

на первой ступени - «жидкий кислород - керосин»;

на второй и третьей ступенях: «жидкий кислород - жидкий водород».

Расчет стартовой массы ракеты-носителя с использованием программного обеспечения Umrm.exe не проводился в связи с использованием на ракетном блоке первой ступени керосина, а на ракетном блоке второй ступени - жидкого водорода.

Б6 ПРЕДВАРИТЕЛЬНАЯ КОМПОНОВКА

Б6.1 Определение предварительных габаритов ракеты

При разработке предварительной компоновки ракеты-носителя принято брать запас по полезной нагрузке:

 $m_{\Pi H}^{pacu} = k_{\Pi H} \cdot m_{\Pi H}$

где $k_{\Pi H} = 1,1$ - коэффициент запаса по полезной нагрузке.

Тогда расчетное значение полезной нагрузки составит

 $m_{\Pi H}^{pacu} = 1, 1.8, 5 = 9, 35$ T = 9350 Kr.

Форма будущей ракеты в первом приближении выбирается в виде удлиненного цилиндра.

Объем W_p РН рассчитывается как сумма объемов составных частей ракеты с полезной нагрузкой.

Расчет объема головного обтекателя

Рассчитываем объем полезной нагрузки:

$$W_{\Pi H} = \frac{m_{\Pi H}}{\rho_{\Pi H}} = \frac{9350}{300} = 31,167 \, \text{m}^3,$$

где $\rho_{\Pi H}$ - средняя плотность полезной нагрузки.

В первом приближении средняя плотность полезной нагрузки принята по статистике для пилотируемых космических аппаратов, функционирующих на орбитах Земли, и равная 300 кг/м3.

Рассчитываем объем головного обтекателя:

$$W_{\Gamma O} = k_{\Gamma O} \cdot W_{\Pi H} = 1,5 \cdot 31,167 = 46,75 \ m^3,$$

где $k_{\Gamma O} = 1,5$ - коэффициент, учитывающий неполноту заполнения головного обтекателя полезной нагрузкой.

Расчет объема приборных отсеков

Объем приборных отсеков следует рассчитывать только для последней ступени ракет-носителей среднего класса. Объем, занимаемый приборами на ракетных блоках первой ступени ракетыносителя, можно не учитывать, так как для установки этих приборов достаточно места в межбаковых отсеках этих блоков.

Рассчитаем массу приборного отсека:

$$m_{\Pi O} = \xi_{\Pi O} \cdot m_0 = 0,0008 \cdot 304,638 = 0,24371 \text{ T} = 243,71 \text{ кг}$$

где $\xi_{\Pi O} = 0,0008$ - относительная масса приборного отсека по статистике:

*m*₀ - стартовая масса ракеты-носителя.

Рассчитаем объем приборного отсека:

$$W_{\Pi O} = \frac{m_{\Pi O}}{\rho_{\Pi O}} = \frac{243,71}{150} = 1,6247 \ [m^3],$$

где - $\rho_{\Pi O}$ - средняя плотность компоновки приборного отсека, которая для приборов системы управления верхних ступеней ракетносителей составляет по статистике 150 кг/м³.

Расчет массы и объема топливных отсеков

Рассчитываем средние значения плотностей топлива по формуле

$$\rho_{cp} = \frac{\rho_{O\kappa} \cdot \rho_{\Gamma} \cdot (\kappa+1)}{\kappa \cdot \rho_{\Gamma} + \rho_{O\kappa}},$$

где $\rho_{O\kappa}$ и ρ_{Γ} - плотность окислителя и горючего соответственно;

к - коэффициент отношения массы окислителя к массе горючего.

По статистике $\kappa = 2,7$ для компонентов топлива «жидкий кислород-керосин» и $\kappa = 4,5$ для компонентов топлива «жидкий кислород - жидкий водород».

Объем топлива і-й ступени рассчитываем по зависимости:

$$W_{Ti} = \frac{m_{Ti}}{\rho_{cpi}},$$

где m_{τ_i} - масса топлива і-й ступени.

Объем топливных отсеков каждого ракетного блока рассчитываем по зависимости:

 $W_{TOi} = k_{Ti} \cdot W_{Ti},$

где *W*_{*тi*} - объем топлива і-й ступени;

 $k_{Ti} = 1,3$ - коэффициент, учитывающий превышение объема топливного отсека над объемом топлива.

Результаты расчетов представлены в таблице Б6.1.

РБ	ρ _{cpl} , κε / м ³	т, кг	W_{r_i} , M^3	Wroi, M ³
1	1023	188000	183	238,8
2	305	43047	141	183,4
3	305	13130	43,0	55,9

Таблица Б6.1 - Объемы топливных отсеков

Расчет объемов ракеты-носителя и суммарного объема хвостовых и переходных отсеков

Сначала рассчитаем объем ракеты-носителя:

$$W_{P} = \frac{W_{TO} + \sum_{i=1}^{N} (W_{TOi}) + \sum_{i=1}^{N} (W_{TOi})}{1 - k_{XO}} =$$

= $\frac{46,75 + 1,451 + 238,8728 + 183,47 + 55,9611}{1 - 0,15} = 619,4168 \ [m^{3}],$

где $k_{XO} = 0,15$ - статистический коэффициент, показывающий, какую долю объема занимают хвостовые и переходные отсеки от объема ракеты-носителя.

Тогда суммарный объем хвостовых и переходных отсеков составит

$$\sum W_{XO} + \sum W_{\Pi e pO} = 619,4168 \cdot 0,15 = 92,9125 \ [m^3].$$

Определение предварительных габаритов ракеты-носителя

По статистике относительное удлинение ракет-носителей с последовательным соединением ступеней примем равным $\lambda = 14,8$.

Находим предварительный диаметр ракеты:

$$D = \sqrt[3]{\frac{4 \cdot W_P}{\pi \cdot \lambda}} = \sqrt[3]{\frac{4 \cdot 619, 4}{\pi \cdot 14, 8}} = 3,76 \ [m].$$

Расчетная длина ракеты находится по следующей зависимости:

$$L = \lambda \cdot D = 14, 8 \cdot 3, 76 = 55, 65 \ [m].$$

Принимаем диаметр равным D = 4 м и рассчитываем длину ракеты с другим диаметром:

$$L = \frac{4 \cdot W_P}{\pi \cdot D^2} = \frac{4 \cdot 619, 42}{\pi \cdot 4^2} = 49,32 \ [M].$$

Б6.2 Компоновка отсеков ракеты-носителя

Расчет габаритных характеристик хвостовых отсеков и выбор ракетных двигателей

Длину двигателя рассчитывают по эмпирическим зависимостям, полученным из статистики:

$$L_{jle} = 0.125 \cdot \left(\frac{R}{9.8}\right)^{0.25},$$

где R - тяга двигателя, H.

Тяга двигателей определяется как произведение начальной перегрузки ступени на начальный вес ступени:

 $R_i = n_{0i} \cdot m_{0i} \cdot g_0,$

где *m*_{0i} - начальная масса *i*-й ступени.

Длина двигателя с рамой крепления рассчитывается по следующей зависимости:

 $L_{\mathcal{A}^{eP}} = k_{\mathcal{A}^{eP}} \cdot L_{\mathcal{A}^{e}},$

где k_{IJeP} - коэффициент, учитывающий превышение длины двигательной установки над длиной двигателя ($k_{IJeP} = 1, 4$).

Длина хвостового отсека ракетного блока первой ступени меньше или равна длине двигателя с рамой $L_{\mathcal{A}sP}$, то есть $L_{XO} \leq L_{\mathcal{A}sP}$. На основании статистических данных будем уменьшать длину хвостового отсека первой ступени на 10-15 процентов.

Длины хвостовых отсеков второй и третьей ступеней ракетыносителя зависят от принятой схемы разделения.

Выбираем схему с холодным разделением ракетных блоков. Поэтому длина хвостового отсека второго (и третьего) ракетного блока будет равна (или несколько выше) сумме длины двигателя с рамой крепления и высоты полусферических днищ баков, в которые «упираются» сопла двигателей.

Результаты расчетов длины хвостовых отсеков для ракетных блоков всех ступеней представлены в таблице Б6.2. Высоты днищ баков брались из расчетов, которые представлены ниже в пункте «Определение геометрических размеров баков».

Принимаем решение: на проектируемой РН используем уже существующие двигатели от НПО «Энергомаш» РД-191 на первой ступени и РД-0132 на верхних ступенях.

РБ	Аналог ДУ	L ^{Прот} ДВ,	$\overline{D}_{\mathcal{A}\mathcal{B}}^{\mathcal{R}pom},$ M	$L_{\mathcal{A} \in \mathcal{P}}^{\mathcal{R} pom}$, <u>M</u>	<i>R ^{Дром},</i> кН	<i>т</i> , т	R., ĸH	<i>L_{дв}</i> , м	<i>D_{дв}</i> , м	<i>L_{ДаР}</i> , М	L _{XO} , M
1	РД- 191	4	1,45	5,2	1920x2 =3840	221,4	34698	3,05	1,14	4,39	3,82
2	РД- 0132	1,49	1	1,788	961,4	59,67 8	642,0	2	0,75	2,90	3,42
3	РД- 0132	1,49	1	1,788	961,4	15,11	248,9	1,58	1,06	2,17	2,59

Таблица Б6.2 - Характеристики двигателей и хвостовых отсеков

Расчет габаритных характеристик топливных отсеков

Прежде всего выбираем форму топливных отсеков и баков ракеты. Форму топливных отсеков первой и второй ступеней принимаем цилиндрической с несовмещенными днищами баков, выполненными в форме частей сфер, радиус днищ равен диаметру баков. Бак окислителя третьей ступени кольцевой формы.

Масса топлива считается известной из распределения масс по блокам ракеты-носителя. Определим массы и объемы окислителя и горючего.

Для нахождения массы окислителя и горючего воспользуемся следующими зависимостями:

$$m_{\Gamma} = m_T \frac{1}{\kappa+1}; \quad m_{O\kappa} = m_T \cdot \frac{\kappa}{\kappa+1}.$$

Объемы окислителя и горючего можно вычислить следующим образом:

$$W_{OK} = \frac{m_{OK}}{\rho_{OK}}; \qquad \qquad W_{\Gamma} = \frac{m_{\Gamma}}{\rho_{\Gamma}},$$

где ρ_{OK} и ρ_{I} - плотности окислителя и горючего соответственно.

Результаты расчетов представлены в таблице Б6.3.

Определение геометрических размеров баков

Расчет проводился по методике, изложенной в учебном пособии [1]. Расчетная схема представлена на рисунке Бб.1. Результаты расчета представлены в таблице Б6.4. Обозначения в таблице соответствуют обозначениям.

РБ	Горю- чее	Окисли- тель	ρ _Γ , κг/m ³	$\rho_{\rm CK}$, Kr/m ³	<i>т</i> , т	m _{ar} , T	W _r , M ³	W _{ск} , м ³
1	Керосин РГ-1	Жидкий	830		57,5	130,5	69,28	114,5
2	Warmenia	кисло-		1140	9,70	43,65	136,6	38,29
3	водород	род	71		2,387	10,74 3	33,6	9,424

Таблица Б6.3 - Массы и объемы топлива

Рисунок Бб.1 - Расчетная схема бака

Таблица Б6.4 - Расчетные характеристики баков

РБ	R, м	h, м	W _{сф} , м ³ '	W _{46Г} , м ³ ,	W _{46 СК} , м ³	L _{46 T} , M	L46 OK.	L _{6r} , M	L _{б ОК} , М
1		0,52	3,142	66,241	111,4	5,7393	9,655	6,7667	10,68
2	3,88			133,58	35,25	11,574	3,054	12,601	4,082
3				30,584	6,388	2,6499	0,553	3,6772	1,581

Расчет габарятных характеристик переходных отсеков

Длина переходного отсека зависит от высоты днища верхнего бака третьей ступени и от высоты выступающей (вниз) за плоскость стыка полезной нагрузки с головным обтекателем. Примем, что нижняя граница зоны полезной нагрузки лежит выше плоскости стыка переходного отсека с полезной нагрузкой и головным обтекателем. Тогда высота переходного отсека будет примерно равна высоте днища верхнего бака третьей ступени ракетыносителя (с небольшим запасом). Принимаем высоту переходного отсека 0,6 м.

Компоновочная схема и геометрические характеристики приборных отсеков

Форму приборного отсека третьей ступени выбираем также цилиндрической и рассчитаем длину приборного отсека:

$$L_{\pi O} = \frac{4 \cdot W_{\pi O}}{\pi \cdot D^2} = \frac{4 \cdot 1,45}{\pi \cdot 4^2} = 0,126 \ [\text{M}] \ .$$

Приборы первого и второго разгонных блоков располагаются в межбаковых отсеках.

Компоновочная схема космической головной части

Компоновочная схема космической головной части заимствована из прототипа, а именно, она выбрана такой же, как и компоновка космической головной части на пилотируемом космическом аппарате «Союз» (КА установлен на верхнем стыковом шпангоуте переходного отсека и закрыт головным обтекателем, который также установлен на верхнем стыковом шпангоуте переходного отсека).

Уточнение компоновочной схемы ракеты-носителя

В курсовом проекте предварительная компоновка ракетыносителя уточнялась в соответствии с методикой, представленной в учебном пособии [1]. Уточненная компоновочная схема ракетыносителя представлена в приложении БА.

Б7 РАЗРАБОТКА ТВЕРДОТЕЛЬНОЙ МОДЕЛИ РАКЕТЫ

Файлы деталей и сборок, выполненные в системе твердотельного моделирования «SolidWorks», прилагаются к настоящему курсовому проекту на оптическом носителе (CD-диске). Ниже на рисунках Б7.1 – Б7.6 приведены экранные копии твердотельной модели ракетыносителя и отдельных составных частей. 428

Стартовая масса: 258,766 т Число ступеней: 3 Масса ПН: 8,5 т Длина: 57 м Мах диаметр: 4 м

Первый ракетный блок:

Топливо: керосин/кислород Масса блока: 185,166 т Масса конструкции: 21,613 т Масса топлива: 163,553 т Число Циолковского: 8,56

Второй ракетный блок:

Топливо: водород/кислород Масса блока: 46,662 т Масса конструкции: 7,135 т Масса топлива: 39,527 т Число Циолковского: 6,5

Третий ракетный блок:

Топливо: водород/кислород Масса блока 16,865 т Масса конструкции 5,128 т Масса топлива 11,738 т Число Циолковского 3,28

Головной обтекатель:

Масса ГО:	1,572 т
Масса ПН:	8,5 т
Macca KA:	7т
Macca CAC:	1,5 т

Рисунок Б7.1 - Общий вид ракеты-носителя

- первый ракетный блок;
 второй ракетный блок;
 третий ракетный блок;
 створки ГО;
 пилотируемый КА

Рисунок Б7.2 - Схема членения РН

- 1 ЖРД;
- 2 донная защита;
- 3 хвостовой отсек;
- 4 рама ДУ;
- 5 тормозные РДТТ;
- 6 магистральный и тоннельный трубопроводы;
- 7 бак горючего;
- 8 межбаковый отсек;
- 9 бак окислителя;
- 10 переходный отсек

Рисунок Б7.3 - Ракетный блок первой ступени (в разрезе)

- 1 ЖРД;
- 2 рама двигателя;
- 3 рулевые двигатели;
- 4 хвостовой отсек;
- 5 тормозные РДТТ;
- 6 бак горючего:
- 7 магистральный и тоннельный трубопроводы;
- 8 межбаковый отсек;
- 9 бак окислителя;
- 10 переходный отсек

Рисунок Б7.4 - Ракетный блок второй ступени (в разрезе)

- 1 ЖРД;
- 2 хвостовой отсек;
- 3 бак окислителя;
- 4 межбаковый отсек;

- 5 бак горючего;
 6 приборный отсек;
 7 переходный отсек;
 8 ферма ДУ;
 9 рулевые двигатели

Рисунок Б7.5 - Ракетный блок третьей ступени (в разрезе)

- 1 пилотируемый КА; 2 САС;

- 3 створки ГО;
 4 решетчатый стабилизатор;
- 5 шпангоут переходного отсека (сам переходный отсек на рисунке не показан)

Рисунок Б7.6 - Космическая головная часть

Б8 РАСЧЕТ МАСС ЭЛЕМЕНТОВ РАКЕТЫ-НОСИТЕЛЯ

На этапе предварительного расчета масс основных элементов конструкции ракеты-носителя использовались статистические данные по относительным массам элементов конструкции РН.

Расчет проводился с помощью программы UMRMK.EXE. Исходные данные по геометрическим характеристикам ракеты брались с компоновочной схемы. Кроме того, использовались исходные данные, полученные в результате расчетов на предыдущих этапах выполнения курсового проекта. Протокол расчета представлен ниже.

Протокол расчета масс элементов конструкций ракеты-носителя

Ракетный блок первой ступени:

ИСХОДНЫЕ ДАННЫЕ:	
Конструктивная характеристикаS=	7.690
Диаметр блока(м)D=	4.000
Масса блока (тонны)М=	188.000
Относительная масса окиспителякаппа-	2.270
Плотность окислителя (кг/куб.н)роок=	1140.000
Ппотность горючего (кг/куб.м)рогор=	830.000
Длина головного обтекателя (м)Lro=	0.000
Дпина приборного отсека (м)Lпо=	0.000
Дпина межбакового отсека (н)Цно=	1.300
Длина переходного отсека (м)Lnepex=	2.310
Длина хвостового отсека (м)Lxo=	3.500
Радиусы днищ баков (м)	4.120
Длина бака окиспителя (м)Loк=	9.655
Дпина бака горючего (м)Lгор=	5.740
Тяга ЖРДВжрд=	3840.000
Относ.тяга рупевых двиг	0.000
Масса конструкции блокаМкбл=	24.447
Масса топлива в блоке	163.553
Масса окиспителяМок=	113.537
Масса горючегоМгор=	50.016

РЕЗУЛЬТАТЫ РАС	ЧЕТА	MACC:
Масса головного обтекМго=	0.000	
Масса приборного отсекаМпо=	0.000	
Масса приборовМпр=	1.020	
Масса верхн.днища бака"0".Мвдбо=	0.114	
Масса обечайки бака "О"Мобо=	0.307	
Масса нижн.днища бака "О".Мндбо=	0.125	
Масса верхн.днища бака"Г".Мвдбг=	0.114	
Масса обечайки бака "Г"Мобг=	0.183	
Масса нижн.днища бака Г"Мндбг=	0.125	
Масса межбакового отсека .Ммбо=	0.204	
Масса хвостового отсекаМхо=	0.734	
Масса переходного отсМперо=	0.363	
Масса ЖРДМжрд=	9.143	
Масса рамы ЖРДМржрд=	0.762	
Масса теппозащиты днищМтэпэ	0.188	
Масса рупевых ЖРДМрд=	0.000	
Масса системы наддуваМнад=	0.031	
Масса эпрадио-коммуникМком=	3.867	
Незабор топливаМнез=	2.453	
Прочие массыМпр=	1.880	
Расчетная конструктивная характе	ристика:	S pacy = 7.98.
19		1

Ракетный блок второй ступени:

исходные данные:	
Конструктивная характеристикаS=	12.230
Дианетр блока(м)D=	4.000
Масса блока (тонны)М=	43.047
Относительная насса окислителякаппа=	4.500
Плотность окислителя (кг/куб.м)роок=	1140.000
Плотность горючего (кг/куб.м)рогор=	71.000
Длина головного обтекателя (м)Lго=	0.000
Длина приборного отсека (м)Lпо=	0.000
Дпина межбакового отсека (м)Цмо=	1.300
Длина переходного отсека (м)Lперех=	1.100
Длина хвостового отсека (м)Lxo=	1.155
Радиусы днищ баков (м)	4.120
Длина бака окислителя (н)Lok=	3.054
Дпина бака горючего (м)Lгор=	11.570
Тяга ЖРДВжрд=	961.380
Относ.тяга рупевых двиг	5.000
Масса конструкции блокаМкбл=	3.520
Масса топлива в блокеМтопл=	39.527
Масса окиспителяМок=	32.340
Масса горючегоМгор=	7.187

РЕЗУЛЬТЯТЫ РАС	4 E T A	MA	0 0	÷ .
Масса головного обтекМго:	8.898			
Масса приборного отсекаМпо=	8.600			1
Масса приборовМпр=	0.295			
Масса верхн.днища бака"0".Мвдбо:	0.114			
Масса обечайки бака "О"Мобо=	0.097			
Масса нижн.днища бака "О".Мндбо:	8.125			
Масса верхн.днища бака"Г".Мвдбг:	0.114			
Масса обечайки бака "Г"Мобг:	0.368			
Масса нижн.днища бака Г"Мндбг=	8.125			
Масса межбакового отсека .Ммбог	9.294			
Масса хвостового отсекаМхоз	9.242			
Масса переходного отсМперо=	8.173			
Масса ЖРДМжрд=	2.289			
Масса рамы ЖРДМржрд=	6.191			
Масса теппозадиты днищМтэп:	8.188			
Масса рупевых ЖРДМрд=	6.572			
Масса системы каддуваМнад:	8.831			
Масса эпрадио-коммуникМком=	6.964			
Незабор топливаМнез=	0.593			
Прочие массыМпр=	0.430			
Расчетная конструктивная характер	ристика: S	5 расч	i = 1	2.19.

Ракетный блок третьей ступени:

ИСХОДНЫЕ ДАННЫЕ:	
Конструктивная характеристика	9.430
Дианетр блока(м)D=	4.000
Масса блока (тонны)М=	13.130
Относительная масса окиспителякаппа=	4.500
Плотность окислителя (кг/куб.н)роок=	1140.000
Плотность горючего (кг/куб.н)рогор=	71.000
Длина головного обтекателя (н)Lro=	7.500
Длина приборного отсека (н)Lno=	1.400
Длина нежбакового отсека (и)Lно:	0.782
Длина переходного отсека (н) Lперега	6.450
Длина хвостового отсека (и)Lk л	8.324
Радиусы дниц баков (н)	4.120
Длина бака окиспителя (н)Lok=	0.553
Длина бака горючего (м)Lrop=	2.650
Тяга ЖРД	961.388
Относ.тяга рулевых двиг	6.109
Масса конструкции блока Мкбл=	1.392
Масса топлива в блокеМтопл=	11.738
Масса окиспителяМокт	9.604
Масса горючегоМгор=	2,134

РЕЗУЛЬТАТЫ РАС	ЧЕТА	M	R	С	C	:
Масса головного обтекМго:	1.572					
Масса приборного отсекаМпо=	0.220					
Масса приборовМпр=	0.146					
Масса верхн.днища бака"О" Мвдбо=	0.114					
Масса обечайки бака "О"Мобоз	0.018					
Масса нижн.днища бака "О".Мндбо=	0.125					
Масса верхн.днища бака"Г".Мвдбг:	0.114					
Масса обечайки бака "Г"Мобгт	0.084					
Масса нижн.днища бака Г"Мндбг:	0.125					
Масса межбакового отсека .Ммбот 👘	0.123					
Масса хвостового отсекаМхо:	0.068					
Масса переходного отсМперо:	0.071					
Масса ЖРДМжрд=	2.289					
Масса рамы ЖРДМржод:	0.191					
Масса теппозациты дницМтэп=	0.188					
Масса рупевых ЖРДМрд=	0.057					
Масса системы наддуваМнад=	0.031					
Масса эпрадио-коннуник. Мкон=	0.972					
Незабор топливаМнез=	0.176					
Прочие массыМпр=	0.131					

Расчетная конструктивная характеристика: S pacu = 9.45.

Предварительная массовая сводка (чтобы не по азывать ее дважды) приведена в начале следующего раздела совместно с промежуточными результатами расчета по координатам центра масс и моментов инерции элементов ракеты-носителя.

Б9 РАСЧЕТ ЦЕНТРОВОЧНЫХ ХАРАКТЕРИСТИК И МОМЕНТОВ ИНЕРЦИИ

Предварительная массовая сводка ракеты-носителя представлена в таблице Б9.1. Там же представлены промежуточные результаты расчета по координатам центра масс и моментов инерции элементов PH. Расчет проводился по методике [1] с использованием табличного процессора Excel.

№ эл.	Наименование	<i>т</i> _i , кг	х _і , м	<i>т_i · x_i</i> , кг∙м	$m_i \cdot x_i^2$,
1	2	3	4	5	6
1	ПН (c CAC)	8500	9	76500	688500
2	ГО	1572	8.76	13762.86	120494
	3-й РБ:				
	Группа А:				
3	приборный отсек	220	13,64	2999,8	40904
4	Приборы	146	13,43	19610,0	26339
5	Верх днище бака О	114	13,94	1589,2	22153
6	Обечайка бака О	18	15,52	279,4	4336
7	Нижнее днище бака О	125	17,09	2136,8	36526
8	Верх днище бака Г	114	17,63	2010,2	35445
9	Обечайка бака Г	84	18,08	1518,7	27459
10	Нижнее днище бака Г	125	18,55	2318,8	43013
11	MO	123	17,30	2127,8	36808
12	XO	68	18,62	1266,2	23576
13	Переходный отсек	71	12,79	908,1	11614
14	ЖРД	2289	18,61	42589,1	792413
15	Рама ЖРД	76,4	17,60	1344,6	23663
16	Теплозащита	188	13,60	2556,8	34772
17	Рулевые ЖРД	57	17,87	1018,6	18202
18	Система наддува	31	17,30	536,3	9278
19	Кабели	972	13,25	12879	170647
20	Незабор топлива	176	17,86	3143,36	56140
21	Прочие массы	131	17,20	2253,2	38755
	Сумма по группе А	5128		85436,7	1452044
	·				
	Группа Б:				
22	Окислитель	9604	15,65	150302,6	2352236
23	Горючее	2134	18,11	38646,7	699892
	Сумма по группе Б	11738		188949,3	3052128
	2-й РБ:				
0.4	<u>I руппа А:</u>				1 (1 0 0
24	Приборы	295	23,8	7021	167100
_25	Верх днище бака О	114	19,71	2246,9	44287

Таблица Б9.1 - Предварительная массовая сводка и результаты расчета по координатам центра масс и моментов инерции РН

Продолжение таблицы Б9.1

1	2	3	4	5	6
26	Обечайка бака О	97	21,51	2086,1	44863
27	Нижнее днише бака О	125	23,36	2920	68211
28	Верх днище бака Г	114	24,211	2760,1	66824
29	Обечайка бака Г	368	30,26	11136,4	337010
30	Нижнее днише бака Г	125	36,32	4539,5	164856
31	МО	204	23,75	4844,8	115059
32	ХО	242	37,86	9162,1	346878
33	Переходный отсек	173	19,35	3346,9	64748
34	ЖРД	2289	38,34	87760,3	3364728
35	Рама ЖРД	191	37,23	7110,0	264669
36	Теплозащита	188	19,5	3666	71487
37	Рулевые ЖРД	572	36,90	21108,5	778968
38	Система наддува	31	36,67	1136,78	41685
39	Кабели	984	23,91	23527,4	562541
40	Незабор топлива	593	36,37	21567,4	784407
41	Прочие массы	430	36,71	15783,2	579321
	Сумма по группе А	7135		231723,3	7867643
	Группа Б:				
42	Окислитель	32340	21,61	698932,1	15105320
43	Горючее	7187	30,34	218053,6	6615746
	Сумма по группе Б	11738		188949,3	3052128
	<u>1-й РБ:</u>				
	Группа А:				
44	Приборы	1020	50,10	51097,9	2559801
45	Верх днище бака О	114	39,40	4491,9	176996
46	Обечайка бака О	307	44,50	13660,0	607800
47	Нижнее днище бака О	125	49,58	6197,5	307272
48	Верх днище бака Г	114	50,50	5757,0	290729
49	Обечайка бака Г	183	53,64	9815,2	526439
50	Нижнее днище бака Г	125	56,78	7097,5	402996
51	МО	204	50,04	10208,8	510878
52	XO	734	58,33	42814,2	2497353
53	Переходной отсек	363	38,44	13953,0	536325
54	ЖРД	9143	60,23	550673,8	33166529
55	Рама ЖРД	762	57,82	44058,8	2547482
56	Теплозащита	188	39,15	7359,3	288078
57	Система надлува	31	57,45	1781,0	102319

Окончание таблицы Б9.1

	2	3	4	5	6
	2				0
58	Кабели	3867	50,06	193590,0	9691490
59	Незабор топлива	2453	56,09	139575,7	7941857
60	Прочие массы	1880	57,30	107724,0	6172585
	Сумма по группе А	21613		1209855,3	68326930
	Группа Б:				
70	Окислитель	113537	44,59	5062614,8	225741995
71	Горючее	50016	53,78	2689760,4	144649937
	Сумма по группе Б	163553		7752375,3	370391933
	Сумма по РН	258766		10475588,4	473620737

Рассчитаем координату центра масс ракеты-носителя по оси X_m по следующей зависимости:

$$x_{um} = \frac{\sum_{i=1}^{3} m_i \cdot x_i}{\sum_{i=1}^{3} m_i} = \frac{10475588,4}{258766,4} = 40,48 \ [m];$$
$$x_{um} = \frac{\sum_{i=1}^{3} m_i \cdot x_i}{\sum_{i=1}^{3} m_i} = \frac{10475588,4}{258766,4} = 40,48 \ [m].$$

Определим момент инерции ракеты относительно оси $Y_{m I M}$, проходящей через центр масс ракеты, следующим образом:

$$I_{Y_{lUM}} = I_{Z_{lDM}} = \sum_{i=1}^{3} m_i \cdot x_i^2 - x_{\mu\mu}^2 \cdot \sum_{i=1}^{3} m_i =$$

=473620737 - 40, 48² · 258766, 4 = 49539585, 8 [KG · M²].

Расчет времени работы ступеней и секундного расхода окислителя и горючего

Результаты расчета представлены в таблице Б9.2.

Таблица Б9.2 - Результаты расчета времени работы ступеней и расхода окислителя и горючего

РБ	w _{e1} , M/C	P, kH	<i>m_{I1},</i> T/C	<i>m</i> ₇₁ , T	Т ₁ , С	, m _{Oκ1} , T	, <i>m_{Γt}</i>
1	3000	3800	1,26667	188	149	0,87584	0,38591
2	4500	961,38	0,21364	43,05	202	0,21609	0,04802
3	4500	961,38	0,21364	13,13	62	0,17327	0,0385

Расчет проводился по следующим зависимостям [1]: секундный расход топлива в целом (окислителя и горючего)

$$\dot{m}_{Ti} = \frac{R_i}{w_i};$$

продолжительность работы отдельных ступеней

$$T_i = \frac{m_{Ti}}{\dot{m}_{Ti}};$$

секундный расход окислителя и горючего

$$\dot{m}_{O\kappa i} = \frac{m_{O\kappa i}}{T_i}; \qquad \qquad \dot{m}_{\Gamma i} = \frac{m_{\Gamma i}}{T_i}.$$

Расчет изменения координат центра масс РН в полете

Расчет проводился по методике, изложенной в подразделе 13.4 учебного пособия [1]. Расчетная зависимость для определения текущего значения координат центра масс ракеты следующая:

$$x_{LDM}(t) = \frac{\sum_{A} m_i x_i + [(m_{OK} - \dot{m}_{OKi} t) x_{OKi}(t)] + [(m_{\Gamma} - \dot{m}_{\Gamma i} t) x_{\Gamma i}(t)]}{m_Q - \dot{m}_T t}, \quad (B10.1)$$

где m_{τ} - секундный расход топлива (окислителя и горючего вместе).

*m*_i и *x*_i - массы и координаты элементов, относящихся к группе А;

 $m_{O\kappa i}, m_{\Gamma i}, m_{o\kappa i}, m_{\Gamma i}, x_{OK i}, x_{\Gamma i}$ - массы, секундные расходы и координаты окислителя и горючего (элементов группы Б);

*m*₀ - стартовая масса ракеты-носителя.

Результаты расчета (центровочная ведомость) изменения координат центра масс ракеты-носителя по времени полета на участке работы первой ступени представлены в таблице Б9.3.

Nº	t, c	$m_{Ox}(t),$ KG	$m_{\Gamma}(t),$ KG	$x_{Oxi}(t),$ M	$x_{\Gamma t}(t),$ M	$m_{Or}(t) \cdot x_{Ori}(t)$ KP'M	$m_{\Gamma}(t) \cdot x_{\Gamma}(t)$ KPM	$x_c(t),$ M
0	0,00	113,54	50,02	35,99	44,83	4085,98	2242,32	33,37
]	14,14	102,18	45,01	36,61	45,21	3740,65	20 34 ,95	33,34
2	28,29	90,83	40,01	37,23	45,58	3381,26	1823,84	33,22
3	42,43	79,48	35,01	37,85	45,96	3007,81	1608,97	32,99
4	56,58	68,12	30,01	38,46	46,33	2620,31	1390,36	32,61
5	70,72	56,77	25,01	39,08	46,71	2218,74	1168,00	32,06
6	84,87	45,41	20,01	39,70	47,08	1803,11	941,90	31,25
7	99,01	34,06	15,00	40,32	47,45	1373,42	712,05	30,11
8	113,16	22,71	10,00	40,94	47,83	929,67	478,44	28,48
9	127,30	11,35	5,00	41,56	48,20	471,87	241,10	26,12
10	141,45	0,00	0,00	42,18	48,58	0,00	0,00	22,58

Таблица Б9.3 - Центровочная ведомость

На рисунке Б9.1 представлен график изменения координаты центра масс ракеты в полете.

Рисунок Б9.1 - График изменения координаты центра масс РН в полете

Б10 ОБОСНОВАНИЕ И ВЫБОР БОРТОВЫХ СИСТЕМ

Ниже приведен состав бортовых систем PH (для всех ракетных блоков):

системы обеспечения теплового режима (СОТР);

системы наддува баков;

системы одновременного опорожнения баков объёмомерные; системы одновременного опорожнения баков расходомерные; пневмогидравлические системы (ПГС) ракетных блоков; системы подачи топлива в ДУ;

система регулирования боковой составляющей скорости (РБС); система регулирования кажущейся скорости (РКС);

система регулирования нормальной составляющей скорости (PHC);

системы крепления и разделения РБ; система крепления и разделения ГО;

система крепления и разделения КА.

Более подробно рассмотрим принятые в настоящем проекте пневмогидравлическую систему одного из ракетных блоков, системы крепления и разделения составных частей ракеты-носителя.

Б10.1 Пневмогидравлическая система ракетного блока первой ступени

Пневмогидравлическая система (ПГС) ракетного блока (РБ) первой ступени ракеты-носителя представлена на рисунке Б10.1. Она состоит из двух жидкостных ракетных двигателей РД-191 (на схеме для упрощения графической иллюстрации показан один).

Двигатель РД-191 имеет турбонасосную систему подачи топлива с одним турбонасосным агрегатом (THA), с одним бустерным насосным агрегатом окислителя и одним бустерным насосным агрегатом горючего. Используется схема с дожиганием окислительного газа, который вырабатывается в двух одинаковых газогенераторах на основных компонентах.

1 - камера сгорания;

2 - теплообменник для получения газообразного кислорода;

3, 5, 18 - шайбы настроечные;

4 - теплообменник для получения газообразного гелия;

6 - турбина;

7 - газогенератор, работающий на основных компонентах топлива;

8 - пиростартер;

9 - бак горючего (керосин);

10 - бак окислителя (жидкий кислород);

11, 14 - дренажно-

предохранительные клапаны;

12, 15 - датчики давления;

13 - баллоны с жидким гелием;

16 - насос горючего;

17 - насос окислителя;

19 - главный клапан горючего;

20 - главный клапан окислителя;

21 - коллектор выхлопных газов турбины и сопловой насадок

Рисунок Б10.1 - Пневмогидравлическая система ракетного блока первой ступени ракеты-носителя

На двигателе применено химическое зажигание в огневых агрегатах и имеются теплообменники подогрева гелия для наддува бака горючего. Продувка осуществляется бортовой пневмосистемой. Все агрегаты автоматики используют пневмоуправление гелием от бортовой пневмосистемы.

Тяга двигателя передается на корпус PH через специальную раму (на схеме не показана). Жидкостный реактивный двигатель (ЖРД) имеет плавный двухступенчатый запуск с самозапуском - опережением включения газогенераторов относительно камер. В полете ЖРД регулируется по тяге и соотношению компонентов в камерах, а перед выключением двигатель плавно дросселируется с целью снижения максимальных перегрузок на ракету-носитель. Выключается двигатель в два этапа. Во-первых, прекращается работа газогенераторов. Во-вторых, отсекается подача компонентов в камеры и осуществляется дренаж горючего из трактов их охлаждения.

Б10.2 Системы крепления и разделения составных частей ракеты-носителя

На рисунке Б10.2 представлены принятые схемы крепления и разделения ракетных блоков, головного обтекателя и космического аппарата.

На этом рисунке введены следующие обозначения: 1, 2 – тормозные ракетные двигатели твердого топлива; 3 – пирозамки систем крепления и разделения РБ; 4 – плоскость расположения элементов системы крепления и разделения головного обтекателя по продольному стыку (включая замки, тяги и толкатели); 5 – пирозамки системы крепления и разделения КА; 6 - пружинные толкатели системы крепления и разделения КА; 7 – пирозамки крепления и разделения головного обтекателя.

Системы крепления и разделения ракетных блоков

Крепление и разделение ракетных блоков осуществляется пирозамками. Торможение отработавших ракетных блоков осуществляется с помощью твердотопливных ракетных двигателей.

Рисунок Б10.2 - Расположение элементов систем крепления и разделения ракетных блоков, головного обтекателя и космического аппарата

Система крепления и разделения головного обтекателя

Крепление и разделение головного обтекателя (ГО) осуществляется замками продольного и поперечного стыка. В случае штатного режима полета ракеты-носителя срабатывают вспомогательные двигатели системы аварийного спасения и уводят основной ракетный блок системы аварийного спасения от головного обтекателя. Сброс головного обтекателя осуществляется на участке полета второй ступени. При раскрытии замков продольного и поперечного стыка обтекатель делится на две части, которые отбрасываются от ракетыносителя специальными толкателями.

Система крепления и отделения КА

Крепление и отделение пилотируемого КА осуществляется пирозамками и пружинными толкателями.

Б11 КОНСТРУКЦИЯ И ФУНКЦИОНИРОВАНИЕ РАКЕТЫ

Б11.1 Конструкция ракеты-носителя

На рисунке Б11.1 представлены основные (крупные) составные части ракеты-носителя.

1 – первый РБ; 2 – второй РБ; 3 – третий РБ; 4 - космическая головная часть

Рисунок Б11.1 - Состав ракеты-носителя

В проектируемой РН используется трехступенчатая схема последовательного соединения ракетных блоков «тандем». Ракетные блоки имеют цилиндрические формы одинакового диаметра. Головной обтекатель состоит их двух створок, каждая из которых имеет из цилиндрическую и коническую части. Под головным обтекателем установлена полезная нагрузка (пилотируемый КА). 448 Конструкция ракетного блока первой ступени включает следующие отсеки и элементы:

1. Хвостовой отсек (ХО), включающий в себя:

- цилиндрическую обечайку, подкрепленную силовым набором стрингеров и шпангоутов;

- жидкостный ракетный двигатель РД-191, который крепится к шпангоутам и обечайке хвостового отсека с помощью специальной рамы;

- четыре тормозных ракетных двигателя на твердом топливе (РДТТ);

- элементы ПГС и других бортовых систем.

2. Бак горючего (керосин), включающий в себя:

- цилиндрическую обечайку;

- два днища в форме сферических сегментов;

- два стыковых шпангоута;

- тоннельный трубопровод.

3. Межбаковый отсек, включающий в себя цилиндрическую обечайку, подкрепленную силовым набором стрингеров и шпангоутов (в межбаковом отсеке размещены приборные блоки первой ступени ракеты-носителя).

4. Бак окислителя (жидкий кислород), состоящий из цилиндрической обечайки и двух днищ в форме сферических сегментов, а также двух подкрепляющих шпангоутов.

5. Переходный отсек, состоящий из цилиндрической обечайки, подкрепленной силовым набором стрингеров и шпангоутов.

Конструкция ракетного блока второй ступени включает следующие отсеки и элементы:

1. Хвостовой отсек, включающий в себя:

- цилиндрическую обечайку, подкрепленную силовым набором стрингеров и шпангоутов;

- жидкостный ракетный двигатель РД-0132, который крепится к шпангоуту обечайки хвостового отсека с помощью специальной рамы;

- четыре тормозных РДТТ;

- два рулевых двигателя;

- элементы ПГС и других бортовых систем.

2. Бак горючего (жидкий водород), состоящий из цилиндрической обечайки и двух днищ в форме сферических сегментов, а также двух подкрепляющих шпангоутов и тоннельного трубопровода (на внешней поверхности бака нанесена теплоизоляция).

3. Межбаковый отсек, состоящий из цилиндрической обечайки, подкрепленной силовым набором стрингеров и шпангоутов (в межбаковом отсеке размещены приборные блоки второй ступени ракетыносителя).

4. Бак окислителя (жидкий кислород), состоящий из цилиндрической обечайки и двух днищ в форме сферических сегментов, а также двух подкрепляющих шпангоутов.

5. Переходный отсек, состоящий из цилиндрической обечайки, подкрепленной силовым набором стрингеров и шпангоутов.

Конструкция ракетного блока третьей ступени включает следующие отсеки и элементы:

1. Хвостовой отсек, состоящий из цилиндрической обечайки, подкрепленной силовым набором стрингеров и шпангоутов.

2. Бак окислителя (жидкий кислород) кольцевой формы, состоящий из двух цилиндрических обечаек (большого диаметра и малого диаметра), двух днищ, имеющих формы части тора, а также четырех подкрепляющих шпангоутов.

3. Жидкостный ракетный двигатель РД-0132, закрепленный на специальной раме, которая крепится к шпангоуту обечайки хвостового отсека.

4. Два рулевых двигателя, установленные на внешней поверхности межбакового отсека.

5. Межбаковый отсек, состоящий из цилиндрической обечайки, подкрепленной силовым набором стрингеров и шпангоутов (в межбаковом отсеке размещены элементы ПГС и других бортовых систем третьей ступени ракеты-носителя).

6. Бак горючего (жидкий водород), состоящий из цилиндрической обечайки и двух днищ в форме сферических сегментов, а также двух подкрепляющих шпангоутов и тоннельного трубопровода (на внешней поверхности бака нанесена теплоизоляция).

7. Приборный отсек, состоящий из цилиндрической обечайки, подкрепленной силовым набором стрингеров и шпангоутов, специальных стенок для крепления приборов (в приборном отсеке установлены приборы, необходимые для обеспечения полета ракетыносителя и, в частности, полета третьей ступени.

8. Переходный отсек, состоящий из конической обечайки, подкрепленной силовым набором стрингеров и шпангоутов, верхнего стыкового шпангоута, на котором имеются места установки и крепления космического аппарата и головного обтекателя.

Конструкция головного обтекателя включает следующие отсеки и элементы:

1. Две створки головного обтекателя, состоящие (каждая) из двух цилиндрических и двух конических обечаек, подкрепленных набором стрингеров и шпангоутов.

2. Два решетчатых стабилизатора, которые установлены на внешней поверхности обечаек головного обтекателя и раскрываются при аварийной ситуации.

3. Твердотопливный ракетный двигатель системы аварийного спасения, установленный на верхнем шпангоуте конической части собранного головного обтекателя.

Б11.2 Функционирование ракеты-носителя в полёте

Функционирование ракеты-носителя на стартовой площадке

На стартовой площадке перед пуском ракеты-носителя проводится диагностирование работы маршевого ракетного двигателя и бортовых систем. В случае штатной работы выдается команда на пуск, производится запуск двигателя и разрыв всех механических (элементов крепления ракеты к стартовому столу), электрических, гидравлических и пневматических связей, и ракета переходит на автономную работу. Функционирование ракеты-носителя на этапе полета первой ступени

1. Управление по всем трем углам ориентации осуществляется маршевыми двигателями при помощи специальной подвесной системы, благодаря которой двигатели способны отклоняться в двух взаимно перпендикулярных плоскостях на углы до 7 градусов.

2. Осуществляется выключение двигателей ракетного блока первой ступени.

3. Производится отделение ракетного блока первой ступени по холодной схеме:

- по окончании работы двигателей с помощью пирозамков производится разрыв механической связи между ракетными блоками;

- включаются в работу четыре тормозных ракетных двигателя твердого топлива (РДТТ), установленных на отделяемом ракетном блоке, и тем самым производится торможение ракетного блока нижней ступени.

Функционирование ракеты-носителя на этапе полета второй ступени

1. Запускается маршевый двигатель ракетного блока 2-й ступени.

2. Осуществляется управление по углам тангажа и рысканья маршевым двигателем при помощи специальной подвесной системы, благодаря которой двигатель способен отклоняться в двух взаимно перпендикулярных плоскостях на углы до 7 градусов.

3. Управление по углу крена осуществляется двумя рулевыми двигателями.

4. Производится сброс головного обтекателя:

- с помощью пирозамков производится разрыв механической связи между головным обтекателем и основным ракетным блоком системы аварийного спасения;

- включается вспомогательный ракетный двигатель системы аварийного спасения, который производит увод основного ракетного блока системы аварийного спасения от ракеты-носителя;

- с помощью замков продольного стыка производится разрыв механической связи между двумя створками головного обтекателя, а с помощью замков поперечного стыка производится разрыв механи-

ческой связи между створками головного обтекателя и опорным шпангоутом перходного отсека;

- с помощью толкателей производится раскрытие и сброс створок головного обтекателя.

5. Осуществляется выключение двигателей ракетного блока второй ступени и его отделение и торможение по той же схеме, что и отделение ракетного блока первой ступени.

Функционврование ракеты-носителя на этапе полета третьей ступени

1. Запускается маршевый двигатель ракетного блока третьей ступени.

2. Управление по углам тангажа и рысканья осуществляется маршевым двигателем при помощи специальной подвесной системы, благодаря которой двигатель способен отклоняться в двух взаимно перпендикулярных плоскостях на углы до 7 градусов.

3. Управление по углу крена осуществляется двумя рулевыми двигателями.

4. В конце активного участка траектории маршевый двигатель третьей ступени выключается, одновременно с этим включаются рулевые двигатели, которые обеспечивают точность выведения КА как по скорости, так и по траектории.

5. Осуществляется отсечка рулевых двигателей.

6. С помощью пирозамков разрываются механические связи между космическим аппаратом и опорным шпангоутом переходного отсека ракеты-носителя и производится отделение пилотируемого КА с помощью пружинных толкателей по специальной безударной схеме.

Функционирование ракеты-носителя в случае возникновения аварийной ситуации до отделения головного обтекателя

1. Вводится в действие система аварийного спасения.

2. С помощью пирозамков производится разрыв механической связи между частью головного обтекателя, которая должна быть уведена от ракеты, и частью головного обтекателя, которая остается на ракете. 3. С помощью пирозамков производится разрыв механической связи между спасаемой частью космического аппарата, которая должна быть уведена от ракеты, и остающейся на ракете частью космического аппарата.

4. Включается основной ракетный двигатель системы аварийного спасения и производится увод части головного обтекателя со спасаемой частью космического аппарата из опасной зоны.

5. С помощью пирозамков разрываются механические связи между головным обтекателем и спасаемой частью космического аппарата.

6. Включается вспомогательный ракетный двигатель системы аварийного спасения, который уводит части головного обтекателя от спасаемой части космического аппарата.

7. Производится приземление (парашютирование) пилотируемого КА по штатной схеме.

Функционирование ракеты-носителя в случае возникновения аварийной ситуации после отделения головного обтекателя

1. Выключается двигатель ракетного блока третьей ступени (если это возможно).

2. С помощью пирозамков разрываются механические связи между космическим аппаратом и опорным шпангоутом переходного отсека ракеты-носителя и производится отделение пилотируемого КА с помощью пружинных толкателей по специальной безударной схеме.

3. При необходимости (если двигатели ракетного блока не прекратили работу) включаются двигатели космического аппарата для увода его от аварийной ракеты.

4. Осуществляется приземление по схеме, похожей на штатную.

ЗАКЛЮЧЕНИЕ Б

В настоящем курсовом проекте был произведен выбор основных проектных характеристик и конструктивного облика ракетыносителя, способной выводить пилотируемый космический аппарат массой 7 т на круговую орбиту 400 км и с углом наклонения орбиты 64 градуса.

В частности, были рассмотрены следующие вопросы.

Определена характеристическая скорость ракеты, выбрано топливо, решена оптимизационная задача выбора наилучшего варианта распределения масс по ступеням и блокам ракеты-носителя, рассчитана стартовая масса ракеты и массы ракетных блоков.

Проведены расчет объемно-габаритных характеристик ракеты, предварительная компоновка, выбраны двигатели ракетных блоков всех ступеней. Проведено уточнение компоновочной схемы, разработана твердотельная модель ракеты, которая была выполнена в системе «SolidWorks», разработан анимационный фильм полета ракетыносителя и отделения составных частей ракеты космического назначения в полете.

Произведен расчет масс элементов, составлена весовая сводка и центровочная ведомость. Приведен состав бортовых систем ракеты, выбраны пневмогидравлическая схема и система крепления и разделения составных частей ракеты космического назначения.

Для более подробной проработки других вопросов, касающихся проектирования ракет, необходимо обратиться к списку использованных источников в учебном пособии [1].

Б СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Куренков, В. И. Выбор основных проектных характеристик и конструктивного облика ракет-носителей [текст]: Учеб. пособие / В.И.Куренков, Л.П.Юмашев; под ред. чл.-кор. РАН Д. И. Козлова. - Самара:Самар. гос. аэрокосм. ун-т, 2005. - 240 с.

2. Юмашев, Л. П. Головные части ракет [текст] / Л.П.Юмашев. - Самара: СГАУ, 2005. - 48 с.

3. Балабух, Л.И., Алфутов Н.А., Усюкин В.И. Строительная механика ракет [текст] / Л.И. Балабух, Н.А. Алфутов, В.И. Усюкин - М.: Высш. шк., 1984. - 391 с.

4. Белоконов, И. В. Расчет баллистических характеристик движения космических аппаратов [текст]: учеб. пособие / В.М.Белоконов - Самара: СГАУ. 1994. - 41 с.

5. Андреев, С.В. Баллистические ракеты [текст]: учеб. пособие / С.В.Андреев - Куйбышев: КуАИ. 1989. - 57 с.

6. Официальный сайт НПО «Энергомаш»: www.energomash.ru

7. Сайт, посвященный космонавтике: www.novosti-kosmonavtiki.ru

8. Сайт, посвященный авиации и космонавтике www.aviaport.ru

9. СТО СГАУ 02068410-004-2007. Стандарт организации. Комплексная система управления качеством деятельности вуза. Общие требования к учебным текстовым документам [Текст]. -- Самара: СГАУ, 2007.

ПРИЛОЖЕНИЕ БА

КОМПОНОВОЧНАЯ СХЕМА РАКЕТЫ-НОСИТЕЛЯ

Учебное издание

Куренков Владимир Иванович

ОСНОВЫ ПРОЕКТИРОВАНИЯ РАКЕТ-НОСИТЕЛЕЙ. Выбор основных проектных характеристик и формирование конструктивного облика

Учебное пособие

Под редакцией доктора технических наук, профессора А. Н. Кирилина

Редакторская обработка Т. К. Кретинина Компьютерная верстка В. И. Куренков Доверстка В. И. Куренков

Подписано в печать 31.11.11 г. Формат 60х84 1/16. Бумага офсетная. Печать офсетная. Печ. л. 28,75. Тираж 100 экз. Заказ

> Самарский государственный аэрокосмический университет. 443086 Самара, Московское шоссе, 34.

Изд-во Самарского государственного аэрокосмического университета. 443086 Самара, Московское шоссе, 34