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INTRODUCTION 

Fluid mechanics is a special part of the common mechanics which includes 

hydraulics (incompressible fluids motion study), aerodynamics and gas dynamics 

(compressible fluids motion study). In comparison to mechanics of the solid bodies 

this educational subject is more difficult due to lack of the hard links between 

particles of the environment. The presence of the high mobile fluid particles 

provides special difficulties native only to fluid mechanics. 

The special feature of the any moving gas or liquid fluid is superposition of 

the fluid movement with chaotic (undirected) movement of the environment 

molecules. The calculation of such a difficult fluid movement doesn’t seem 

possible. Schematization and idealization of the flow is necessary i.e. accept of the 

mathematical model which not only keeps main treats and features of the process 

under study but also allows to carry out engineering analysis by available means. 

At present basis of this common flow model is the well-proved hypothesis 

which determines the compressible fluid (gas) model as media which fills space 

without creation of any emptiness (continuity hypothesis). This hypothesis makes 

theoretical and experimental researches significantly simpler because it allows 

considering environment mechanical characteristics as continuous and 

differentiating parameters as velocity, pressure and density depending upon 

coordinates and time. 

Gas dynamics is an area of science that studies movement of the 

compressible fluid (gas) in high velocities and temperatures conditions where the 

laws of the hydraulics are no longer correct. It is a science that requires intimate 

knowledge of the physics and dynamics and is based on the modern mathematics 

and computer techniques achievements. Therefore, the equations of the 

mathematical physics are the basis of the mathematical apparatus of this part of 

mechanics, and the perfect computer skills are the recipe for success in practical 

activity. 
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It is obvious that aviation and rocket industry progress, increasing of the 

velocity in the flow passages of the rotary machines, development of the different 

kinds of the jet apparatus requires not only intimate knowledge of the 

hydrodynamics and gas dynamics but also constant expansion of the knowledge in 

the area of the sub- and supersonic velocities of the movement. 

At present different software is developed and widely used in engineering 

practice, especially in the hydrodynamics and gas dynamics. This software allows 

carrying out opportunities of the mathematical modeling of the inner and outer 

channel 2-D and 3-D flows such as: 

 steady and unsteady tasks; 

 laminar and turbulent flows (with different turbulence models); 

 viscous (Newtonian and non-Newtonian liquids) and non-viscous liquid 

and gas. 

The next features are used: 

 effective calculation algorithms; 

 adaptive mesh concentration; 

 set of the intelligent boundary conditions; 

 missed meshes, arbitrary geometric areas, automatized connection of 

the incompatible meshes; 

 moving (deforming, sliding) meshes, dynamic adding and removing of 

the cells. 

It is obvious that verification of the obtained experimental results with 

calculation results will be criterion of the calculation applicability. All of this 

requires not only deep studying of the software potential but also knowledge about 

incompressible fluids flows objective laws and features. 

Data about main features of the sub- and supersonic flows, gas dynamic 

equations, used in engineering activity and engineering methods of the 

compressible fluid flows calculation in the channels with variable cross section 

which are suited for the aircraft and ground gas turbine engines, are presented 

below. 



8 

In the chapters 1…3 main definitions and equations of the non-viscous non-

heat-conducting compressible liquid (gas) and the accepted simplified models are 

presented. Also here there are presented data about weak disturbance (acoustic 

waves) motion. In the chapter 4 strong disturbance, supersonic flows flow 

phenomena and shock waves are described. In the chapter 5 data about real gas 

flow features is given and in the chapters 6 and 7 designs of the exhaust devices of 

the aircraft and ground gas turbine engines are described, flow phenomena and 

parameter calculation in this channels based on the modern achievements of the 

gas dynamics. In chapter 8 main definitions and terms of the similarity theory are 

presented. In chapter 9 the design schemes and operation principals of diffusers are 

presented. And finally, the basis of the numerical calculation methods and their 

application in fluid dynamics are presented in chapter 10. 

Chapter 1.  BASIC TERMS AND DEFINITIONS 

It is possible to consider that there is no principle difference between 

gaseous and liquid conditions because there is continuous transfer from gas to 

liquid and vice versa. However, it is forbidden to consider liquid as a high pressure 

gas because their densities are so high quantitative different that liquid properties 

significantly differ from gas properties. In liquids mean distance between 

molecules is the same order as its diameters so particles movement in the liquid 

volume is extremely hindered. Trend of the heat movement of the molecules is 

next. 

There are two groups of the molecules: 

 gaseous, chaotic moving (traveling); 

 oscillating (settled). 

There is dynamic equilibrium between these two groups at the given 

temperature. 

Gas is a system of the discrete molecules that chaotically move and impinge 

each other. It can be characterized by the mean length of the molecule free path i.e. 
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length that molecule can move without impact (l). If l is lesser then characteristic 

dimension of the streamlined body for example, gas can be described as 

continuous environment. 

Example: At air standard conditions 1 cm3 of air contains 2,7∙1019 

molecules. If cube with 0,001 mm3 side is considered it will contain 2,7∙107 

molecules which is enough for the accept of the mean parameters. 

At any moment and position of environment working fluid is situated in the 

thermodynamic equilibrium which is determined by its pressure, temperature, 

specific volume and density. Density magnitude depends upon working fluid 

characteristics and conditions (pressure and temperature). For compressible fluid 

(gas) density dependence upon pressure and temperature is determined by 

Clapeyron condition equation:  

ρ = Р/RТ. 

Viscosity. Every really existing gas is viscous. Non-viscous gases are called 

ideal. Viscosity is an ability of the liquids or gases to resist to relative flow of its 

parts. Newton was first who consider that inner friction force between two layers 

of the moving fluid is directly proportional to layers velocity difference, surface 

area of their contact and inversely proportional to distance between layers. 

Tangential stress, which is linked to a viscosity, occurs in a moving media and 

equal to: 

,в

F dw

S dh
  

 

where  F – viscous force; 

S – contact surface area; 

dw/dh – velocity gradient; 

в – dynamic viscosity coefficient which depends on working fluid nature 

and conditions. (Significantly depends on temperature and depends on pressure if it 

exceeds 100 atm). 
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Pressure (P) is a force which acts on unit area and directed normal to the 

volume surface into the interior of the domain. 

Mass density is a limit of the working fluid mass to its volume relation with 

its narrowing to some inner point (such limit exist due to continuity hypothesis). 

Compressibility of the media is equal to: 

 1 2

1

,v

V V
B

V P


   

where V1 and V2 – starting and final volumes during pressure change for Δp 

magnitude. Increasing of pressure leads to decreasing of volume which explains 

minus. 

Acting forces 

In compressible fluids internal and external forces are acting (if related to 

volume under study). 

Inner forces as result of one particles acting on another due to the third 

Newton law will cause equal response and will not be considered (for exception to 

special cases). 

External forces are divided to mass and surface forces. 

External forces include: 

 gravity; 

 momentum; 

 dissipative, magnet and electrical forces. 

Surface force is a force which acts on the surface of volume under study. 

They include: 

 superficial tension; 

 capillary force; 

 friction and normal pressure. 

Let’s consider some liquid volume in space. 
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Fig. 2.1. Acting forces. 

 

ΔT is called tangential force of friction force. 

ΔP is called stretch or narrowing for or normal pressure force. 

Chapter 2. MAIN EQUATIONS FOR THE NON-VISCOUS  

NON-HEAT-CONDUCTIVE COMPRESSIBLE LIQUID (GAS) 

Fluid dynamics is focused on interactions between moving media and 

channel walls. Compressible liquid movement theory bases on Newton laws for 

point mass. Equations which describe these interactions are based on continuity, 

energy and momentum equations for flow tube which parameters can be 

considered constant in cross-section. 

2.1 Continuity equation 

In a vector form continuity equation is next: 

  .div w
t





 


 

For steady flow: 

  0.div w   
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In case of 2-D flow with x and y as variables: 

   
0.

yx
ww

x y

 
 

 
 

2.2 Eulerian equation of movement 

.
dw

g gradP
dt

    

For 2-D flow: 

;

.

x
x

y

y

dw P
g

dt dx

dw P
g

dt dy

 

 


 


 

 

2.3 Condition equations 

Common form of this equation is ( , ) 0.F P   Examples: / ;P const   

/ ;kP const  /P A B    for elastic media 0,B   / 0.dP d   

As a rule perfect gas is placed under study (not always ideal). Perfect gas 

has properties: 

 internal energy depends only on temperature; 

 gas condition can be described as .P RT  

Entropy is a state function of the thermodynamic system. Its increment is 

linked to elemental heat in a reverse process by next relation: 

.dQ TdS  

Perfect gas entropy: 

ln .
1

gR P
S const

k k
 


 

Any process with S=const is called isentropic. 
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2.4 Energy equation 

As an example of mathematical apparatus application, derivation of the 

energy equation is presented with taking some hydraulics terms into account (flow 

line, tube of flow). 

 

Fig. 2.2 Flow tube 

 

Composition of energy balance. 

1. At initial moment t=0 mass of gas /m G g    fills volume 1-1…2-2. 

2. After Δt sec section 1-1 will move to  l1 distance and will be placed into 

1/-1/ section. 

Kinetic energy in a 1-1 and 1/-1/ sections for Δt: 

/ /

/ /

/ / / /

/ /

2 2

1 2 1 1 1 2

1 1 1 2

2 2

1 2 1 2 2 2

1 2 2 2

( ) .
2 2

( ) .
2 2

k

k

w w
E m m

w w
E m m

  

 

  

 

   
      

   

   
      

   

 

Kinetic energy change: 

/ / / /

/ /

2 2

1 21 2 2 2 1 1

2 2 1 1

( ) ( ) .
2 2

k k k

w w
E E E m m  

 

   
         

   
 

If flow tube property / /2 2 1 1
m m m

 
   

 
is taken into account, change of the 

kinetic energy will take next form: 
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/

22

2

2 2
2 2

ww



 
 

 
 and 

/

22

1

1 1
2 2

ww



 
 

 
because (1-1/…2-2/) volume is infinitely 

small. So 

2 2

2 1 .
2

k

w w
E m


    

Potential energy: 

 2 1 .nE G z z     

Pressure work: 

2 2 2 1 1 1 2 2 2 1 1 1 .pE P dS dl PdS dl P w dS dt Pw dS dt      

Change of the internal energy: 

   2 1 2 1

1
T v

G
E U U G C T T

A A


       

Added and removed heat: 

1 2 .fr

dQ
dL L

A

    

In such case 

     
2 2

2 1
1 2 2 2 2 1 1 1 2 1 2 1 .

2
fr v

w wG
dQ dL L P w dS dt Pw dS dt GC T T G z z

q


 
            

 
 

By taking into account that 
dG

dV wdSdt


 

 
expression will take the next 

form: 

   
2 2

2 1 2 1
1 2 2 1 2 1

2 1

.
2

fr v

w w P PG
dQ dL L dG GC T T G z z

q  


  
             

   
 

If this equation is related to 1 kg of gas (dq/ΔG=Q, dL/ΔG=L, dLfr/ΔG=Lfr), 

energy equation will have its final form: 
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   
2 2

2 1 2 1
1 2 2 1 2 1

2 1

.
2

fr v

w w P P
Q L L C T T z z

g  


 
          

 
 

If we specify 
vС T APV as I (enthalpy) and 

out frQ L  as Q (added and 

removed heat where friction acts like a source of internal heat), energy equation 

will take next form: 

 
2 2

2 1
2 1 2 1 .

2

w w
Q L i i z z

g


        

Example. Special cases: 

1. Flow in thermal insulated channel (Q=0, L=0). Energy equation will take 

next form: 

2 2

2 1
2 10 ,

2

w w
i i

g


    

which means that, if w1=0, 
2 2 .w g i   

2. Energy adding during compressor work (Q=0, L=Lc): 

2 2

1 2
1 2 .

2 2
c

w w
i L i

g g
     

3. Energy removing during turbine work (Q=0, -L=Lt) 

2 2

1 2
1 2 .

2 2
t

w w
i L i

g g
     

2.5 Mechanical form of energy equation (Bernoulli’s principle) 

Mechanical form of the above derived energy equation for 1 kg of the 

incompressible fluid is: 

 
2 2

2 1 2 1
2 1 .

2
fr

w w P P
L z z L

g 

 
       

This equation is called common Bernoulli’s equation for fluids. 
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Gas dynamic uses simplified form of this equation without mechanical work 

and friction (L=Lfr=0), and potential energy is not changing (z2=z1): 

22 2

2 1

1

0.
2

w w P

g 


   

In the ideal adiabatic process without adding or removing heat and friction, 

entropy is constant so this process can be called isentropic. Bernoulli’s equation 

for fluids will take next form. 

1
2 2

1 2 2 1

1 1

1 0.
1 2

k

kP P w wk

k P g

 
          
  

 

2.6 Main differential equation of the gas dynamics 

Gas dynamic equations, which describe 2-D irrotational flow of the 

compressible fluid, are next: 

2 2

2 2 2
1 1 0.

0.

u u uv v u v v

a x a x y a y

v u

dx dy

       
         

       

 
 

 

Let’s introduce velocity potential: / ,  / .dx u dy v       

Then we get main differential equation of the gas dynamics: 

   
2 2 2

2 2

2 2
2 0.a u uv

x x y y

    
   

   
 

Nonlinear nature of this equation leads to difficulties of its solving. Hence, 

on practice method of velocity hodograph is widely used. Transfer to variables 

from velocity components makes this function linear. Chaplygin equation for 

current function is important for such a conversation: 

   2 22 2

2 2 2

1 1
0,

M M

w w w w

     
  

  
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where current functions are w
n








 and 0

s





and n and s are surface normal and 

current coordinate, which are determined along flow line correspondingly (natural 

coordinates). 

Chapter 3. ACCEPTED SIMPLIFIED FLOW MODELS 

Real gas flow in channels of different plants, devices, rotary machines and 

especially aircraft engines is complicated because of presence of lift-off areas, 

turbulence, possible compression shock waves etc. Anyway calculation of such 

complicated flow does not seem possible even by using most perfect computers 

and this fact slows down further expansion of compressible liquid flow knowledge. 

This circumstance leads to necessity of more simplified or idealized flow schemes 

acceptation, its principal diversities and typical features search. 

At present, existing practice shows that in some cases simplified models 

calculation results adequately correspond with real processes and can be used for 

quantitative assessment. Most common gas flow models for experimental data 

engineering analysis are next. 

1. Steady (all parameters don’t change depending on time). 

2. Adiabatically (heat exchange with environment can be neglected). 

3. Isentropic (entropy of flow is constant). 

4. 1-D (all parameters are similar in one cross-section and depend only on 

axial coordinate). 

5. 2-D (flow parameters depend on two coordinates). 

6. Laminar (particle moving is oriented). 

7. Turbulent (particle moving is chaotic with parameters pulsation either 

axial or tangential direction). 

8. 3-D. 

1-D flow model has significant application on engineering activity for 

experimental researches analysis and calculation. 
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3.1 Weak disturbances. Acoustic waves 

If body is placed in gas media, disturbances, which cause pressure changing, 

are arrived. If body movement is slow and smooth and its shape is curved, these 

disturbances are nearly absent. Fast moving causes positive pressure that pushes 

environment layers. They are in turn compressed again, and acoustic (weak) wave 

is generated i.e. streamlined body creates change or disturbance of every gas media 

parameter in comparison with non-disturbed approached flow. Hence, mechanism 

of disturbance creation, which is caused by pressure change, is a basis of acoustic 

or weak disturbance creation and distribution. Main mechanism of flow formation 

is an ability of gas to transfer parameters disturbance from place of its origin to 

another places as spherical disturbance waves. 

From the point of view of the molecular-kinetic theory to get acoustic wave, 

it is necessary for molecules to transmit an impulse from area with high pressure 

and density to molecules with lower pressure. Sound is generated when dimensions 

of the pressure change area are much more then distance which molecules passes 

before impact. In an opposite case molecules will pass from peak to a valley and 

the wave is instantly equalized. 

Speed of sound magnitude calculation is performed by expression which set 

a connection between pressure change and density: 

2 .
P

a






 

Here it is important to know how temperature changes. 

Newton was the first who try to calculate the speed of sound by 

consideration that temperature doesn’t change i.e. he calculated isothermal speed 

of sound. His calculation doesn’t correspond with experiment. 

Laplace made a correct consideration that pressure and temperature are 

changed adiabatically. Heat flux from confluence region to a region of expansion is 

neglectfully small, if length is high enough in comparison with molecule free 

passage length. Neglectful heat leakage will lead to neglectful energy absorption 
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and will not influence a speed of sound. Heat absorption will be amplified if wave-

length will reach free passage distance but such waves lengths are smaller than 

acoustic waves lengths in a factor of 106. Speed of sound is equal to .a kqRT

Numerically, it is approximately one half of the mean molecular velocity. 

Significant part in aero- and gas dynamics is given to a speed of sound term as 

weak disturbance distribution velocity. 

Sound distribution in gas media is linear wave motion, where disturbances 

are transmitted with certain velocity (speed of sound) which can varies inside a 

media. (In incompressible fluids small pressure changes are distributed with 

infinitely high velocity.) 

3.2 Mach number 

Generally accepted parameter, which characterizes relation between gas 

velocity w and speed of sound a, is called Mach number: 

/ .M w a  

Depending on M value, there is next flows classification: 

- M<1 – subsonic flow; 

- 0,9<M<1,2 – transonic flow; 

- M>1 – supersonic flow (M>4 – hypersonic flow). 

These types of flows, which are determined by Mach number, are 

fundamentally differed from each other and described by different kinds of 

mathematical physics equations (subsonic flows are described by elliptic 

equations, transonic – by parabolic equations, supersonic – by hyperbolic 

equations). 

Physical sense of Mach number is fluid compressibility criterion. Depending 

on Mach number value, current flow parameters are determined. If M<0,15 

compressibility can be neglected. 
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For inner channel flows analysis and calculation other than Mach number 

velocity coefficient / crw a  has significant application, where acr – critical speed 

of sound. 

3.3.1-D flow 

1-D flow is a kind of flow, which have only one direction (usually axial) of 

parameters change. Gas flow in the channel with slightly cross-section changing 

and small curvature of axis can be considered as 1-D flows. 

Let’s study flow in that channel with taking into account that flow has heat 

exchange and mass exchange with environment (adding or removing of gas), and 

geometric form of channel is changed, there is a mechanical work over gas and 

finally gas is perfect and real. If these parameters are inserted into energy equation 

from Ch.2, we can get differential equation of velocity change along channel axis: 

 2

2 2 2
( 1) 1 .

frdLdw dS dQ dL dG
M k k

w S a a a G
        

This equation is common expression of the flow reverse-influence law. 

3.4 Typical special cases of 1-D flows 

1. Adiabatically isolated isentropic channel (dQ=0, dL=0, dLfr=0, dG=0). So  

 2 1 .
dw dS

M
w S

   

From this expression it is clearly that in narrowing channel (confusor, S2<S1) 

subsonic flow accelerates and supersonic flow decelerates. In diverged channel 

(diffuser, S2>S1) subsonic flow decelerates and supersonic flow accelerates. 

For continuous flow acceleration channel must be converged at start and 

then diverged. Therewith, speed of sound will be reached in minimal section if 

environment pressure is lesser then critical pressure. This converged-diverged 

channel is called Laval nozzle. 



21 

2. Mechanical nozzle. 

In this nozzle dS=0, dLfr=0, dQ=0, dG=0. So 

 2

2
1 .

dw dL
M

w a
   

For transfer from subsonic to supersonic flow it is necessary to change 

direction of influence on flow (fig. 3.1): 

 
 

Fig. 3.1 – Mechanical nozzle 

 

if M<1 it is necessary to remove work by turbine; 

if M>1 is necessary to add work by compressor. 

3. Feed nozzle: 

In this nozzle dS=0, dL=0, dQ=0, dG=0. So 

 2

2
1 .

frdLdw
M

w a
    

 

 

Fig. 3.2 – Flow scheme in the feed nozzle 
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On practice, except flow acceleration by geometry, combined nozzle is used 

which has a converged nozzle as subsonic part and feed nozzle as supersonic part. 

These nozzles found their application in aerodynamic tubes which require 

uniformity of the supersonic flow at the end. 

3.5 Relative parameters of the compressible flows 

Energy equation: 

2
* ,

2

w
i i   (1) 

where i* – full specific enthalpy of the stagnated flow; 

I – specific enthalpy, which characterize potential energy of gas flow. 

Equation (1) can be expressed through specific heat: 

2
* .

2
p p

w
c T c T   (2) 

It is known that 

,
P

RT



*
*

*
,

P
RT


 .p vR C C   

If (2) is related to *

pС T : 

2

* *
1

2 p

Т w

Т C T
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Then 
2

* *
1 .
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T c T
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If 2 *2

1
кр

k
a RT

k
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
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12 2
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*
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1 1 1 1
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M

T RkT k a k k



         
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Correspondingly: 
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Because of 
1

p

k
c R

k

 
  

 
, 

pi c T , a kRT , so 

2 1

1 1

k
i R T a

k k

 
  

  
 and correspondingly  2 1a k i  . 

So 
 

2 2
2

2

1

1

w w
M

a i k

 
     

i.e. Mach number square is proportional to relation 

of the flow kinetic energy to its potential energy in this point. 

Similar: 

Velocity coefficient λ – relation of the flow kinetic energy to its full energy. 

Speed of sound a is changing along flow line. 

Critical speed of sound acr is a constant value for adiabatic flow and is a 

factor of velocity. 

3.6 Gas dynamics functions 

Gas dynamics calculations and flow research of subsonic and supersonic 

flow velocities are based on complicated equations of the gas dynamics. So matters 

of labor intensity decreasing have significant value even nowadays. 

Calculation and experimental data analysis of labor intensity decreasing are 

connected with using of gas dynamics functions which connect main parameters 

with relative flow velocity (M or λ). Such 1-D non-dimensional functions 

characterize flow condition in different sections of isentropic flow. Velocity 

coefficient λ is taken as independent variable. k value is changing from 1,05 to 1,7 

and embraces all possible range for the use of industry. 

Flow parameters dependence on M and λ: 

1. M(λ): 
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2. τ(λ) – relative temperature: 

  2

*

1
1

1

T k

T k
  


  


. 

3. ε(λ) – relative density: 

 
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1
2
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1
1 .
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4. π(λ) – relative pressure: 
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5. q(λ) – relative flow rate: 

1 1

1 1
21 1
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6. Function that characterize flow impulse: 

 
1

2
кр кр кр кр

J mv pF
Z

J ma p F
 



  
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  
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Chapter 4. SUPERSONIC FLOW FEATURES.  

STRONG DISTURBANCES, SHOCKWAVES 

Flow of the ideal or real gas is supersonic if Mach number is higher than 1. 

From the molecular-kinetic theory it is known that kinetic energy of the directed 

motion is higher than kinetic energy of the molecular motion when the Mach 

number is higher than M=(3/k)1/2 (1,46 for air). However principle differences 

already start to show itself, when Mach number is equal to 1, when the particle 
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velocity is equal to weak disturbance distribution velocity (speed of sound) at that 

point. These principle differences are described by corresponding mathematical 

physics equations. 

In common case, if the flow is supersonic, it has to change its direction in 

comparison with original one i.e. deflects or rotates to positive or negative angles 

Δθ. If the angle θ is positive there is a flow acceleration ( М2 > М1; 2> 1) and in 

the contrary if the angle θ is negative there is a flow deceleration ( М2 < М1; 

2<1).  

4.1 Disturbances of the sub- and supersonic flows 

Mechanisms of the disturbance distribution in sub- and supersonic flows 

have its own features. Let’s consider examples where point moves uniformly in the 

space filled by fixed gas (air). 

 
 

Fig.4.1 Disturbances distribution in the gas media. 

 

Points on the fig 4.1 corresponds to: 

1 – fixed media H=0, w=0; 

2 – source of disturbances is moving with velocity w<acr (M<1); 

3 – source of disturbances is moving with speed of sound w=acr (M=1); 

4 – source of disturbances is moving with speed of sound w>acr (M>1). 
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If point (source of disturbances) is moving with subsonic velocity, created 

waves of disturbances are outrunning this point, and it is moving in the flow that 

was disturbed by the point itself. 

If point (source of disturbances) is moving with supersonic velocity, created 

waves of disturbances and entire disturbance area are placed in Mach cone with 

opening angle  arcsin 1/ .M  Mach cone is placed beyond disturbance source. 

4.2 Simple wave. Prandtl-Meyer flow. 

In gas dynamics of the non-vortex isentropic flows, there is class of 

supersonic flows which called simple wave. (Simple wave of Riemann exists in 

case of non-steady 1-D sub- and supersonic flows.) In case of the 2-D supersonic 

flow, simple wave is called Prandtl-Meyer flow. 

Let’s consider supersonic flow, which bypasses acute angle. In the top of the 

angle (point A) weak disturbance has arrived which is caused by gas expansion 

(pressure decreasing) beyond the corner point. In the uniform flow such start 

disturbance is distributed by Mach straight line (also called characteristics) which 

makes with a flow velocity direction angle  1 1arcsin 1/ .M   Flow turning is over, 

when the velocity direction corresponds with wall direction after the top of the 

corner. It should be noted, that flow became uniform by deflection to a Δθ angle 

and taking the direction of the wall after the top of the corner. In this case, there is 

finite disturbance with an angle  2 2arcsin 1/ .M  Therefore, turning of the uniform 

supersonic flow i.e. its expansion is carried out as sequence of weak disturbances 

which have a source in the top of the corner. These disturbances are distributed by 

the Mach straight lines (characteristics). In such a turning of the supersonic flow 

near the blunt angle velocity, pressure and density values remain constant along 

straight characteristics. For analysis it is usable to introduce a concept of the flow 

expansion angle φ and polar coordinates in the focused simple wave. Expansion 

angle is equal to: 

http://www.multitran.ru/c/m.exe?t=6196350_1_2&s1=%F2%E5%F7%E5%ED%E8%E5%20%CF%F0%E0%ED%E4%F2%EB%FF-%CC%E0%E9%E5%F0%E0
http://www.multitran.ru/c/m.exe?t=254427_1_2&s1=%D0%E8%EC%E0%ED
http://www.multitran.ru/c/m.exe?t=6196350_1_2&s1=%F2%E5%F7%E5%ED%E8%E5%20%CF%F0%E0%ED%E4%F2%EB%FF-%CC%E0%E9%E5%F0%E0
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Dependence of the supersonic flow parameters on angle φ has a next view. 
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where P* and ρ* are total head parameters of the flow. 

Flow line in the Prandtl-Meyer flow is calculated by  
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where rcr – is current radius in the critical section of the flow with  = 1. 

http://www.multitran.ru/c/m.exe?t=6196350_1_2&s1=%F2%E5%F7%E5%ED%E8%E5%20%CF%F0%E0%ED%E4%F2%EB%FF-%CC%E0%E9%E5%F0%E0
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4.3 Shock waves 

As it is shown in the chapter 4.1, any increasing of the pressure is distributed 

in media with finite velocity to all possible directions as pressure waves. Weak 

pressure waves are moving with speed of sound. However, acoustic pressure and 

compression are weak in comparison with pressure of the media. Velocity of the 

media particles itself, which appeared as result of the acoustic wave passing, is also 

very small in comparison to a speed of sound. 

The distinctive feature of the strong pressure wave which appeared as a 

result of the explosion is that wave front is very narrow (same as molecule’s free 

motion passage) and that’s because gas media condition parameters (pressure, 

density and temperature) are changed discontinuously. Shock waves are the 

sources of the increased aerodynamic resistance of the moving body because prior 

to the shock wave the pressure on the body surface is increasing in comparison 

with the pressure, which appeared without shock wave, and after the shock wave 

there is a decreased pressure. Resistance, which is caused by shock wave presence, 

is called wave resistance. 

The next flow features are linked to the shock waves. In the ideal 

compressible fluid resulting force of the pressure is equal to zero (due to 

D’Alembert’s paradox) before shock waves arrival. In the ideal compressible fluid 

flux energy is wasted in the shock wave to non-adiabatically compression. In real 

(viscous) liquid energy additionally wasted to a friction work. In total all energy in 

the shock wave is transferred to heat energy. 

Shock wave occurring is linked with supersonic flow deceleration i.e. 

bypassing of the concave wall or negative angle Δθ. Shockwave intensity, i.e. gas 

parameters changing degree, is increasing with increasing of the Δθ angle. 

Riemann justifies the possibility of the discontinuous gas condition 

parameters changing. Shock wave theory is developed by Rankine and Hugoniot. 
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4.4 Direct shock wave 

Direct shock wave is discontinuity surface which is perpendicular to 

velocities before and after the shock wave. The gas is perfect (ideal). 

 

 

Fig. 4.2 Flow scheme in the straight shock wave. 

 

Three relations (equations of the continuity, momentum and energy) allow 

deriving equation of the Rankine and Hugoniot adiabatic shock wave for an ideal 

gas with constant specific heats which connects parameters before and after the 

shock wave. 
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If Р and Δρ are small enough, weak wave is distributed then 2.
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k a
d 

   

That means that weak shock wave is distributed with the speed of sound. 

Pressure and density changing correspondingly equal to: 

 

2

2 1

1

1

2

2 1

2 1
,

1 1

1 2
.

1 1

P kM k

P k k

k

k k M






 

 


 

 

 

In direct shock wave equalities 2

1 2 crw w a and 1 2 1   are correct that means 

that in the direct shock wave supersonic gas velocity changes to subsonic. 

For an ideal gas with binary molecules (k=1,4) it is correct that maximum 

densities relation is equal to:  
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Corresponding relation for the direct shock wave in case of real (viscous) 

gas significantly differ from provided relations especially if M>5 and temperature 

is high, when specific heats are not constant due to molecules oscillatory energy 

actuation. Thus for perfect gas (k=1,4) densities relation can reach value much 

more than 6. 

4.5 Angle shock wave 

More common case of supersonic flow deceleration is angle shock wave. 

Wave front is oblique to flow direction. In this case only normal component of 

velocity w1n suffers discontinuity similar to velocity’s discontinuity in the straight 

shock wave. Tangential velocity component w1t remains constant. 

 
Fig. 4.3 Flow scheme in the angle shock wave. 

 

Pressure, density and temperature changes are determined by relations, 

which are correct for straight shock wave but only normal components of velocity 

are used. Prandtl condition is used for calculation: 

2

1 2 1 2 1 2,  1,  .n n cr n n t tw w a w w     

Wave velocity after the angle shock is always supersonic i.e. deceleration 

intensity is less than in the straight shock wave. The kinematic equality    

is correct. 
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4.6 Detonation wave 

Let’s consider fundamental principles of the detonation theory. Experiments 

of flame distribution in tube show that usually slow combustion process in certain 

circumstances can transform to a fast one (velocity of distribution is more than 

2000 m/sec), which is called detonation. Chapman and Jouget, who study 

detonation, suggest that chemical reaction here happens instantly, i.e. sharp front is 

created, which travel in unburned gas and transform it to a burned gas. This 

transfer across the front is similar to transfer from uncompressed gas to a 

compressed one in the front of the shock wave. The only difference between shock 

and detonation waves is that chemical properties of the burned gas are differ from 

the unburned gas and that reaction influences energetic balance, i.e. internal energy 

of the burned gas is differ from the one of unburned. 

So detonation is combustion process, which is caused by shock wave, 

supported by sharply increasing of the pressure, density, temperature and entropy. 

Farther pressure and density in combustion process are decreased and temperature 

and entropy are increased. 

Idealized detonation scheme is presented on fig. 4.4. it is supposed that 

source of the strong disturbance is placed into infinitely long rigid tube without 

heat transfer across the wall.  

One the base of continuity, momentum and energy equations we have: 
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where  P – pressure, 

ρ – density, 

E – specific internal energy, 

W – velocity of the reaction zone distribution to the explosion zone; 

U – velocity changing in the reaction zone. 
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Fig. 4.4 Idealized detonation wave scheme 

 

Internal energy change of the ideal gas can be written as 

 2 1 2 1 ,vE E C T T h     

where h – energy which is produced by explosion. Condition energy: 

2 2 2 2.P R T   

Gas constant R2 is differ from R1 because of chemical reaction during 

explosion. 

Calculation task is to determine W, U, P2, ρ2 and T2 for known value of the 

heat produced during the explosion and known condition parameters P1, ρ1 and T1. 

Final term is the Chapman-Jouget condition, which is derived from P-1/ρ diagram 

(fig 4.5). 
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Fig. 4.5 Hugeniot curve for detonation case. 

 

Point C is finite state of the combustion with the constant volume (ρ1=ρ2) 

and the point F is the finite state of the combustion with constant pressure. If finite 

state lies on the BC line we’ll have detonation and if the finite state lies on the FK 

line we have normal combustion. 

Experimentally validated that detonation velocity is constant for a given gas 

mixture. It is widely thought that detonation velocity is determined by point B 

which is a point of touch for Hugeniot curve and line which is drawn from the 

initial state A. In this point 

2 ,B BW U a   

where a2 is a speed of sound in the area 2. This condition for B is known as 

Chapman-Jouget condition which is most steady detonation state. 

Chapter 5. SOME FEATURES OF THE REAL FLOWS 

It is known that viscous and inertial forces make opposite influence on the 

compressible fluid motion character development. There are laminar and turbulent 
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flows. Laminar flow is a flow with momentum, energy and mass transfer 

mechanism is accomplished by microprocesses which have a molecular nature and 

turbulent flow is related to macroscopic molar transfer processes which are caused 

by finite mass mixture. 

Turbulence is chaotic velocity pulsations which are laid on mean motion and 

differ from the volumetric non-uniformity of the main flow. Turbulence is 

isotropic if root mean square value of the pulsation component of the velocity 

doesn’t depend on direction. Turbulence intensity is characterized by the relation 

of the pulsation velocity component to velocity mean value. 

Due to the Landau’s hypothesis turbulence is kind of motion which has a 

viscosity decreasing due to less complicated flow steadiness losses corresponding 

with the stage-to-stage increasing of the flow complexity. Transfers from one 

discrete condition to another are discrete. Mathematical description of the transfer 

from laminar to turbulent flows which is based on the steadiness theory was not 

succeeded and theories which describes such nonlinear phenomena is not finished. 

Transfer from the laminar flow to the turbulent and vice versa and the flow 

breakdown presence are the real flow features. 

5.1 Boundary layers 

Real flows are linked to conception about boundary layer which is flow area 

where viscosity influence leads to significant total pressure losses for example as a 

result of the friction to the channel walls surface. Boundary layer thickness δ is a 

distance between from the wall to the place where velocity rises up to 99% of the 

velocity in the middle of the flow. So δ value separates the boundary layer of the 

flow from the flow core. 

Another characteristics of the flow which is decelerated near the wall surface 

are the displacement thickness δ* and impulse loss thickness δ**. 

Wall thickness: 
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where w – current velocity in the boundary layer, 

w1 – velocity on the boundary layer border, 

R – channel section radius, 

y – distance from the wall. 

Introduction of the wall thickness value allow to substitute real channel by 

the equivalent with ideal gas flowing inside. 

Similar the impulse loss thickness value: 

**
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Chapter 6. MAIN PARAMETERS AND CHARACTERISTICS 

ASSESSMENT 

6.1 Main requirements to the exhaust nozzles (jet nozzles) 

Exhaust nozzle of the modern gas turbine engine is complicated and major 

part of the engine which has a significant Impact to its efficiency. Commonly 

exhaust nozzle includes intermediate (extensible) tubes for gas input to a jet 

nozzle, part of direction reverse, noise suppression and design elements  

6.3 Jet nozzles main characteristics 

Main parameter which is characterized an amount of potential energy 

transformed to jet kinetic energy in the exit of this nozzle  is a available exhaust 

pressure ratio 

*

1 ,с

н

Р

Р
  

which is equal to the total pressure at the nozzle P1* beginning to the environment 

pressure PH. 
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During engine ground operation πc slightly exceed critical pressure fall 

12
1,86

1

k

k

k


 
  

with k=1,33 for exhaust gas. 

If πc<5 (Mach number =1,2…1,4) subsonic (convergent) nozzles are usually 

used. If Mach number is 2,3…3 value of the πc≈20 that causes to use supersonic 

nozzle which has exit section area more than critical section area in a factor of 

2,5…3. 

6.4 Discharge ratio. 

During the designing and work analysis of the different plants and apparatus 

assessment of the nozzle capacity has a significant influence. Real air or gas flow 

is differ from the real and this difference is very suitable to take into account by 

using discharge ratio 

.
Т

G

G
  

Theoretical mass flow rate GT is determined during isentropic 1-D discharge 

process across the nozzle of the same geometric dimensions with the same 

available pressure loss by 
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P01 and T01 are total pressure and temperature; 

Fcr critical section area; 

g(λcr) – specific flow density; 

k – isentropic exponent; 

R – gas constant. 

μ value depends on amount of the channel narrowing, nozzle working 

condition which is determined by πc=P01/PH (where PH is a pressure of the 
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environment), critical section generatrix angle or spherical radius. Real gas flow 

rate is differ from the theoretical due to velocity fall in the boundary layer and flow 

non-uniformity in the critical section. There are two regimes of discharge: 

subcritical which corresponds to a area where μ depends on πc and supercritical 

where acoustic line is stabilized μ reaches its maximum value of μ** and doesn’t 

change if πc is changed. 

Chapter 6.4.1. Narrowed nozzle 

Narrowed nozzle feature is that it section became critical if 
12
.
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(further it is suitable to insert a pressure relation term 1/ с  ). 

For graded nozzles and relatively small flow contraction 
2 1/n F F (where F1 

is a entrance area and F2 is an exit area) μ** value is close to 1 and equal to 0,99-

0,995. Current value of the μ is determined by boundary layer dimensions at nozzle 

section and linked to displacement thickness δ* by relation 

2
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Second critical pressure relation β** for gas turbine engine combustion 

gases is 0,47…0,5. 

In the conical narrowed nozzles  which have most widely use in the different 

plants and gas turbine engines boundary layer influence on the μ significantly less 

in comparison to non-uniformity influence which is caused by acoustic line 

deformation due to its conical shape. 

On the basis of the experimental data consolidation μ value can be 

determined by 
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where 
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  and β** is second critical pressure 

relation 
2

** * ;
1 1

k

k k
 

 
   

  
g(λcr) is relative flow density in critical section 

which is determined by  
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 or by reference data. If 

*   g(λcr) is equal to 1.Second critical pressure relation β** depends on 

geometric dimensions of the nozzle and gas physical properties and by 

consolidation of the experimental data can be determined by  
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where c is experimental constant, α is nozzle cone generatrix angle. If that angle is 

changed from 20o to 60o and contraction n from 1,45 to 4 c value is changed by с = 

0,433 + 0,66 n. 

Gas physical properties have significant influence on μ and this influence 

can be taken into account through μ**, β** and k. There is universal dependence 

between them: 
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where **

90  and **

0 are maximum values of the discharge ratios for conical 

subsonic nozzle with generatrix angle  = 90 0 and 0 0 (for graded nozzle) 

correspondingly, **

90  is the second critical pressure relation for a nozzle with 

angle  = 900 (for air **

90 = 0,04). 

μ** dependence on  и ** which is necessary for discharge ratio  

calculation are presented below. 
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Fig.4.1. Discharge ratio of the contracted conical nozzle: 

 

a) calculation results comparison with experimental results; 

b) dependence of the maximum discharge ratio μ** on second critical 

pressure relation β**; 

c) dependence of the maximum discharge ratio μ** on generatrix angle α. 

Chapter 6.4.2. Laval nozzle 

Laval nozzle is characterized by the fact that exit area of the nozzle is bigger 

than critical section area (F2>Fcr). Experimental data and results of the flow 

analytical research show that gas flow rate through the Laval nozzle with spherical 

radius of the minimal section is determined by the shape of the subsonic part and 

depends weakly on the generatrix angle α. Relation of the spherical radius of the 

nozzle throat to critical section radius makes significant impact to μλ. As well as in 

the narrowed nozzle there is subcritical ** and supercritical ** discharge 
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regimes. In case of the supercritical regime maximum value of the Laval nozzle 

discharge ratio λ** is congruent to the ** value of the narrowed nozzle which 

has geometric dimensions similar to the subsonic part of the Laval nozzle. 

μλ of the conical Laval nozzle is determined by expression from the chapter 

6.4.1 where  variable is determined from the relation 

 ** *,       

where ** is the second critical pressure relation after that in the critical section of 

the Laval nozzle flow stabilization comes. During the calculation of the μλ value as 

well as in the case of the narrowed nozzle gas dynamic function g () is equal to 1 

if * but as opposed to Laval nozzle value 
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6.5 Thrust coefficient 

Expansion process perfection is determined by the nozzle thrust coefficient 

R =R/Rid, where  
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Thrust coefficient is a relation of the real thrust to an ideal nozzle thrust 

during the real gas mass expansion in it without losses to the pressure of the 

environment PH. Specific nozzle thrust losses are equal to R = 1 -R. Real thrust 

is differ from the ideal by presence of the viscous friction, probability of the shock 

waves inside the nozzle, non-uniformity and angular displacement of the velocity 

in the exit area section and also losses due to operation on off-design regime (flow 

overexpansion or underexpansion). 

Typical characteristics of the different nozzle schemes (R =  (с) 

dependencies) are presented on fig. 6.2. For narrowing nozzle (curve 1) thrust 
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coefficient slightly depends on generatrix angle to an axis α within the range from 

0o to 40o and amount of the channel narrowing n. Maximum value of the R is 

reached when с is low. During the с increasing (starting from the с  2,5) R 

value drops due to the flow underexpansion losses. 

 

 

 

Fig.6.2. Thrust coefficient R of the different types  

of the gas turbine engine nozzles 

 

For Laval nozzle (curve 2) R value has its maximum on design regime. 

When с is low Laval nozzle thrust coefficient is significantly lower than thrust 

coefficient of the narrowing nozzle due to flow overexpansion in it. R =  (с) 

dependency is non-monotonic due to the changing of force which acts on 

supersonic part during the flow separation from the wall (R =  (с) changing for 

non-separated flow is shown on fig. 6.2 by dashed line). R increasing during the 

flow separation results from atmospheric pressure penetration to the separation 

zone from the nozzle section side and losses from the overexpansion are smaller I 

comparison to a case with non-separated flow. After the flat maximum on regimes 

which are close to a design regime R is decreased again due to underexpansion. 

Nozzle with central body (curve 3) unites the well characteristic of the 

narrowing nozzle if с is low (due to impossibility of the high flow overexpansion) 

and Laval nozzle when с reaches design regime. 



42 

Also characteristics of ejector nozzle which has a circuit breakdown near the 

critical section are presented here (curve 4). If the dimensions of the ejector are 

optimal and с is low during discharge regime with flow separation when the jet 

doesn’t touches walls of the supersonic part pressure of the jet is close to PH and 

its characteristics reach characteristic of the narrowing nozzle. However on starting 

regimes when the jet starts to adhere to walls of the supersonic part with heavy 

flow overexpansion nozzle characteristics significantly decrease. If с is close to a 

design regime R value has flat maximum. However, if the section areas are equal R 

value of the Laval nozzle is higher because of the free flow jet presence near the 

critical section and afterward joining of the free jet with a resulting shock wave.  

6.6 Effective thrust coefficient 

Thrust of the aircraft engine nozzle, where not only inner characteristics but 

also bypassing of the outer surfaces, outside flow interaction with the jet of 

exhausted gas, base drag etc. are taken into account, is estimated by nozzle 

effective thrust coefficient and correspondingly thrust effectiveness losses 

, 1 .
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where Ref – effective nozzle thrust (with taking outside resistance X into account); 

Rid – ideal thrust. 

Resistance of the tail part X consists of friction resistance and pressure 

resistance. Outside resistance depends on bypasses shapes and the relation of the 

outside nozzle cross-section area Fn to master cross-section area Fmid. The more 

smooth bypasses of the nozzle outside surface, the less pressure resistance. Outer 

resistance values is calculated by known coefficient of the outside resistance cx (

2
2

2 2

n
x mid x n н mid

k
Х c F с M P F


  ) or by real pressure distribution. If the flight 

speed is subsonic or transonic analytical determination of the pressure on the 

outside nozzle surface is quite complicated and not reliable so experimental data 



43 

consolidation on the cx values is used. Thrust losses dependency on the Mп number 

for Laval nozzle and ejector nozzle is presented on fig. 6.3. The largest effective 

thrust losses of any type of the nozzles take place in the transonic flight velocities, 

because in this case appearing of the supersonic areas is possible, which is 

followed by resistance increasing. 

Also the static pressure changing along the outer surface of the  Laval nozzle 

with optimal geometry and ejector nozzle is presented during their flowing with 

the velocity value Mf≈0.8. It is seen that in the case of the Laval nozzle the level of 

rarefaction is lesser and pressure recovery to a section is bigger. It is a result of the 

underexpansion flow interaction with an external flow. In the ejector nozzle which 

is operating on the separated state (fig. 6.3), this effect is less pronounced which 

results in increasing of the effective losses. 

It should be noted, that gas flow, which is ejected from the nozzle, 

influences on the pressure distribution along the tail part. Because of that imitation 

of the inner gas jet has a great importance during the cx determination. 

 

Fig. 6.3. Effective thrust losses comparison of the different types  

of the GTE nozzles 
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6.7 Another types if the nozzle perfection estimation 

In the engineering calculations estimation of the losses is performed by 

relative decrement of the nozzle discharge by introducing the velocity coefficient 

2

2

,с

id

w

w
   

which is equal to real axial velocity relation to the velocity of the perfect 

expansion to geometric area on the nozzle outlet area. On the design condition 

,cR  and on the other regimes it is fair that .c R   

For estimation  of the inner thrust losses and for flow character 

determination (separated or self-pressuring) as it will be showed below it is 

possible to use impulse coefficient (relative impulse) which is calculated by 

,
p

I
I

I
  

where 
2HI R p F   is real nozzle impulse; Ip is calculated ideal impulse which is 

determined by real flow rate and expansion without loss to a geometric exit area. 

Engine thrust Peng, which is determined as difference of the outlet and inlet 

thrusts, is always less or equal to nozzle thrust in bench ground condition and on 

start. Relation /cK R P  is called losses amplification factor which value depends 

on airplane velocity and engine operating condition. Kc value characterizes degree 

of the nozzle perfection influence on the engine thrust and effectiveness and for 

modern engine it is varies from 1 to 3,5. 

6.8 Working regimes 

For nozzle designing and parameters and characteristics calculation it is 

necessary to obtain the data about flight conditions and engine operation regimes 

in these conditions. In this case flight path (flight profile) can be separated into 

several individual parts (profile of the flight to maximum distance is considered). 
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The main parts are flying-off and raising the height, acceleration to a cruiser speed 

and the part of the flight with that speed (it is usually the longest part of the flight), 

gliding flight and landing. Correspondingly with these considerations main engine 

regimes are appointed and required engine thrust, engine effectiveness and regimes 

duration are determined. The mentioned regimes are described below. 

1. Flying-off corresponds to a maximum thrust i.e. maximum frequency of 

the engine rotor rotation and for engine with afterburning it will be corresponded to 

maximum afterburning. For modern engines the value of the maximum available 

pressure ratio πc on this regime is equal to 1,9 to 2,5. 

In the ground bench conditions parameters and effectiveness of the engines 

with afterburner are controlled on the maximum regime without afterburning for 

predictions of the characteristics in high heights conditions. 

2. Regimes of the acceleration to a cruiser speed correspond to condition of 

the gaining maximum thrust on the height. For the supersonic airplanes parameters 

of the transfer through the speed of sonic are additionally controlled. Operation 

regime is maximal with afterburning, πc varies from 3,5 to 5. In case of the engine 

without afterburning for a planes with Mп=0,75…0,85 parameters of the maximal 

thrust regime are controlled (πc=2,6…3,2). 

Cruiser flight conditions. For subsonic airplane engines in these conditions 

operation regime thrust is less than maximal and usually corresponds to minimal 

fuel consumption rate. For engine of the airplane with Mп from 1,7 to 3 πc varies 

from 7 to 20 and for maximal nozzle effectiveness maximal outlet section area is 

necessary and it is restricted by engine micelle dimensions. 

7. Gliding and landing correspond to a decreased frequency of the engine 

rotor rotation, small thrust and low πc. But in these conditions too gaining of 

satisfied nozzle thrust losses is required. 

From the analysis of the mentioned before condition it can be seen that 

engine nozzle must provide high efficiency and working capacity in the wide range 

of πc, gas temperature and, consequently, dimensions of the critical and outlet 
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sections. Typical flight profile, changing of the πc and calculated outlet section area 

from the Mach number are presented on fig. 6.4. 

 

 

Fig. 6.4. Flight profile and nozzle parameters changing (πc, F) 
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6.9 Shape features of the Laval nozzle 

Analysis of the perspective engine developments for the airplanes with 

relatively high supersonic flight cruiser speeds (Mп>2) shows that farther nozzle 

development is followed by sophistication of their design scheme and converging 

of the nozzle air circuit to a theoretical. Innovation is transfer to a nozzle with 

continuous circuit in supersonic part with self-pressuring flow regime which is 

corresponding with a current trend of using afterburning turbofan engine instead of 

afterburning turbojet engine. 

Unlike to traditional Laval nozzle of liquid propellant engine fully-variable 

nozzle of gas turbine engine which is presented in fig 6.5 and fig 6.6 is 

characterized by the following features of geometric shape: 

 spherical radius of the inlet part in the junction of the afterburning 

chamber shell to a flap-type subsonic part is absent; 

 geometry of the subsonic part is changing (changing of the α angle varies 

from 3o on the regimes of maximal afterburning to a 40o on regimes 

without afterburning); 

 as a rule spherical radius of the minimal section can be neglected; 

 geometry of the supersonic part is changing (changing of the Θ angle 

varies from 30o  to 2o for subsonic and transonic speeds and from 9o to a 

12o for supersonic flight speeds). 

The results of the investigation of the Laval nozzles with that shape allow 

establishing some feature of the flow behavior. 

One of the possible design schemes of the regulated Laval nozzle for three 

regimes of engine operation is presented on fig. 6.5. 

These regimes are: 

 Regime without afterburning (closed position); 

 cruiser regime with afterburning (middle position); 

 maximal open position (maximal afterburning). 
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Fig. 6.5. Design of the regulated Laval nozzle of the aircraft gas turbine engine: 

1 – maximal afterburning; 2 – regime without afterburning; 3 – cruiser 

afterburning; 4 – nozzle regulation program 

6.10 Stream pattern in the Laval nozzle 

Corresponding scheme and typical curve of relative pressure ( */i i iP P P ) 

which is measured along the walls of the Laval nozzle in projection to the axis are 

presented on fig. 6.6. Dimensions of the presented nozzle (large angles α and Θ 

and small 2F ) are typical for operation with small πc, in starting condition, flying-

off and cruiser subsonic flight during engine operation without afterburning. 

However, with the increasing of the 2F  and decreasing of the α and Θ many other 

flow features which was described before take place. 

Relative pressure distribution which was calculated by 1-d flow theory is 

presented on the fig. 6.6 by dashed curve for comparison. Pressure distributions are 

presented for special nozzle regimes which are marked by corresponding values of 

the πc with asterix. 

Acoustic zone 
*с  occurs if the low subsonic pressure falls take place. If 

*с с   the flow is subsonic in every point similar to the flow in Venturi tube. 

When πc exceed 
*с  sudden pressure fall appears. Pressure fall value continuously 

decreasing with increasing of the πc. If angles α high enough and πc low enough 

flow separation near the critical section became possible. After that jet flow 

appears (flow scheme presented on fig. 6.6). And finally if 
*с с   relation 
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pressure reaches its minimal value of 0.2. In this case formation of the acoustic line 

if fully finished, air flow rate reaches its maximal value and discharge ratio does 

not depend on πc. 

Thus, if 
*с с   in the area of the minimal nozzle section near the walls 

flow is supersonic, i. e. acoustic line moves towards flow. It seems to be connected 

with appearing of the high negative pressure gradient in the angle point 

neighborhood. Appearing area of decreased pressure is distributed trough the 

boundary layer up to the flow which causes local flow acceleration to supersonic 

speed in the area near the wall in subsonic part. 

Shadow photo and flow visualization show that after the angle point 

“hanged’ angle shock wave caused by circuit break appears. Shock wave intensity 

is increasing with increasing of the total break angle of the circuit α+Θ. Positive 

pressure gradient created by the shock wave determine flow separation threat. if 

the total break angle is small (<5o) remarkable separation area is not observed. 

However if α+Θ>26o separation area is clearly seen. 

It is specified that during circuit break increasing two mechanisms of the 

flow separation take place. If the circuit break is small separation starts not from 

the angle point but from the point somewhere downstream in supersonic and this 

separation is caused by interaction of the hanged shock wave with boundary layer. 

If the circuit break angle is high flow separation starts immediately after the angle 

point after which it accelerates in expansion fan and then joins the walls of the 

supersonic part. Angle shock waves system takes place in the point of the 

reattachment after the separation area. Interaction of this shock wave with direct 

shock wave in the nozzle section area on the overexpansion regimes leads to its 

curvature i.e. causes additional flow non-uniformity. 

It is also specified pressure distribution along generatrix fall and the depth of 

the fall are connected with flow separation. If 
**с с  self – pressuring flow 

regime occurs. In this case shock wave structure stabilizes after minimal section, 

separation and farther flow joining to the walls area fully forms. Starting from πc*** 

relative pressure which is measured on the walls after the joining point become 
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independent from πc. Relative pressure distribution along the walls is greatly 

correlates with 1-d flow theory calculation. 

Special investigation of the working fluid influence on the stream pattern 

makes clear that changing of the isentropic coefficient k does not cause any 

significant differences in the separated flow structure. However, if k decreases 

separation area dimensions and intensity of the joining shock wave increase. 

The results of the stream pattern in the conical Laval nozzle investigations 

consolidation and static pressure falls areas after the angle point during flow 

separation and the lengths of the separation area are presented on fig. 6.6 and 6.7. 

 

Fig. 6.6. Stream pattern in the conical Laval nozzle: 

a – dimensions, flow scheme and change of the relative pressure */i i iP P P  during 

different flow regimes vs πc; b – flow separation from the angle point; c – flow 

structure stabilization in the critical section; d – angle shock wave interaction with 

direct shock wave interaction in the nozzle section area during flow overexpansion. 
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Fig. 6.7. Separation area after the angle point:  

 – flat;  ,  – axis-symmetric Laval nozzles 

6.11 Determination of the separation after the angle point conditions 

Stream pattern with flow separation in the critical section obtained by V. F. 

Novikov in Central Institute  of Aerohydrodynamics by flow in the conical axis-

symmetric Laval nozzle visualization is presented on fig. 6.8. 

 

Fig. 6.8. Flow visualization with flow separation 
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Fig. 6.9. Non-design discharge regimes from the Laval nozzle 

 

Let’s consider stream pattern of the ideal gas in flow plane and velocity 

hodograph (presented of fig. 6.8) for determination of the flow separation after the 

angle point in the conical Laval nozzle.  

On the acoustic line πc** stabilization regime gas flow rate become maximal 

and expansion and pressurizing of the flow area which is placed between acoustic 

line and limiting characteristic AO does not reach free flow boundary. Than the 

velocity on the boundary of the discharging flow in the A point is determined by 

radius-vector value in the junction of the epicycloids which start in the point O and 

A of the hodograph and its angle equal to ** = /2 to the nozzle axis. 
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In the area between the limiting characteristics AO and OA1 U turn of the 

stream lines with constant velocity along them takes place. On the boundary of the 

flow velocity coefficient λв is equal to λ** which is calculated by angle value of 

** =  / 2 in Prantl-Meyer expansion flow. The direction of the stream line in B1 

point after the U turn is determined by radius-vector which circumscribes 

epicycloid OB arc which is mirror image of the OB arc. In this case velocity 

inclination angle is equal to ** and directed up from the nozzle axis. 

If we consider that described narrowing nozzle (fig.) has supersonic part 

nozzle with an angle   **, so we will have an example of the flow deceleration 

after the angle point. Information of the critical wall inclination angle which causes 

turbulent flow separation is presented on fig. vs M1 number of incoming flow. It is 

obvious that separation after the angle point condition is an inequation ** –  = 

/2 – кр. 

On this inequation basis on fig. separation condition after the angle point in 

the Laval nozzle with circuit break is presented as a curve which is reflective of 

minimal limit angle of the supersonic part  dependency on subsonic part 

inclination angle . 

6.12 Overexpansion and flow separation 

When the pressure in the wall is less than some critical value during Laval 

nozzle operation on overexpansion non-design regimes separation of the flow from 

the walls takes place (fig. 6.7, 6.8 and 6.9). In the flow without separation 

boundary layer still hold pressure increasing in the angle shock wave after the 

nozzle outlet section. Theoretically, such a discharge regime can be considered in 

non-viscous flow up to angle shock wave transfer to a direct shock wave. 

In the flow (Fig. 6.9) flow separation inside the nozzle is followed by 

creation of system of angle shock waves which are became direct shock waves on 

the axis with creation of the subsonic flow areas. 
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Flow regime of the boundary layer significantly impact on the area of shock 

wave interaction with boundary layer. Turbulent boundary layer maintain 

significant resistance to a separation and more intensive pressure increasing takes 

place after the separation point. 

Universal pressure dependency Рsep = Рsep / Рн in the separation point on с 

= с /  с р and boundary layer condition, where с р is calculated expansion ratio 

which is calculated from 
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On the fig. 6.10 Рsep =  (с ) has three pronounced areas fro the next flow 

regimes in the boundary layers: 

Рsep lam – for laminar (Re 106); Рsep т  – for fully turbulent (Re  5 

*106); Рsep i – for intermediate   (106 Re  5 *106). For similarс inequation 

Рsep т Рsep i  Рsep l , i.e. conclusion that separation in turbulent case take 

place later because of higher particle kinetic energy near the walls is made. 

Starting from Re  5 *106 Re number almost doesn’t impact on the Рsep t and is 

approximated by the expression Рsep т = 0,96 с + 0,042. 

 

Fig. 6.10. Pressure in the separation point dependency on the с during flow 

overexpansion in the Laval 
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     +    * 

, deg 3 40 10 40 0 3 35 34 3 

, deg 2 2 10 2 2 2 2 0,5 2 

Re 106 0,1 0,1 0,8 2,3 2,3 3 7 7 13 

 

It is necessary to take flow in the nozzle features described before into 

account during the gas turbine engine nozzle designing and operation analysis. 

6.13 Land gas turbine engines nozzles 

6.13.1 Common requirements 

The main feature of the ground gas turbine engine nozzles operation is 

low value of the available pressure ratio (с2). 

Nozzle must provide disposal of the exhausted gas with minimal 

resistance due to the significant influence of the pressure losses to the effective 

efficiency.  

During the engine nozzle designing which serve, for example, as gas 

compressor unit drive the next requirements are taken into account: 

1. Providing of the acceptable dimensions; 

2. Ability to provide acceptable length of the shaft which connects 

engine to a compressor unit; 

3. Providing of the exhaust gas turning to 90 degrees and its disposal to a 

waste treating unit with minimal hydraulic losses; 

4. Providing of the stable flow and uniform pressure field after the 

turbine on all operation regimes. 

Meeting of the first requirement is connected with concerns about 

railroad transportation and its service. 
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Meeting of the second requirement is connected with critical rpm 

detuning of the shaft which connects engine with compressor unit. 

Meeting of the third and fourth requirements allows high fuel efficiency 

of the gas turbine engine and simultaneously solving of the durability 

increasing task of not only turbine elements but entire exhaust system. 

It is obvious that creation of the effective gas turbine engine exhaust 

system which will meet all requirements that mentioned before is complex 

problem. Compromise decision is usually accepted. 

6.13.2 Main design elements 

On the fig. 6.11 one of the typical nozzle schemes of the converted gas 

turbine engines which serves as gas compressor unit drive is presented. 

 

Fig. 6.11 Nozzle scheme 

1 – gasholder; 2 – adapters; 3 – compensators; 4 – gas ducts; 5 – silencers;  

6 – chamber for heat recovery unit installation; 7 – turning device; 8 – tube;  

9 – all-weather hood 



57 

Exhaust volute which consists of axial-radial diffuser and gasholder is 

suited for smooth deceleration and flow turning to 90 degrees in diffuser and 

followed turning the flow up to 24 degrees from the horizontal axis in 

gasholder. Outer surface of the gasholder and inner shell of the axis-radial 

diffuser have liner from the heat- and sound- insulation material with 120 mm 

thickness. 

Adapter with a rectangle section serves for connection of the exhaust 

volute with gasholder with and 10 degrees angle between its axis and 

horizontal axis of the exhaust channel. 

Gas ducts of the rectangle section provide smooth transfer of the swirling 

gas flow to an axial one. In this case it is necessary to reach a flow velocity 

decreasing by channel expansion. Inner surfaces of the gas ducts are made from 

stainless steel plate as moving screen backed on “cushion” from the heat 

insulated materials with 60 mm thickness. The thickness of the heat insulation 

of the gas duct wall outer surface is equal to 240 mm. 

Silencer is suited for providing required noise levels and represents 

channel with rectangle section with 18 shields which are placed across the 

width of a channel. 

Heat exchanger for heat recovery is suited for using of the exhaust gases 

heat to heat supplying combustion chamber and outside customers. Heat 

exchanger for heat recovery with heat capacity of 5-6 MW must have 

regulation range between 50 and 100% of nominal capacity. Screens before the 

heat exchanger are suited for this purpose. 

Turning device makes flow turning from the horizontal direction up to 

90 degrees and is suited for providing uniform velocity and temperature fields 

on the entrance to the silencer. 

Compensators are installed between nozzle elements and serve for 

providing opportunity to their possible expansion. The design of every 

compensator is two holders and represent telescopic group with rectangle 

section which is field with heat- and sound- insulated material. 
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6.14. Estimation of the hydraulic resistance 

During the nozzle designing the task of the creation of the device with 

minimal possible resistance is set due to significant influence of the pressure 

losses to an effective gas turbine engine efficiency. 

Losses in axial-radial diffuser 

Estimation of the hydraulic losses is carried out by known and quite 

time-tested calculation relations. Nozzle hydraulic resistance is determined by 

the value of the total pressure losses due to: 

 sudden expansion of the gas flow discharged from turbine diffuser 

during the flow entering in the rectangle area of the axial-radial 

diffuser; 

 wall friction losses; 

 flow expansion in the diffuser channel losses; 

 flow turning; 

 losses in gasholder. 

Total pressure losses are determined by the expression: 
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where p* – total pressure losses in the duct; p*in is a total pressure on the 

entrance to the axial-radial diffuser; m – number of duct elements; I – 

number of calculated area. 

the losses on every area are calculated by the expression: 

2

1
i i i

k

k
    


 

where k – specific heat ratio; I – hydraulic resistance coefficient of the ith 

area; i – superficial velocity on the entrance to the concerned area. 
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Sudden expansion losses 

With regard to annular diffusers sudden expansion of the channel losses 

are calculated by the specified (to the velocity field non-uniformity) expression 

of Bord-Carnot: 
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where n = Fex/Fin is flow section expansion ratio (Fin – area of the inlet section; 

Fex – area of the exit section). 

3 3

4

(2 1) ( 1)

4 (2 3)( 3)

m m
N

m m m

 


 
is coefficient of the flow kinetic energy on the 

exit from the narrow channel to wide one; 
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 is momentum coefficient in the same section; 

 and w0 are flow density and velocity in the entrance; 

m – coefficient which depends on flow velocity profile (by the results of 

the consolidation measurements m=1,8). 

Friction and expansion losses 

Friction losses coefficient in axial-symmetric annular diffuser is 

determined by the expression: 
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where  – friction coefficient which depends on Reynolds number and 

wall roughness; 

Li , R1i , R2i are calculated area length, outer and inner radiuses on the 

area entrance correspondingly (Fig. ) 
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y – coefficient which takes into account geometric relation between inlet 

and outlet sections. 

Losses coefficient due to the expansion in diffuser is calculated by the 

expression: 

р = (1 – 1/n)2 , 

where n – diffusion degree;  = 3,5(tg/2)1,22 is coefficient which corrects degree 

of flow expansion suddenness for the expansion angles 8< 0 <40 . 

Flow turning losses 

In the radial diffuser flow turning takes place. Flow turning losses are 

determined as a function of expansion degree and relative diffuser diameter 𝐷̅: 

пов. = f(n,D). 

Expansion of the radial-annular diffuser is equal to 
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 and 1

2

D
d

D
 are relative diameters of the diffuser and hub; 

n – diffusion degree. 

Common diffuser resistance degree due to the flow turning is determined by 

nomogram n = f(D, f) . 

Gas ducts losses 

Adapter (fig. 6.11) represents differ with rectangle are with nearly the same 

areas of inlet and outlet sections. Total pressure losses along the channel length are 

caused by friction and local losses. 
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Duct №1,2 represents pyramidal diffuser with different angles (α and β) of 

the expansion in planes (α = 27042 by upper wall and β = 8036 by side wall). 

Duct №3 represents plane diffuser with wall expansion in only one plane 

with an angle 27042. 

Common diffuser resistance coefficient con consist of coefficient of local 

resistance due to the flow overexpansion exp and friction resistance coefficient fr. 
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where k1 is coefficient which takes non-uniform velocity field in the inlet section 

into account. 

Expansion coefficient exp is determined through impact fullness coefficient 

exp and diffuser expansion degree by approximated expression 

2

1
exp exp

0

1
F

F
 

 
  

 

 

where F1 is an area of the gas duct outlet section; 

F0 is an area of the gas duct inlet section. 

Friction resistance coefficient fr of the flat diffuser with inlet section sides 

a0 and b0 depends on expansion angle (α) sides relation a0/b0 and diffuser 

expansion degree 

 
2

0 0 0 1, / , / .fr f a b F F   

There are blockages in the ducts in the form of cover plates (lock of duct 

plates to a frame), screws and prickers with height up to 30 mm. Pointed blockages 

cause additional local losses of total pressure. 

Relative value of the blockage area is  equal to F = Fbl / Fin =0,018 (Fbl is 

total blockage area, Fin – area of the gas duct inlet section). 
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Decreasing of the inlet area due to the blockage presence causes increasing 

of the inlet specified flow velocity λ and velocity head H and, consequently, total 

pressure losses. For gas duct №1 estimation of the hydraulic losses of the total 

flow pressure shows that without blockage gas with the flow velocity equal to 50 

m/s duct losses are equal to 21 mm w.g. and with with blockage this value reaches 

21,2 mm w.g. 

Thus, for gas ducts №2-3 with less flow velocity level blockage influence 

can be neglected. it is confirmed by the boundary layer thickness calculation along 

the nozzle duct. 

The estimation of the boundary layer thickness is accomplished by the 

expression for flat plate [6]: 
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where  is coefficient of the kinematic viscosity; 

wg is exhaust gases velocity in the inlet section of the diffuser; 

L is gas duct length. 

Provided boundary layer thickness estimation (  40 mm) in the gas ducts 

shows that the height of blockages (h 30 mm) does not exceed thickness of 

boundary layer (  h). Because of that blockage presence in the gas ducts was not 

taken into account during hydraulic losses determination. 

The losses in silencer №1 

Silencer represents channel with constant section area with 18 shields which 

are placed across the width of a channel. The relative flow section area is equal  

to 0,365. 

The hydraulic resistance of the silencer is determined as the resistance of the 

bar screen. Common losses in the screens are consolidated from entrance area 
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losses, friction losses and sudden expansion losses during the exiting from the 

narrowed section between the shields to the channel. 

Turning device losses 

Turning device makes flow turning up to 90 degrees. It is known that turning 

channels require special approach to designing. It is caused by not only possible 

increased resistance during the flow turning but also flow instability with higher 

turbulence which is distributed to the long distances. Coefficient of the resistance 

of the turning channel mainly depends on relative spherical radius R/D (R is turn 

radius and D is channel diameter) in the case of circular turning channel and in the 

case of rectangle channel additionally from the H/h value (H is width, h is height 

of the channel). 

In the case of calculated estimation for accepted turning device design with 

velocity equal to 10 m/s hydraulic losses does not exceed 5 mm w.g. 

Silencer №2 losses 

Total pressure losses are determined the same way as silencer №1 losses 

because their designs are similar. 

6.15 Ground gas turbine engine nozzles with silencing 

6.15.1 Nozzle design 

As an example of design and parameter calculation, nozzle of gas turbine 

locomotive engine considered which is converted aircraft gas turbine engine 

working on liquefied natural gas and mounted on locomotive as power drive. 

Nozzle serve for disposal of the exhausted gases from the engine in vertical 

direction with minimal resistance due to the significant pressure losses impact on 

the effective efficiency. 

The next requirements was taken into account during the nozzle designing: 

 providing of the acceptable dimensions; 
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 providing of the gas after turbine turning up to 90 degrees and its 

disposal vertically to atmosphere with minimal hydraulic losses; 

 providing of the required silencing according to GOST R 50951-96; 

 providing of the necessary requirements for cryogenic fuel gasification. 

The main nozzle design elements are presented on fig. 6.12. The nozzle 

consists of axial-radial diffuser, gas-holding volute and silencer. 

Exhaust volute which consists of axial-radial diffuser 2 and gas-holding 

volute 3 is suited for smooth deceleration and flow turning up to 90 degrees 

from the horizontal axis. Silencer 1 is suited for providing necessary noise 

requirements and represents channel with constant rectangle section area with 

18 shields which are placed across the width of a channel. Silencing elements in 

the walls and shields are _____. On the exit from silencer protecting cast grid is 

mounted with vertical flow direction. 

 

Fig. 6.12. Gas turbine locomotive engine nozzle 

1 – silencer, 2 – axial-radial diffuser; 3 – gas-holding volute. 
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6.15.2 Gas dynamic calculation of the nozzle 

The arrangement of the nozzle with placing silencing and heat exchanger 

elements in it which will serve for gasification of the liquefied natural gas or 

hydrogen. 

The main thermodynamic parameters of the exhaust gases on maximal 

regime during operation on liquid natural gas which are necessary for hydraulic 

resistance estimation are presented in table 8. 

 

Table 8 – Thermodynamic parameters 

Parameters Dimension Value 

Environment temperature К (0С) 288(15) 

Capacity kW 8300 

Exhaust gases mass flow rate kg/s   53,71 

Exhaust gases temperature К (0С) 667 (394) 

Total pressure of exhaust gases in the entrance of the axial-radial 

diffuser 

kPa 

 (kg/sm2) 

105 (1,076) 

Total hydraulic pressure loss in the nozzle Pa  

(mm w.g.) 

3382 (345)* 

 Heat exchanger resistance is a part of this value 

 

Estimation of the hydraulic losses value was carried out by numerical 

method of gas dynamics. Applied numerical method shows good correlation with 

experimental results of hydraulic losses in diffuser and gasholder determination on 

the example of NK-16ST. Hydraulic resistance of exhaust volute is determined by 

the value of total pressure losses due to: 

 wall friction losses; 

 flow expansion in diffuser channel losses; 

 flow turning; 

 
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 gasholder and silencer losses. 

The results of calculated estimation of the nozzle hydraulic losses with three 

possible types of the heat exchanger are presented in table 9. 

 

Table 9 – Calculation results 

 Parameter Dimension Basic variant 
Basic variant 

+ 200 mm 

Basic variant 

+ 200 mm 

with  shelf 

   Variant №1 Variant  №2 Variant  №3 

Geometry 
 degree 8,1 4,7 8,1 

 
 degree 2,25 2,25 2,25 

 
b mm 546 426 450 

 
L mm 1592 1792 1792 

Losses Axial-radial 

diffuser with 

heat exchanger 

with  

mm w. g. 

(%) 

370 

(63) 

359 

(77) 

245 

(71) 

 
Silencer 

mm w. g. 

(%) 

220 

(37) 

105 

(23) 

100 

(29) 

 
Total losses mm w. g. 590 465 345 

 

Basic variant calculation shows unsatisfied total pressure losses values 

because of heat exchanger presence in the diffuser duct lead to flow field distortion 

in the smooth part and flow separation and creation of vortex in the turning part of 

the nozzle. 

Prolongation for 200 mm of the nozzle duct by means of reserves allows 

increasing of the flow section area of the channels which are created by silencing 

screens. It leads to a total pressure losses decreasing. At the same time losses value 

with outlet velocity remains on the same level. 
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Flow organization with shelf in diffuser i.e. with two areas of sudden 

expansion allows decreasing of the losses by 345 mm w.g. Exceedance by 45 mm 

w.g. the technical requirements is compensated by heat recovery from the exhaust 

gases to a engine working cycle. 

Variant №1 (basic) is axial-radial diffuser design similar to real design used 

on the NK engine series. The outer section width from the axial-radial diffuser is 

equal to b=546 mm; 

Variant №2 is prolongated by 200 mm basic variant with decreased width of 

the outer section equal to b=426 mm; 

Variant №3 is prolongated by 200 mm basic variant with decreased width of 

the outer section equal to b=450 mm and with shelf on the inner surface of 

diffuser. 

Hydraulic losses are presented as total pressure losses correspondingly on 

the area of the axial-radial diffuser with heat exchanger and silencer. Analysis of 

the results mentioned above show that minimal total pressure losses in the nozzle 

with heat exchanger are realized in variant №3 and are equal to 345 mm w.g. 

Variant №3 was accepted for design development. 

Chapter 7. PLANE NOZZLES 

For some promising airplanes and especially for hypersonic aircrafts matters 

of the plane nozzles application are considered and simulation tests of the power 

plant tail parts are carried out. 

Plane nozzles have the next advantages: 

1) maneuverability and plane stability increasing; 

2) resistance decreasing during cruiser flight condition and maneuvers with 

high ascentional power by more propitious engine and airframe arrangement; 

3) decreasing of the infrared and radar-location detection; 

4) cost decreasing and nozzle design simplification by moving parts number 

decreasing; 



68 

5) High fitness for thrust vector control and thrust reverser. 

However, plane nozzles have some disadvantages which include: 

1) inner pressure losses increasing caused by transition channel from the 

axial-symmetric section to plane presence; 

2) weight increasing which is connected with nozzle design features; 

3) refrigeration problem appearance caused by increased nozzle and adapter 

wall surface. 

Plane nozzles also find extensive use in pneumonics, rocket technique and 

serve for gas flow acceleration in the powerful lasers aerodynamic sluices. 

7.1 Supersonic part profiling 

Let’s take into consideration that for gaining of the acoustic line form 

similar to straight line it is necessary to narrowing part circuit to be accomplished 

as interlinked circles arcs. One of these arcs which is placed in the entrance of the 

subsonic part has radius which is equal or exceed critical section radius and 

another one has radius equal to the diameter of critical section. 

Laval plane nozzle supersonic part profiling and calculation are carried out 

by well planned characteristic method and presented as circuit tables for the M 

numbers in the outlet section range and limited range of the specific heat ratio 

values. Application of the presented velocity hodograph, consolidated polar 

coordinates for r and  variables, where  is supersonic flow expansion angle in 

the Prandtl-Meyer flow, allows task simplification and gaining of the analytical 

decision for any spontaneous M number and k value. 

Let’s consider, that surface of the speed of sound transition is plane. As it 

can be seen of fig. 7.1a, 1-d ideal flow of the perfect gas expansion occurs near the 

angle points O and O1. Profiling task is separated in two: the first one is 

acceleration area calculation ABB1C and the second one is smoothing area 

calculation MM1DD1. 

1. Acceleration area. Flow acceleration from the plane surface of OO1 

transition for given value of М2 = Мс takes place in the АВВ1С of the simple 
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centered rarefaction wave from the perturbed points O and O1. Physical flow area 

АВВ1С (where АВ1ВС, АВ1 and В1С are characteristics) corresponds to the area 

abb1c (fig. 7.1b) of the velocity hodograph. In the case of uniform flow on the exit 

of the nozzle (i.e. during straight line CB characteristic) angles of the flow 

deflection, caused by the perturbed points O and O1, are equal and, consequently, 

the next expression is correct: 
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where c  is a flow deflection angle (angle between velocity vector and flow axis); 

Mc – design Mach number, 
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Fig. 7.1 Laval nozzle supersonic part profile: 

a – physical plane; b – hodograph plane. 

 

Condition 7.1 fully determines  (where  = W/acr is velocity coefficient) and 

 parameters of the characteristic circuit abb1c of the hodograph circuit (curves ab 

and bc are epicycloids). 

For flow calculation in the physical plane it is comfortable to introduce the 

polar coordinate system with r and φ variables where φ is supersonic flow 

expansion angle. Dependencies  of the flow parameters vs angle φ are the next: 
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Speed of sound а = аcr cos /m, 

where * and Р* are stagnation density and pressure. 

Differential equation of the characteristics in simple wave has the next view: 
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Considering polar coordinate system origin in the point O and the fact that 

staring point A of the expansion fan interaction from O and O1 belongs to the 

stream line in the Prandtl-Meyer flow 
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curve AB equation will have the next form: 
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where 2∙rcr is a critical section area OO1 and current value of the angle  varies in 

the limits of A    В. Angle of the starting characteristic can be considered 

equal to 1o with enough accuracy. Value of the В angle is determined from the 

(7.1) condition by the expression 

2

211
( / ) 1 .

2 2

c

B B c

M
arcctg m tg m m arctg arcrg M

m


 

 
     
  

 

BC characteristic of the ABB1C area has new coordinate system with origin 

in the point E. Angle between radius-vector 𝑟̅𝑏 of the new system and rb of the old 

coordinate system in common point B is equal to 2 2 .b
b

m tg
a arctg

m

 
  

 
 BC 

curve equation is next: 

 
1

,Er r
j 

 (B   C). 

Validation of the profiling is carried out by: 

1. Flow rate through enclosing characteristic CD calculation: 

 
1 1

2 2
СD c c СD c crG a R r G    

2. Angle between enclosing characteristics and nozzle axis calculation: 

 2 2
2

c B c B


        

7.2 Outlet momentum determination in the shortened nozzle 

On practice it is often necessary to know the dependency of outlet 

momentum on the shortened nozzle length. Such dependency as a function of I 

angle is described in r and φ variables and has a next form. 
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𝐼 ̅is related to a next product: 

1

1
2 2

2 .
1

k

cr crr a
k


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   
 

 

On the fig. 7.2 circuits of the supersonic nozzle part for Mc=4 and k=1,25 

1,3 and 1,4 and outlet momentum dependency vs nozzle length are presented. It is 

seen, that shortening of the nozzle level by 10-15% does not have an impact on its 

characteristics. 

 

Fig. 7.2 Circuit of the Laval nozzle supersonic part with Mc=4 in the outlet section 

for various k values; relative outlet momentum dependency on nozzle length. 
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7.3 Supersonic flow in the channel with sudden expansion calculation 

The tasks of the separation area boundary and supersonic flow parameters 

determination are decided with a help of hodograph and r and φ variables 

introduction. 

 

Fig. 7.3. Supersonic flow in the channel with sudden expansion 

Full analytical description of the flow structure in given area which includes 

se 

On the basis of the experimental and theoretical data it is known that in the 

isobaric separation area total pressure on the flow layer line is equal to the end of 

the joining flow compression area and as main parameter, which characterizes 

viscous layer, allowable flow angle in the joining point 0 should be used. 

On the fig. 7.3 supersonic flow with M=1 in the plane channel during the 

sudden expansion of the narrow section from the dimension h in the entrance (let 

consider h=1) to the dimension H on the exit is presented. Assumptions: 



74 

1) flow parameters change including compression in the joining area (from 

the shock wave from the B point) takes place isentropically; 

2) starting thickness of the boundary layer before the separation point can be 

neglected; 

3) viscous layer in the joining area is characterized by the determined value 

of the allowable angle. 

Velocity hodograph of this flow is presented on fig. 7.3, b. Point D (fig. 7.3, 

a) is a source of the centered rarefaction waves where the flow accelerates from the 

speed of sound λ=1 to a velocity λA1. 

Upper wall of the OC channel, which is limited by characteristics ОА1АС, is 

a stream line along which the velocity increases from 1 to λc (note that flow 

character in the area ОА1С and the area оа1с of the hodograph correspond to an 

area of acceleration in the Laval plane nozzle). 

Boundary stream line DB in the starting point D of the separation area has 

direction which converge with velocity А1 vector and in the joining point b it has 

an 0 angle. In the hodograph plane boundary stream line is enclosed between 

epicycloids a1a arc which corresponds to a compression characteristics AB. 

Then on the basis of the mentioned above task decision separation area 

boundary is described by next dependencies: 

- relative shelf height 

- 
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- relative distance to a joining point 
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Comparison of the calculated value of the relative base pressure Р0 /P1, 

where Р0 is pressure after shelf and P1 is static pressure in a narrow channel, with 

experimental value show good correlation (fig. 7.4). 

 

Fig. 7.4 Comparison of the calculation and experimental results. 

 

Chapter 8. SIMILARITY THEORY AND DIMENSIONAL ANALYSIS 

8.1 Similarity of the physical processes 

Complex fluid flow studying is usually connected with physical experiment. 

Such experiments usually require large material costs. Sometimes significant or 

even irresistible difficulties take place during testing. Scientific statement of the 

experiment bases on physical processes similarity theory. This theory is a basis of 

modeling i.e. substitution of the full-scale testing by model testing. Local modeling 

of the most complex structure part often takes place. Similarity theory provides a 
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scientific statement of the experiment on the nature and the model and the 

minimum cost for its holding. In addition, it allows us to extend the results to all 

such phenomena under study. The main objectives of this theory is to identify the 

necessary and sufficient conditions for the similarity of model and full-scale 

processes, scientific methods of experimentation and obtain generalized 

dependencies. Physical processes are similar if systems, in which they occur and at 

similar times at similar points in space all the same parameter proportional, are 

geometrically similar. 

From this definition it should be concluded that: 

1. Similar may be homogeneous physical phenomena described by the same 

form and content of differential equations. If an analytical description of the two 

processes similar in shape, but different processes in the physical sense, they are 

called similar, such as the diffusion 𝐺 = −𝐷
𝑑𝑐

𝑑𝑛
 of and thermal conductivity 

𝑞 = −𝜆
𝜕𝑇

𝜕𝑛
. 

Geometric similarity is necessary for the similarity of any physical 

processes. Complete similarity is similarity of fields similar quantities, i.e., at 

similar times at similar points in space any parameter 𝜑2 can be obtained from the 

same parameter 𝜑1of this process by multiplication by a constant similarity 

𝜑2 = С𝜑(1−2)𝜑1. 

In relation to hydrogasdynamic processes we receive that the terms of their 

similarity are:  

geometric similarity  

Kinematic similarity or velocity fields similarity 

𝑢2

𝑢1
=

𝑣2

𝑣1
=

𝑤2

𝑤1
= 𝐶𝑢(1−2). 

Dynamic similarity or likeness of fields of forces acting in the fluid 

𝑡2

𝑡1
= 𝐶𝑡(1−2);  

𝑝2

𝑝1
= 𝐶𝑝(1−2);  

𝜌2

𝜌1
= 𝐶𝜌(1−2);  

𝜈2

𝜈1
= 𝐶𝜈(1−2).  
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Thermal similarity or similarity of temperature fields and heat fluxes 

𝑇2

𝑇1
= 𝐶𝑇(1−2);  

𝑞2

𝑞1
= 𝐶𝑞(1−2);  

𝜆2

𝜆1
= 𝐶𝜆(1−2);  

𝜒2

𝜒1
= 𝐶𝜒(1−2).  

Constant similarity of different parameters may vary in magnitude but can 

not be chosen at random and are linked by the equation, which is called the 

condition of similarity. 

It is obtained by the transformation of equations connecting parameters that 

determine the course of similar processes. Consider as an example the condition of 

simple geometric similarity for the compressor blades. We have the formula for 

calculating the area of 𝑆1 = 𝑏1ℎ1, 𝑆2 = 𝑏2ℎ2.. And such a transformation formula 

𝑆2 = 𝑆1𝐶𝑠(1−2) and 𝑆1𝐶𝑠(1−2) = 𝑏1ℎ1𝐶𝑙(1−2)
2 . 

 

Fig. 8.1 Geometric similarity 

 

Comparing this expression with equation 𝑆1 = 𝑏1ℎ1 gives  

𝐶𝑠(1−2) = 𝐶𝑙(1−2)
2  или 𝐶𝑠/𝐶𝑙

2 = 1. (4.1.1) 

Similar calculations for any other pair of similar figures can be concluded 

that the equation (4.1.1) between the constants is valid for all the similar figures 

and the condition for their similarity. Therefore, in (4.1.1) indices (1-2) are 

omitted. The left side of (4.1.1) is an indicator of similarity. For such flows 
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similarity indicators must be equal to unity. Substituting in (4.1.1) values of the 

similarity constants, we find that the dimensionless expression: 

𝑆1

𝑏1
2 =

𝑆2

𝑏2
2 =

𝑆3

𝑏3
2 =

𝑆

𝑏2
= 𝑖𝑛𝑣.   (4.1.2) 

remains unchanged (invariant) value for all similar figures and is called invariant 

or similarity criterion. Hydrodynamic similarity criteria are more complex 

dimensionless complexes. 

Three theorems of similarity theory Theorem I. For similar processes criteria 

of the similarity with the same names are equal. This means that the indicators of 

similarity are equal to 1. Theorem allows us to determine the similarity criteria on 

the basis of this similarity transformation equations describing these processes. 

Theorem II. If a physical phenomenon is described by a system of 

differential equations, it their solution can always be represented as a consolidated 

criterion equation establishes a relationship between the similarity criteria obtained 

on the basis of Theorem I, or other way: 

𝐾1 = 𝑓(𝐾2, 𝐾3, … , 𝐾𝑛)  (4.2.1) 

Form of the f function and the values of certain constants in it are 

determined on the basis of the original differential equation and, if necessary, by 

experiment. 

Theorem III. For physical processes similarity it is necessary and sufficient 

to conditions of uniqueness be similar and independently determined similarity 

criteria with the same name to be equal. Thus, equality of the determined similarity 

criteria is provided automatically. Non-dimensional complexes which are 

composed from the parameters in the uniqueness condition are called 

determinantive similarity criteria 𝐾2, 𝐾3, … , 𝐾𝑛. Non-dimensional complex which 

includes the parameter determined in the task is called determined similarity 

criterion 𝐾1. Similarity criteria are divided into: a) hydrodynamic similarity criteria 

derived by analyzing the differential Navier-Stokes equations; b) thermal similarity 

criteria derived on the basis of an analysis of the energy equation. 
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8.2. Criteria of hydrodynamic similarity 

On the basis of the first theorem we establish criteria for the hydrodynamic 

similaritydetermining. For this we write the differential Navier-Stokes equations of 

one-dimensional flow for the full-scale (index 1) and similar model (index 2) 

flows. Assuming that the mass forces – is the force of gravity, i.e. 𝑋1 = 𝑋2 = 𝑔, 

we obtain: 

𝜕𝑢1

𝜕𝑡1
+ 𝑢1

𝜕𝑢1

𝜕𝑥1
= 𝑔 −

1

𝜌1

𝜕𝑝1

𝜕𝑥1
+ 𝜈1

𝜕2𝑢1

𝜕𝑥1
2 +

1

3
𝜈1

𝜕2𝑢1

𝜕𝑥1
2 .   (4.3.1) 

𝜕𝑢2

𝜕𝑡2
+ 𝑢2

𝜕𝑢2

𝜕𝑥2
= 𝑔 −

1

𝜌2

𝜕𝑝2

𝜕𝑥2
+ 𝜈2

𝜕2𝑢2

𝜕𝑥2
2 +

1

3
𝜈2

𝜕2𝑢2

𝜕𝑥2
2 .    (4.3.2) 

Both flows are similar. Performing transformations corresponding to the 

geometric, kinematic and dynamic similarity and substituting the values of the 

parameters with index 2 in the equation (4.3.2) we obtain the equation of the model 

flow in full-scale parameters: 

𝐶𝑢

𝐶𝑡

𝜕𝑢1

𝜕𝑡1
+

𝐶𝑢

𝐶𝑙
𝑢1

𝜕𝑢1

𝜕𝑥1
= 𝐶𝑔𝑔 −

𝐶𝑝

𝐶𝜌𝐶𝑙

1

𝜌1

𝜕𝑝1

𝜕𝑥1
+

𝐶𝜈𝐶𝑢

𝐶𝑙
2

4

3
𝜈1

𝜕2𝑢1

𝜕𝑥1
2 .  (4.3.3) 

Equations (4.3.1) and (4.3.3) are identical and, therefore, all members of the 

dimensionless factors of equation (4.3.3) equal to each other. Thus, the condition 

of hydrodynamic similarity of flows is equal: 

𝐶𝑢

𝐶𝑡
=

𝐶𝑢
2

𝐶𝑙
= 𝐶𝑔 =

𝐶𝑝

𝐶𝜌𝐶𝑙
=

𝐶𝜈𝐶𝑢

𝐶𝑙
2 . (4.3 4) 

This is connection between the constants of similarity. They point to the 

similarity of all the forces acting in such flows. Indeed, the equation (4.3.2) and 

(4.3.3) are identical, i.e. term by term equal to, for example, 
𝐶𝑢

𝐶𝑡

𝜕𝑢1

𝜕𝑡1
=

𝜕𝑢2

𝜕𝑡2
, 

consequently, 
𝐶𝑢

𝐶𝑡
= (

𝜕𝑢2

𝜕𝑡2
)/(

𝜕𝑢1

𝜕𝑡1
)  is the ratio of inertial local forces of the model and 

full-scale flows. 
𝐶𝑢

2

𝐶𝑙
 is convective inertial forces relation, 𝐶𝑔 is a mass forces 
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relation; 
𝐶𝑝

𝐶𝜌𝐶𝑙
 is pressure forces relation; 

𝐶𝜈𝐶𝑢

𝐶𝑙
2  is viscosity and compressibility forces 

acting on the model and full-scale flows relation. 

So, in such flows relationship of similar strength are the same. For indicators 

and criteria gaining all members of similarity (4. 3. 4) are compared with the 

second term 
𝐶𝑢

2

𝐶𝑙
. 

𝐶𝑢

𝐶𝑡
=  

𝐶𝑢
2

𝐶𝑙
 similarity indicator  

𝐶𝑏

𝐶𝑡𝐶𝑢
= 1; 

𝐶𝑔 =
𝐶𝑢

2

𝐶𝑙
 similarity indicator  

𝐶𝑢
2

𝐶𝑙𝐶𝑔
= 1; 

𝐶𝑝

𝐶𝜌𝐶𝑙
=

𝐶𝑢
2

𝐶𝑙
 similarity indicator  

𝐶𝑝

𝐶𝜌𝐶𝑢
2 = 1; 

𝐶𝜈𝐶𝑢

𝐶𝑙
2 =

𝐶𝑢
2

𝐶𝑙
 similarity indicator  

𝐶𝑙𝐶𝑢

𝐶𝜈
= 1. 

Substituting the indicators of similarity values of constants and taking the 

choice of processes 1 and 2 randomness, we obtain the following criteria which 

determine the hydrodynamic similarity. 

Strauhal or time non-uniformity number 

𝑆ℎ =
𝑙

𝑊𝑡
=

𝑙ℎ

𝑊
.  (4.3.5) 

where l – is the characteristic dimension of the body, located in the flow 

channel or path traversed by a particle in a time unit; w – the characteristic velocity 

of the fluid flow; t- characteristic time of the process or the time period of the 

phenomena occurring at a frequency of h = 1 / t. Sh criterion is the ratio of the 

local component of the inertial forces to the convective component of the inertial 

forces. Sh criterion excluded from determining: criteria for the study of  

steady flow. 

Froude number 

http://www.multitran.ru/c/m.exe?t=5547740_1_2&s1=%EA%F0%E8%F2%E5%F0%E8%E9%20%D1%F2%F0%F3%F5%E0%EB%FF
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𝐹𝑟 =
𝑤2

𝑔𝑙
.  (4.3.6) 

Characterizes the ratio of convective inertia forces to the forces of gravity in 

the flow is determinative one if the gravity significantly affect the motion of the 

fluid (the tube or powerful vane pump). If the motion is due to the free fluid 

convection in the media of variable density, to a Navier-Stokes equation it is 

necessary to add the Archimedes force. In this case, instead of the Froude number 

a criterion Grashoff is introduced in the number of defining criteria. 

Grashoff criterion: 

𝐺𝑟 =
𝑔𝑙3𝛽∆𝑇

𝜈2
, 

where 𝛽 =
𝜌0−𝜌

𝜌0∆𝑇
 is a coefficient of thermal expansion of the liquid; 𝜌0 and 𝜌 are the 

densities of cold and hot particles in the media; ∆𝑇 is a temperature difference 

which causes by free convection, for example, ∆𝑇 = 𝑇𝑤 − 𝑇∞. Grashof criterion 

expresses the ratio of Archimedes forces causing convection to the viscous forces 

that prevent it. 

Eulerian criterion: 

𝐸𝑢 =
𝑃

𝜌𝑊2
. 

characterizes the ratio of hydrodynamic pressure forces and inertial forces in the 

flow. In gas dynamics Euler criterion is represented using the expression for the 

speed of sound 𝑎2 =
𝑘𝑝

𝜌
 and the Mach number 𝑀 = 𝑤/𝑎 in the form 𝐸𝑢 =

1

𝑘𝑀2
. 

Therefore, specific heat ratio 𝑘 =
С𝑝

С𝑣
 and Mach number, which characterize 

has compressibility and must be equal in similar flows, can be used in gas 

dynamics instead of 𝐸𝑢  

Reynolds number 

𝑅𝑒 =
𝜌𝑊𝑙

𝜇
=

𝑊𝑙

𝜈
. (4.3.8) 
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Characterizes the ratio of inertial forces to viscous forces in the stream. 

Aerodynamic coefficients are the dimensionless complexes containing 

unknown quantities and is therefore determined by the similarity criteria. 

1. Coefficient of drag is equal to С𝑥 = 𝑅𝑥/ (
𝜌∞𝑊∞

2

2
𝑆), where 𝑅𝑥is the drag 

force of the body; 
𝜌∞𝑊∞

2

2
 is the undisturbed flow velocity head, Pa;  S – typical area 

of the body; for a wing is is an area in its plan. 

2. The coefficient of lift. 

С𝑦 = 𝑅𝑦/ (
𝜌∞𝑊∞

2

2
𝑆), 

where 𝑅𝑦 is a lift force. 

3. The coefficient of the total aerodynamic force 

С𝑅 = 𝑅/ (
𝜌∞𝑊∞

2

2
𝑆), 

where 𝑅 = √𝑅𝑦
2 + 𝑅𝑥

2 is total aerodynamic force. 

4. Pressure coefficient 

𝑝 = (𝑝1 − 𝑝2)/ (
𝜌∞𝑊∞

2

2
). 

5. The drag coefficient of friction 

С𝑓 = 𝑟/ (
𝜌∞𝑊∞

2

2
). 

For every aerodynamic coefficient it is remarkable that forces in them are 

related to a velocity head. 

8.3. Criteria of thermal similarity 

Thermal similarity in the streams is performed under the condition: 

1) hydrodynamic similarity 

2) the similarity of the temperature fields, 

3) The equality of the same name similarity criteria. 
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At low flow velocities temperature fields similarity means equality of 

corresponding relations 𝑇∞/𝑇𝑊 or excessive temperatures relations: 

∆𝑇

∆𝑇0
=

𝑇−𝑇𝑊

𝑇∞−𝑇𝑊
.  (4.4.1) 

In this case, constant of temperature can be represented as: 

С𝑇 =
∆𝑇2

∆𝑇1
=

∆𝑇02

∆𝑇01
. (4.4.2) 

At high speeds of the gas flow temperature criteria will be: 

𝜃 =
𝑊∞

2

С𝑝∆𝑇0
= 2

𝑇∞
∗ −𝑇𝑊

𝑇∞−𝑇𝑊
= 2

∆𝑇∞
∗

∆𝑇0
.  (4.4.3) 

where 𝑇, 𝑇∞, 𝑇𝑤, 𝑇∞
∗   are the temperatures in the same undisturbed flows, body 

surfaces and total temperature of the undisturbed flow itself. temperature fields 

similarity determines the similarity of the heat fluxes, for example, if (𝑇∞/𝑇𝑊) > 1 

heat flux is directed from the fluid to the body and vice versa. 

For thermal similarity criteria, based on the similarity transformation of the 

Navier-Stokes equations, simplistically we transform the energy equation using the 

constants of similarity. We have the original equation 

𝑑𝑇

𝑑𝑡
=

1

𝜌𝐶𝑝

𝑑𝑝

𝑑𝑡
+ 𝑎∇T +

1

𝐶𝑝

𝑑𝑞тр

𝑑𝑡
, 

where 𝑎 =
𝜆

𝜌𝐶𝑝
is thermal diffusivity. 

We get (in the projection on the x axis): 

𝐶𝑇

𝐶𝑡

𝜕𝑇

𝜕𝑡
+

𝐶𝑢𝐶𝑇

𝐶𝑡
𝑢

𝜕𝑇

𝜕𝑥
=

𝐶𝑝

𝐶𝜌𝐶𝐶𝑝𝐶𝑡

1

𝜌𝐶𝑝

𝜕𝑝

𝜕𝑡
+

𝐶𝑢𝐶𝜌

𝐶𝜌𝐶𝐶𝑝𝐶𝑙

1

𝜌𝐶𝑝
𝑢

𝜕𝑝

𝜕𝑥
+

𝐶𝑎𝐶𝑇

С𝑙
2 𝑎

𝜕2𝑇

𝜕𝑥2
+

𝐶𝜈С𝑢
2 𝜈

𝐶𝐶𝜌С𝑙
2𝐶𝑝

 (
𝜕𝑢

𝜕𝑥
)

2
. 

Condition of thermal similarity we obtain by equating complexes composed 

of the constants of similarity: 

𝐶𝑇

𝐶𝑡
=

𝐶𝑢𝐶𝑇

𝐶𝑙
=

𝐶𝑝

𝐶𝜌𝐶𝐶𝑝𝐶𝑡
=  

𝐶𝑢𝐶𝑝

𝐶𝜌𝐶𝐶𝑝𝐶𝑙
=

𝐶𝑎𝐶𝑇

С𝑙
2 =  

𝐶𝜈С𝑢
2

𝐶𝐶𝑝С𝑙
2.  (4.4.4) 
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Equality of the second and sixth members (4. 4. 4) provides an indicator of 

similarity 
С𝑢

2

𝐶𝐶𝑝𝐶𝑇
=

𝐶𝜈

𝐶𝑙𝐶𝑢
= 1 and criterion 

𝑊∞
2

𝐶𝑝∆𝑇0

𝜈

𝑙𝑊∞
=

𝜃

𝑅𝑒
. Equality of the second and 

fourth members (4. 4. 4) provides an indicator of similarity 
𝐶𝑝

𝐶𝜌С𝑢
2

С𝑢
2

𝐶𝐶𝑝𝐶𝑇
= 1 and 

criterion 
𝑝

𝜌𝑊∞
2

𝑊∞
2

𝐶𝑝∆𝑇0
= 𝐸𝑢𝜃. Equality of the first and second members and also third 

and fourth members gives an indicator 
𝐶𝑙

𝐶𝑡𝐶𝑢
= 1 and Strauhal criterion 𝑆ℎ =

1

𝑊𝑡
, i.e. 

in all cases we will not get the new independent similarity criteria. 

Fourier criterion or criteria heat homochronicity: 

𝐹0 =
𝑎𝑡

𝑙2
  (4.4. ) 

Obtained by comparing the first and fifth members (4. 4. 4) and 

characterizes the ratio of heat transferred thermal conductivity to a change in 

enthalpy due to non-stationary process. Fourier is the determining criterion in the 

study of transient heat transfer. 

Peclet number 𝑃𝑒 =
𝑊𝑙

𝑎
 is obtained from the comparison of the second and 

fifth members (4. 4. 4) and is the ratio of convective heat transfer to the enthalpy, 

transmitted by molecular conductivity. Here χ – coefficient of thermal diffusity. 

Prandtl number 𝑃𝑟 =
𝑃𝑒

𝑅𝑒
=

𝜈

𝑎
 is convenient because it is composed only of 

physical constants and ν a, characterizing the intensity of the molecular transfer of 

momentum and heat. Defining parameters for the criteria calculation can be 

selected in some extent arbitrary, but must be the same for all compare similar 

processes. 

8.4. Compilation of criteria equations 

On the basis of the second similarity theorem let compose consolidated 

criteria equation, for example, for the group of similar processes which have drag 

coefficient as a defining similarity criterion. 

Form of the function is determined on the basis of a system of differential 

equations of motion with the help of an experiment performed under the same the 
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defining criteria of similarity as in the full-scale experiment This similarity is 

complete. Studies show that complete similarity, i.e. complete simulation of 

complex phenomena is not feasible – it leads to the identity of the currents. For 

practice it is enough the accomplishment of the partial similarity. During the partial 

modeling only those defining criteria are accepted that significantly impact on 

defining criterion value. Non-defining criteria are determined from the task 

uniqueness condition and estimation of the equation members relative value which 

describe the process. Range of values of the criterion, in which its change does not 

affect the value of the determining criterion, called automodel – similarity is 

performed automatically for all values of the criterion. For example, instability of 

the process can often be neglected and the Strauhal Sh criterion is eliminated, in 

studies of incompressible fluid flows – Poisson number k and the Mach M. 

Conditions 𝐹𝑟𝑀
= 𝐹𝑟𝐻

 and 𝑅𝑒𝑀 = 𝑅𝑒𝐻 for decreased in 𝐶𝑙 times model cannot be 

satisfied: the first require the decreasing of the model flow velocity 𝑊𝑀 = 𝑊𝐻√𝐶𝑙 and 

the second one require increasing of the 𝑊𝑀 = 𝑊𝐻/𝐶𝑙. 

To resolve this contradiction, we must either pursue modeling experience 

using liquid whose properties are determined by the equations of similarity criteria 

and 𝐶𝑙 values, or introduce additional restrictions in terms of uniqueness, 

narrowing the group of similar processes. 

The number of the similarity criteria is always less then number of 

dimensional parameters which define the process. It is also the advantage of the 

criteria equation in comparison to the equation which consist of physical 

parameters. The substitution of the dimensional variables to non-dimension is the 

essence of the similarity theory as it is mentioned in similarity 𝜋 – theorem. 

Physical equation, which contains 𝑛 ≥ 2 dimensional parameters, 𝑚 ≥ 1 of 

them has independent uniformity, will contain 𝑛 − 𝑚 = 𝜋 non-dimensional value 

after its transformation to non-dimensional form. 
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Chapter 9. DIFFUSERS 

9.1 Subsonic gas turbine engine diffusers.  

Diffusers for moderate supersonic velocities 

Diffusers are used to convert kinetic energy into potential pressure energy 

(briefly in head) of liquid. For an incompressible fluid diffusers are expanding 

channels  2 1 1 2/W W S S . Lets consider a gas turbine engines diffusers which 

are divided into the next categories depending on the flight velocity: 

for subsonic velocities 1НM 
; 

for small supersonic velocities 
1,5НM 

; 

for supersonic flight velocities 1,5НM 
. 

All diffusers must have minimum dimensions, weight and losses. 

Subsonic diffusers are expanding channels with smoothly rounded leading 

edge to prevent flow separation at the inlet (fig. 10.1). The larger / 0dS dx  , the 

more /dp dx
 and the less the weight and length of the diffuser. In practice, is 

necessary to limit /dp dx  in order to avoid boundary layer separation which is 

the source of the most significant loss of total pressure. The second source is the 

friction loss in the boundary layer. 

 

Fig. 9.1. Subsonic diffuser operation regimes 
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Fig. 9.2. Impact damping coefficient dependency vs circle diffuser  

angle of expansion 

 

The total temperature of the energy isolated flow in the diffuser remains 

constant 
* * *

2 1 НT T T  . The total pressure due to pressure loss is reduced, 

resulting in a loss of engine efficiency and thrust. Static pressure and the density 

increase due to the decrease of the velocity. 

Calculation in the diffuser boundary layer flows is difficult, so the loss in the 

diffuser is usually calculated using experimental coefficients. 

Lets calculate the total pressure loss associated with the separation of the 

boundary layer, the formation and maintenance of vortex regions, such as the loss 

of Borda-Carnot impact at sudden expansion of the channel from 1S
 to 2S  which 

is softened by the smooth extension of the diffuser. Typically, the calculations can 

be given a specific velocity 2  at the outlet of the diffuser. 

Therefore, we express total pressure coefficient in fractions of velocity head 

not in the inlet section but in the diffuser outlet. Assuming that gas is 

approximately incompressible, i.e. 
* *

2 2 Н   
, and taking 

* * * 21
/

2
H H кр

k
p RT Q

k


 

 into account we get: 
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2 2
* * * 2

22 2 2 2 2

* * *

1 1

1 1 1 1 1
2 1

H Н

H H H

p p p S W S k

p p S p S k


   

   
           

     

where 

2

2

1

1 уд

S

S


 
  

   – losses coefficient on the Borda-Carnot impact during the 

sudden channel expansion from S1 to S2,  ψ is experimental coefficient of the 

impact damping which depends only on diffuser angle of expansion α (fig. 10.2). 

Maximal value ψ=1,2 is gained if α=60o, i.e. the losses value with that angle is 

bigger then at the sudden channel expansion (α=1800). The reason is that during 

α=1800 the  the flow is stable, while during α=60o flow is unstable and periodically 

sweeped by stream. The additional energy of the flow is spent on the continuous 

recovery of the vortex zone. Minimal losses correspond to 

06 . On practice in 

the sake of diffuser length shortening this angle is usually 0 08 ...12 .  At such 

angles, the visible boundary layer separation from the walls of the diffuser is 

usually not yet been observed. If 015   it is advisable to perform curved wall of 

the diffuser with a gradually increasing angle α, so that the pressure gradient along 

the axis of the force was constant 
dp

const
dx

 . Reduction of losses may be 

40%. Step diffuser with a organized flow separation also gives good result. 

Reduction of losses in the diffuser at large α can be achieved by suction or blowing 

boundary layer. 

Let the plane flies at a constant speed НW
 at a constant altitude H . Then 

changing the compressor speed, ie, the three different modes of operation of the 

diffuser can be obtained by changing 2p  (fig. 10.1): 

I. Mode without converting speed and air pressure before the diffuser 

1 НW W
 and 1 Нp p . Air stream enters the diffuser from the environment 

without changing of density (section 1НS S ). Feed coefficient 1  . 
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II. Regime with external flow expansion 1 НW W
, 1 Нp p

, 1 Н 
,

1

1HS

S
   . This regime occurs during the p2 pressure decreasing by means of 

compressor rotation velocity increasing. Regime II is undesired because it is 

followed by increased total pressure losses II I   by increasing of 1  и 2  and 

appearing of the boundary layer separation on the diffuser entrance due to inflow 

angle increasing to the leading edge of the diffuser. 

III. Regime with external flow compression 1 НS S ;
1

1HS

S
   ; 1 НW W ;

1 Нp p ; 
* *

1 Hp p . This regime occurs during the compressor rotation velocity 

decreasing and p2 pressure increasing. Experiments show the optimal mode of 

operation is a subsonic air intake mode where 1 0,5 НW W . In this case isentropic 

gas deceleration appears before the diffuser where nearly 75% of total compression 

ratio 2

Н

p
p  of diffuser is realized. Further increase in the compression of air 

before the diffuser causes an excessive air inflow angles to the leading edge of the 

diffuser and may cause separation of the boundary layer from the outer surface of 

the diffuser, which would increase drag. If the diffuser is throttle down completle 

on the outlet section, air outsid the diffuser will decelerate isentropically and 

*

2 Hp p ; 1  ; 0  . When the throttle is open, air feed ( 0  ) and diffuser 

losses ( 1  ) occur. 

Diffuser compression ratio 2
Д

H

p
p

   depends on diffuser operation 

regime, M number, section relations 2

1

S
S

 and hydraulic losses. Calculations and 

experiments show that during diffuser normal operation increasing of the 

expansion ratio 2

1

S
S

 more than on 4 is inefficient. So, if 1 0,75M  and 2

1

4
S

S
 : 

1,32Д  ,if 2

1

5
S

S
 : 1,33Д  .  
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9.2 Diffusers for moderate supersonic velocities 

If 1,5M   common expansion diffusers with sharp edges are used. The 

next operation regimes of such diffusers are observed (fig. 10.3). 

 

Fig. 9.3 One-step diffuser operation regimes 

 

I. If 1  detached shock wave take place. The jet with 1НS S section 

which enters the diffuser cross the area of the shock wave which is similar to direct 

one. Subsonic flow 1
1

H




  is isentropically decelerate on the area between 

shock wave and inlet diffuser section to 1 1   in subsonic diffuser and then to 

2 1  . Simultaneously on the jet surface between the shock wave and 1-1 section 

increased pressure, caused by centrifugal forces of the air particles which are 

moving on the boundary surface. Projection of this pressure total force on x axis is 

called additional diffuser resistance. 

II. If the air feed coefficient increase to 1   shock wave takes place 

immediately in the inlet section 1-1 of the diffuser and external flow decelerate in 

the angle shock waves which corresponds to a minimal external diffuser resistance. 
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On this regime losses in subsonic diffuser are bigger then on the first regime due to 

1  and 2  caused by feed coefficient decreasing. 

III. If air flow rate through section 2 increase due to compression rotation 

velocity increasing and corresponding decreasing of p2, supersonic jet with a 

section 1НS S enters the diffuser, accelerate in the expansion channel and 

decelerate in the more intense shock wave inside the diffuser. Therefore, total 

pressure II I   loss still increase. On this regime 1   and 1 HW W . 1   

in the supersonic flight is not realized. 

Coefficient of the total pressure conservation of the considered gas turbine 

diffuser is determined by the expression: 

* **
1 22

* . .* *

1

П С Д
H H

p pp

p p p
    

 

where 
. .П С Д   – total pressure conservation coefficients in the direct shock wave 

and subsonic diffuser. Total pressure losses in the direct shock wave are small 

0,93  if 1,5HM  . It allows application of the simplest diffuser with one 

shock wave. 

9.3 Supersonic diffusers 

Total pressure losses in the direct shock wave, which are small during MH 

slightly bigger then 1, sharply increase with increase of MH. If 2HM   we have 

0,72  . Due to this total pressure losses gas turbine engine thrust must decrease 

on 40% in comparison with a gas turbine engine thrust with isentropic compression 

which make effective flight impossible. Researches show that shock wave losses in 

supersonic diffuser are decreased during substitution of the strong direct shock 

wave by the system of weak angle shock waves with further weak direct shock 

wave. The velocity after these angle shock waves remains supersonic. Consequent 
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angle shock wave row appears on the supersonic diffuser deceleration surfaces 

which are place at the angle   with supersonic flow. 

 

Fig. 9.4 Diffusers: 

a) with external compression; b) with internal compression; 

c) with mixed compression 

 

Depending on shock wave position relatively on inlet plane, diffusers are 

divided on three categories: 

a) with external compression: angle shock waves are placed before inlet 

plane; 

b) with internal compression: part of the shock waves is placed inside the 

channel; 

c) with mixed compression: part of the shock wave is placed inside the 

channel and other part is placed outside. 

Each type of air inlets has its advantages and disadvantages, which are not 

considered here. We note only that the figure 10.4 shows that for the same area of 

the entrance, the air intake of external compression has a maximum external 

resistance and air intake of internal compression has minimal resistance. Input 

devices generally are flat or rotationally symmetric. Number of the system shock 

waves is selected from the high total pressure conservation coefficient   value 

condition at calculated HM  flight number in the inlet device of acceptable 

dimensions, mass. The other condition is regulation with minimal possible amount 

of the regulated elements. 
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In an optimal system of external compression all shock waves should 

converge on the front edge of the shell (Fig. 10.4). In this case maximal values m  

of the air flow rate ( 1  ) and minimal external resistance are provided. 

Researches show that maximal value max( )m  for system which consists of 

m flat shock waves, i.e. from (m-1) angle shock waves and on closing direct shock 

wave: 

max 1 2 1( ) ... .m m m    
 

takes place with the same intensity of all angle shock waves 

 1 2 1
... .km

   



 

It means that for every angle shock waves of the optimal system normal 

components of the numbers ,
крn

in
in in

i

W
M

Q
  , pressure, temperature, density and 

entropy increasing are the same, i.e. 

11 2
1 ( 2)

1 2

1 11 2 1 2

1 2 1 2

1 2 3 2 1 2

... ; ... ;

... ; ... ;

... .

m
Нn n m n

H m

m m

H m Н m

m m

pp p
M M M

p p p

TT T
T T T

S S S S S S

 
  






 

 

 

     

     

     
 

Closing direct shock wave of the optimal system is much weaker then angle 

shock waves if 1,5<MH<5: 

1 0,94 0,94 sin .m Нn Н НM M M   
 

That is why we get 
   1

max
.

m

m k П  



 



94 

Consequently, optimal shock waves system calculation for given НM  

consists of determination of the deceleration surface angle value determination i  

and angle shock wave front angle i . After that,   of the every shock wave of the 

system and, finally, amounts of  
maxm  are determined. Remained geometric 

dimensions of the optimal system are determined by the given air flow rate, shock 

waves placement on the shell and continuity equation. 

Diffuser profile is calculated by the values 1 2 1, ,k M  of the first angle 

shock wave for different Н and given НM . The curve is plotted by the results of 

the calculation and later used for optimal arrangement parameters determination. 

On the i-S diagram shock wave air compression on the direct shock wave and 

three-step system are compared with the same initial conditions. Compression in 

every weak shock waves is followed by the slight entropy increasing and total 

pressure decreasing. That’s why total losses are less than for direct shock wave 

2k П П   . Correspondingly, air static pressure, density and kinetic energy after 

compression in the shock wave system are higher and temperature is lower than 

after compression in the direct shock wave. 

If the НM is between 1,8 and 2,0, the system with two shock waves is used. 

If  НM is between 2,0 and 2,5, the system with three shock waves is used and etc. 

Optimal arrangement of the diffuser correspond to only calculated НрM  

number and design engine regime. Arrangement lose its optimum due to the 

unavoidable deviations of the НM  from the НрM  and engine regimes changing. 

For example, if Н НрM M angle shock waves angles increase and these shock 

waves are separated from the shell edge and transform to the detached shock wave. 

It leads to losses increasing, i.e. to decreasing of the air feed 1НS S , 1  . 

Besides, interaction of the shock wave with boundary layer causes its separation 

and unstable operation of the inlet device stall. System optimum suffer also when 

Н НрM M . 
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To provide optimal operation of the inlet device during the different НM  and 

engines regimes, these device are constructed with regulated elements: changing of 

the deceleration surfaces angles  , relative axial displacement of the shell, 

regulation of the air flow rate by bypassing and boundary layer control. 

During supersonic flight subsonic flow in diffuser after the direct shock 

wave accelerates again in the narrowing channel to 1  in the inlet device throat 

and to 1   in the expansion channel to transform to a subsonic flow 1   in the 

direct shock wave. After that subsonic flow decelerate in the expansion subsonic 

diffuser to a given value 0,5  before the compressor. With such organization of 

the flow slight changing of the engine operation regime and, consequently, 

volumetric flow rates, influence only on the place of the direct shock wave and 

does not disturb calculated shock wave system. Closing shock wave acts a positive 

part of the gas-dynamic regulator for air mass flow rate continuity with changing 

volumetric flow rate by means of losses changing. 

To decrease a harmful effect of the boundary layer to shock waves 

(separation and distortion) different ways of boundary layer control are applied. 

The list of them include: draining, suction and refrigeration of the deceleration 

surfaces. 

 

Chapter 10. MAGNET GAS DYNAMIC THEORY 

10.1 Application area 

During electrically conducting fluid flowing in the electric and magnetic 

fields electromagnetic body force appears ,which is sometimes called the 

ponderomotive force which acts on all the fluid particles. Furthermore, during the 

passage of electric current through the liquid, Joule heat is generated. 

In the study of electrically conducting fluid motion in electric and magnetic 

fields these two new effects must be taken into account, adding to the equations of 

motion and energy corresponding two additional terms. This leads to an increase in 
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the number of variables and the need for a corresponding increase in the number of 

equations; such additional equations are the equations of Maxwell's 

electrodynamics. Set of Maxwell's equations, Navier – Stokes equations, which 

include the electromagnetic body forces, the energy equation including the Joule 

heat, and the equation of state, is a system of differential equations of magnetic 

fluid dynamics. 

At high temperatures of the order of several thousand degrees and at very 

low pressures the gases are ionized and therefore electrically conductive, like 

metals liquid droplets and some other liquid electrolytes. The effects of electric and 

magnetic fields on an electrically conductive fluid, and the mainstreaming of this 

influence mentioned above are also applied to ionized gas. 

Astrophysics, aircraft and rocket technique and energetic need development 

of the magnet gas dynamics. 

Astrophysicists study the structure of the Sun and other stars, in which the 

gas is in a highly ionized state under the influence of very high temperatures, as 

well as "cold" interstellar gas, ionized at very low density. 

Modern aircraft and rocket industry manufacture vessels which are fly in the 

atmosphere with a speed near several kilometers per second. Air temperature near 

body surface at that speed approaches to electric arc temperature. It phenomenon 

causes pronounced ionizing of the air. If electric and magnet fields are added to 

such flow, electromagnet volumetric force appears which with a certain conditions 

can gain a value comparative to aerodynamic forces. 

The feature of the electromagnet volumetric force is, that in contrast with 

other volumetric forces (gravity, inertial forces), it can be controlled by exposure 

on the causing electric and magnet fields. Intensity and shape if the shock wave 

can be influenced by changing of the electromagnet force value. It also allows to 

increase Reynolds number during the flow transfer from the laminar flow to 

turbulent one, to decelerate or accelerate electric conductive fluid (or gas) flow, to 

cause velocity profile deformation and boundary layer separation. 
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Electric current generator, in which direct transfer from the heat energy to 

electric one is accomplished, can be created by using electric conductive fluid or 

gas. Magnetic dispensers, flowmeters and pumps for liquid metals and mercury 

also find its application. 

Nowadays, two areas of magnet gas dynamic are showed up: the first one, 

which consider infinite electric conductivity of the media (astrophysics) and the 

second one, which consider finite electric conductivity of the media (technical 

magnet gas dynamics). 

10.2. Electromagnetic fields 

Electromagnetic fields in common case are described by the next system of 

integral Maxweel relations: 

1. Relation, which connects magnet field stress vector circulation integral H 

by the closed circuit l with total force of the direct current, which flow through this 

circuit area: 

∮ 𝐻𝑖𝑑𝑙 = − ∫ 𝑗𝑛𝑑𝑆
𝑠

  (1) 

2. Relation, which connects total electrostatic induction through the closed 

surface with area S with total free charge in the v volume, which is seized by 

this surface: 

∫ 𝐷𝑛𝑑𝑠 = ∫ 𝜌𝑣0𝑑𝑣
𝑣𝑠

 (2) 

3. Relation, which seized electric field stress vector circulation integral E by 

the closed circuit l with a time of the magnetic induction flow changing through 

the area seized by this circuit: 

∮ 𝐸𝑖𝑑𝑙 = − ∫
𝜕𝐵𝑛

𝜕𝑡
𝑑𝑆

𝑠
 (3) 

4. Magnet induction flow B through the closed surface continuity 

expression: 
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∫ 𝐵𝑛𝑑𝑠 = 0
𝑠

 (4) 

This integral relations should be added by expression of the electromagnet 

fields stress vectors to induction vectors transition: 

𝐷 = 𝜀𝑎𝐸, 𝐵 = 𝜇𝐵𝐻 (5) 

and consolidated Ohm’s law: 

j = 𝜎𝑅{Е + [W X В] } (6) 

 

 

Fig. 10.1 – Coordinate system for Maxwell equations 

 

Not let’s express Maxwell equations in the differential form. To do so we 

need to split them into two systems. 

The first system is for direct current magnet field. 

Current density projection u is connected only with Нх and Ну projections of 

the magnet field in the same point of space, because stress lines of magnet fields 

lie in the plane which is perpendicular to current direction. Stress vector circulation 

integral by the infinitively small circuit abcd consists of next terms 

(counterclockwise orientation): 

Г𝑎𝑏𝑐𝑑 = −𝐻𝑦𝑑𝑦 + 𝐻𝑥𝑑𝑥 + (𝐻𝑦 +
𝜕𝐻𝑦

𝜕𝑥
𝑑𝑥) 𝑑𝑦 − (𝐻𝑥 +

𝜕𝐻𝑥

𝜕𝑦
𝑑𝑦) 𝑑𝑥 = 

= (
𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
)𝑑𝑥𝑑𝑦 (7) 
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On the other hand, circulation integral of the H vector should be equal to 

force of the current, which is flow through this area: 

Г𝑎𝑏𝑐𝑑 = 𝐼𝑧 = 𝑗𝑧𝑑𝑥𝑑𝑦 (8) 

So, we have: 

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝑧      (9) 

Similarly, for current density projections on the other axis we find: 

𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
= 𝑗𝑥     

𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝑦   (10) 

Equations (10) connect conductivity current density j with space derivates of 

magnet field stress H. If the equation, which connects electrostatic induction vector 

D c free charge distribution density in the volume рvо 

𝜕𝐷𝑥

𝜕𝑥
+

𝜕𝐷𝑦

𝜕𝑦
+

𝜕𝐷𝑧

𝜕𝑧
= 𝜌𝑣0 (11) 

to equations (10) we’ll get the first Maxwell equations system, which can be 

presented in vector form as: 

rotH=j     divD=𝜌𝑣0 (12) 

This system is fair for uniform magnetic materials, which fill entire field, 

because in this case magnet current field stress does not depend on media magnet 

penetration. 

The second Maxwell equation system is received by using consolidation of 

the Faraday induction law. 

Let’s compose an expression for electric field stress circulation integral E by 

the infinitively small circuit abcd, which is caused by changing of the magnet 

induction vector дB /дt , which is perpendicular to E vector, in time: 
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Г𝑎𝑏𝑐𝑑 = −𝐸𝑦𝑑𝑦 + 𝐸𝑥𝑑𝑥 + (𝐸𝑦 +
𝜕𝐸𝑦

𝜕𝑥
𝑑𝑥) 𝑑𝑦 − (𝐸𝑥 +

𝜕𝐸𝑥

𝜕𝑦
𝑑𝑦) 𝑑𝑥 = 

= (
𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
)𝑑𝑥𝑑𝑦 (13) 

Vector E circulation integral by the closed circuit is equal to derivate of the 

magnet induction through the area, seized by this circuit and taken with negative 

sign: 

Г = −
𝜕Ф

𝜕𝑡
= −

𝜕𝐵𝑧

𝜕𝑡
𝑑𝑥𝑑𝑦 (14) 

Here we have: 

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −

𝜕𝐵𝑧

𝜕𝑡
      (15) 

Similarly: 

𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= −

𝜕𝐵𝑥

𝜕𝑡
,   

𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= −

𝜕𝐵𝑦

𝜕𝑡
  (16) 

Adding to the equations (15) magnet induction lines continuity equation: 

𝜕𝐵𝑥

𝜕𝑥
+

𝜕𝐵𝑦

𝜕𝑦
+

𝜕𝐵𝑧

𝜕𝑧
= 0 (17) 

we gain the second Maxwell equation system, which has a next vector form: 

rote=−
𝜕𝐵

𝜕𝑡
 ,    𝑑𝑖𝑣𝐵 = 0 (18) 

In case of non-uniform media on its separate areas boundaries without 

surface charges and currents the next conditions must be satisfied: 

𝐷1𝑡

𝜀𝑎1
=

𝐷2𝑡

𝜀𝑎2
     𝐷1𝑛 = 𝐷2𝑛 (19) 

𝐵1𝑡

𝜇𝑎1
=

𝐵2𝑡

𝜇𝑎2
     𝐵1𝑛 = 𝐵2𝑛  (20) 
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Let’s except vectors of current density j and electric current stress E from the 

differential equations of Maxwell. Ohm’s law transformed into current density 

field vorticity equation is used for this purpose: 

rotj = 𝜎𝑅{rotЕ + гоt [W X В]}. (21) 

Equation for magnetic field stress vector vorticity is substituted by equation 

of the magnetic induction vector vorticity 

rotB=𝜇𝐵𝑗  (22) 

As it is known from the field theory: 

rot rotB=−∆𝐵 = − (
𝜕2𝐵𝑥

𝜕𝑥2
+

𝜕2𝐵𝑦

𝜕𝑦2
+

𝜕2𝐵𝑧

𝜕𝑧
=) (23) 

If 𝜎𝑅 = соnst, we find that 

−∆𝐵 = 𝜇𝐵𝑟𝑜𝑡 𝑗 = 𝜇𝐵𝜎𝑅  {𝑟𝑜𝑡𝐸 + 𝑟𝑜𝑡[𝑊 𝑥 𝐵]}    (24) 

From the equation (18) we have 

rotE=−
𝜕𝐵

𝜕𝑡
      (25) 

Substituting this expression to (24) we get 

𝜕𝐵

𝜕𝑡
= 𝑟𝑜𝑡[𝑊 𝑥 𝐵] +

1

𝜇𝐵𝜎𝑅
∆𝐵      (26) 

This equation, which connects magnetic field with velocity field in electric 

conductive fluid, is called magnetic induction equation. In case of very high media 

electric conductivity (𝜎𝑅 → ∞) the second term of the right part of the equation 

(26) can be neglected. After that it gains the next form: 

𝜕𝐵

𝜕𝑡
= 𝑟𝑜𝑡[𝑊 𝑥 𝐵] (27) 

This equation is equal to velocity vortex equation in hydrodynamic of the 

ideal fluid which means that vortex lines are moving together with fluid. Similarly, 

magnetic fields lines are connected with media and they move together. 
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The “freezing-in” of the magnetic lines is connected with the fact that during 

magnetic induction vector flow through the circuit changing, electric currents 

appear in it and resist to this flow changing. The resistance is stronger, if 𝜎𝑅 is 

higher. If 𝜎𝑅 → ∞ induction flow changing became impossible. Moving along 

vector line doesn’t affect the field. Vector lines move edgeways together with 

media. 

In case of fixed media (W=0) induction equation has a form of diffusion 

equation or transient heat conductivity (Fourier equation) 

𝜕𝐵

𝜕𝑡
=

1

𝜇𝐵𝜎𝑅
∆𝐵     (28) 

It shows that in the body placed in the magnetic field from outer sources, 

magnetic field disappear not immediately after turning this sources off. Magnetic 

stream lines gradually “infiltrate” into the body and weakens. 

For example, in a copper sphere of radius 1 m magnetic field decreases as 

within about 10 seconds: The higher order magnetic conductivity of the field, the 

weaker field damping. 

The value  

1

𝜇𝐵𝜎𝑅
= 𝑣𝑅 (29) 

is similar to transition coefficient in the diffusion and heat conductivity 

equation and it has dimension similar to kinematic viscosity. That’s why it is called 

magnetic viscosity. Numerical values of the magnetic viscosity are usually much 

larger than values of the kinematic viscosity. In common case, when no one term 

in the right side of the equation cannot be neglected, stream lines aim to move 

together with media and simultaneously infiltrate the media. 

10.3. Magnetic gas dynamic equations 

Hydrodynamics (and gas dynamics) equations for electric conductive fluid 

with presence of electric and magnetic fields unlike hydrodynamic equations of 
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non-conductive fluid must contain additional term which take electromagnet 

volumetric force into account. From the magnetic field to the conductor (or 

conductive fluid) volumetric element dv Ampere force acts in the case when 

current with density j flow: 

dfH = [jX В] dv,      (30) 

From the electric field Coulomb force acts on such elements: 

𝑑𝑓𝑐 = 𝐸𝜌𝑐0𝑑𝑣            (31) 

where 𝜌𝑐0 — charge density in the volume of dv(𝜌𝑐0𝑑𝑣 = 𝑑𝑞). 

Thus, total electromagnetic force applied to the volume:  

df= 𝑑𝑓𝑐 + dfH ={𝜌𝑐0𝐸 + [𝑗 𝑋 𝐵]}dv   (32); 

Force, applied to the elementary volume: 

𝐹 =
𝑑𝑓

𝑑𝑣
= 𝐹𝑒 + 𝐹𝐻 = 𝜌𝑟0𝐸 + [𝑗 𝑋 𝐵]   (33) 

The estimation of the term order in the equation (32) shows that Coulomb 

force can be neglected. Thus, with taking (22) into account we get the expression 

for electromagnetic force, applied to elementary volume: 

F=[j X B]= 
1

𝜇𝐵
[rotB X B]     (34) 

Projections of the electromagnetic force vector to the axes of rectangular 

coordinate system are: 

𝐹𝑥 = (𝑗𝑦𝐵𝑧 − 𝑗𝑧𝐵𝑦)   𝐹𝑦 = (𝑗𝑧𝐵𝑥 − 𝑗𝑥𝐵𝑧)𝐹𝑧 = (𝑗𝑥𝐵𝑦 − 𝑗𝑦𝐵𝑥)   (35) 

or in the other form (with substitution current density vector by magnetic induction 

vector according to (22)) 

𝜇𝐵𝐹𝑥 = 𝑎𝑦𝐵𝑧 − 𝑎𝑧𝐵𝑦 = 𝐵𝑥
𝜕𝐵𝑥

𝜕𝑥
+ 𝐵𝑦

𝜕𝐵𝑥

𝜕𝑦
+ 𝐵𝑧

𝜕𝐵𝑥

𝜕𝑧
− 1\2

𝜕𝐵2

𝜕𝑥
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𝜇𝐵𝐹𝑦 = 𝑎𝑧𝐵𝑥 − 𝑎𝑥𝐵𝑧 = 𝐵𝑥
𝜕𝐵𝑦

𝜕𝑥
+ 𝐵𝑦

𝜕𝐵𝑦

𝜕𝑦
+ 𝐵𝑧

𝜕𝐵𝑦

𝜕𝑧
− 1\2

𝜕𝐵2

𝜕𝑦
        (36) 

𝜇𝐵𝐹𝑧 = 𝑎𝑥𝐵𝑦 − 𝑎𝑦𝐵𝑥 = 𝐵𝑥
𝜕𝐵𝑧

𝜕𝑥
+ 𝐵𝑦

𝜕𝐵𝑧

𝜕𝑦
+ 𝐵𝑧

𝜕𝐵𝑧

𝜕𝑧
− 1\2

𝜕𝐵2

𝜕𝑧
     

Here, В2= Вx2+ Вy2+ Вz2 is a value of the magnetic induction vector,  

а = гоtВ. 

During the (36) expression the condition of the magnetic stream line 

continuity was used. 

Taking force F (34) into account we get an equation of the electric 

conductive fluid moving in the electric and magnetic fields in vector form (with 

𝜇 = 𝑐𝑜𝑛𝑠𝑡) 

𝜌
𝑑𝑊

𝑑𝑡
= 𝑅 − 𝑔𝑟𝑎𝑑𝑝 +  𝜇∆𝑊 + 1\3𝜇𝑔𝑟𝑎𝑑(𝑑𝑖𝑣𝑊) + [𝑗 𝑋 𝐵]  (37) 

or 

𝜌
𝑑𝑊

𝑑𝑡
= 𝑅 − 𝑔𝑟𝑎𝑑𝑝 +  𝜇∆𝑊 + 1\3𝜇𝑔𝑟𝑎𝑑(𝑑𝑖𝑣𝑊) +

1

𝜇𝐵
[𝑟𝑜𝑡𝐵 𝑋 𝐵]  (38) 

For gas the system of differential equation show include energy equation. In 

case of electric conductive gas placed in the electric and magnetic fields it will take 

the form of (with 𝜆 = 𝑐𝑜𝑛𝑠𝑡, 𝜇 = 𝑐𝑜𝑛𝑠𝑡): 

𝜌
𝑑𝑖

𝑑𝑡
=

𝑑𝑝

𝑑𝑡
+ 𝜆∆𝑇 + 𝜇Ф +

𝑗2

𝜎𝑅
    (38) 

or with taking (22) into account 

𝜌′
𝑑𝑖

𝑑𝑡
=

𝑑𝑝

𝑑𝑡
+ 𝜆∆𝑇 + 𝜇Ф +

1

𝜇𝐵
2 𝜎𝑅

′
[𝑟𝑜𝑡𝐵] 2       (39) 

Magnetic induction equation (26) 

𝜕𝐵

𝜕𝑡
= 𝑟𝑜𝑡[𝑊 𝑥 𝐵] +

1

𝜇𝐵 𝜎𝑅
∆𝐵 (40) 

hydrodynamic continuity equation 
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𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝑊 = 0   (41) 

and condition equation, which in case of perfect gas is a Clapeyron equation 

p = f(Р, Т ) ,      (42) 

should be added to equations (37) and (38). 

System of equation (38) – (42) is a full system of differential equations of 

the magnetic gas dynamics. 

If motion energy is used in the form (37), equation system should include 

Ohm’s law, Maxwell equations (12), (18) and equations (22) and (26). 

In these equations Coulomb force is neglected. If we take Coulomb into 

account we get full system of electromagnetic gas dynamic equations. 

For incompressible fluid equations system (37) – (42) is simplified because 

fluid equations are solved independently from energy equation. The necessity to 

solve condition equation (42) is no longer exist and continuity equations (41) and 

motion equations (37) are simplified. 

Thus, full system of the incompressible fluid magnetic hydrodynamic 

equation system in vector form consist of motion equation 

𝜌
𝑑𝑊

𝑑𝑡
= 𝑅 − 𝑔𝑟𝑎𝑑 𝑝 + 𝜇∆𝑊 + [𝑗 𝑋 𝐵]  (43) 

or 

𝜌
𝑑𝑊

𝑑𝑡
= 𝑅 − 𝑔𝑟𝑎𝑑 𝑝 + 𝜇∆𝑊 +

1

𝜇𝐵
[𝑟𝑜𝑡𝐵 𝑋 𝐵],  (44) 

energy equation, which is solved independently from the other equations: 

𝜌
𝑑𝑇

𝑑𝑡 = 𝜆∆𝑇 + 𝜇Ф +
𝑗2

𝜎𝑅
,    (45) 

magnetic induction equation 

𝜕𝐵

𝜕𝑡
= 𝑟𝑜𝑡[𝑊 𝑥 𝐵] +

1

𝜇𝐵 𝜎𝑅
∆𝐵     (46) 

continuity equation  
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divW=0        (47) 

If motion and energy equations are used in the form of (44) and (45), to 

gaining of closed system it is necessary to add Ohm’s law equation, Maxwell 

equations (12) and (18) and equation (22). 

Switching to projections to the rectangle coordinates xyz system axes vector 

motion equation (44) divide to the three motion equation: 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 

+(𝑗𝑦𝐵𝑧 − 𝑗𝑧𝐵𝑦),  

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) + 

+(𝑗𝑥𝐵𝑦 − 𝑗𝑦𝐵𝑥)  (48) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) + 

+(𝑗𝑧𝐵𝑥 − 𝑗𝑥𝐵𝑧)  

Motion equation system by using dependencies (35) and (36) to next form: 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝𝑐

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2) +  

+
1

𝜇𝐵
(𝐵𝑥

𝜕𝐵𝑥

𝜕𝑥
+ 𝐵𝑦

𝜕𝐵𝑥

𝜕𝑦
+ 𝐵𝑧

𝜕𝐵𝑥

𝜕𝑧
),  

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝𝑐

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2 ) +  

+
1

𝜇𝐵
(𝐵𝑥

𝜕𝐵𝑧

𝜕𝑥
+𝐵𝑦

𝜕𝐵𝑧

𝜕𝑦
+ 𝐵𝑧

𝜕𝐵𝑧

𝜕𝑧
)      (49) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = −

𝜕𝑝𝑐

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2) +  



107 

1

𝜇𝐵
(𝐵𝑥

𝜕𝐵𝑦

𝜕𝑥
+ 𝐵𝑦

𝜕𝐵𝑦

𝜕𝑦
+ 𝐵𝑧

𝜕𝐵𝑦

𝜕𝑧
)  

In these equations there is a value of  

\𝑝𝑐 = 𝑝 +
𝐵2

2𝜇𝐵
           (50) 

which is called effective pressure and it is a sum of hydrodynamic (p) and 

magnetic (𝑝𝑚 =
𝐵2

2𝜇𝐵
) pressure. 

Note, that in the equations (48) non-electromagnetic forces (gravity etc.) are 

omitted for sake of brevity. 

Vector induction equation (46) in rectangle coordinates system is also 

divided in three equations: 

𝜕𝐵𝑥

𝜕𝑡
=

1

𝜇𝐵𝜎𝑅
[

𝜕2𝐵𝑥

𝜕𝑥2
+

𝜕2𝐵𝑥

𝜕𝑦2
+

𝜕2𝐵𝑥

𝜕𝑧2
] +

𝜕𝑢𝐵𝑥

𝜕𝑥
+

𝜕𝑢𝐵𝑥

𝜕𝑦
+

𝜕𝑢𝐵𝑥

𝜕𝑧
− 𝐵𝑥(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)  

𝜕𝐵𝑦

𝜕𝑡
=

1

𝜇𝐵𝜎𝑅
[

𝜕2𝐵𝑦

𝜕𝑥2
+

𝜕2𝐵𝑦

𝜕𝑦2
+

𝜕2𝐵𝑦

𝜕𝑧2
] +

𝜕𝑣𝐵𝑦

𝜕𝑥
+

𝜕𝑣𝐵𝑦

𝜕𝑦
+

𝜕𝑣𝐵𝑦

𝜕𝑧
− 𝐵𝑦(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) (51) 

𝜕𝐵𝑧

𝜕𝑡
=

1

𝜇𝐵𝜎𝑅
[

𝜕2𝐵𝑧

𝜕𝑥2
+

𝜕2𝐵𝑧

𝜕𝑦2
+

𝜕2𝐵𝑧

𝜕𝑧2
] +

𝜕𝑤𝐵𝑧

𝜕𝑥
+

𝜕𝑤𝐵𝑧

𝜕𝑦
+

𝜕𝑤𝐵𝑧

𝜕𝑧
− 𝐵𝑧(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)  

In energy equation (38) a term, which take Joule heat into account, can be 

expressed through the magnetic induction, Maxwell equation (22) should be used 

for this purpose. As result we get: 

𝜌
𝑑𝑇

𝑑𝑡 =
𝑑𝑝

𝑑𝑡
+ 𝜆∆𝑇 + 𝜇Ф +

1

𝜎𝑅𝜇𝐵
2  (𝑟𝑜𝑡𝐵)2    (52) 

where correspondingly with field theory 

(𝑟𝑜𝑡𝐵)2 = (
𝜕𝐵

𝜕𝑥
)2 + (

𝜕𝐵

𝜕𝑦
)2 + (

𝜕𝐵

𝜕𝑧
)2    (53) 

Ohm’s law in projection on the coordinate axes has a form of: 

𝑗𝑥 = 𝜎𝑅[𝐸𝑥 + (𝑣𝐵𝑧 − 𝜔𝐵𝑦)] 
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𝑗𝑦 = 𝜎𝑅[𝐸𝑦 + (𝑣𝐵𝑥 − 𝜔𝐵𝑧)]              (54) 

𝑗𝑧 = 𝜎𝑅[𝐸𝑧 + (𝑣𝐵𝑦 − 𝜔𝐵𝑥)] 

If 𝜌 = 𝑐𝑜𝑛𝑠𝑡 hydromagnetic continuity equation has a form of: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0.     (55) 

That’s why magnetic induction equations are simplified because the last 

terms in the right side of these equations are equal to 0. 

In many cases motion and induction equations can be significantly 

simplified, by neglecting one or another small terms. 

Often, energy equation is used in the form where enthalpy and kinetic 

energy are united in total enthalpy. To transform to corresponding magnetic 

hydrodynamic energy equation form additional motion energy term – 

electromagnetic force 

F=[j X B]      (56) 

 should be used by projection to the axes of the rectangular coordinate 

system. Later, projection of this vector should be multiplied on corresponding 

velocity projection. Then gaining products are summarized and we get additional 

electromagnetic term. 

𝑓𝑥𝑢 + 𝑓𝑦𝑣 + 𝑓𝑧𝑤 = [𝑢(𝑗𝑦𝐵𝑧 − 𝑗𝑧𝐵𝑦) + 𝑣(𝑗𝑧𝐵𝑥 − 𝑗𝑥𝐵𝑧) + 𝑤(𝑗𝑥𝐵𝑦 − 𝑗𝑦𝐵𝑥) = 

= [𝑗𝑥(𝑤𝐵𝑦 − 𝑣𝐵𝑧) + 𝑗𝑦(𝑢𝐵𝑧 − 𝑤𝐵𝑥) + 𝑗𝑧(𝑣𝐵𝑥 − 𝑢𝐵𝑦)]   (57) 

During this expression composition expressions (35) were used for 

electromagnetic force terms. In other words, scalar product of the velocity vector 

ad electromagnetic force vector was presented in the form of: 

Wf = -j [W X В]      (58) 

From the Ohm’s law: 
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𝑗

𝜎𝑅
− 𝐸 = [𝑊 𝑋 𝐵]     (59) 

Substituting this expression into the previous equation, we get: 

W∙f=-
𝑗2

𝜎𝑅
+ 𝑗𝐸     (60) 

If this additional term. which represent electromagnetic force work, is 

summarized with Joule heat 

𝑄𝑒 =
𝑗2

𝜎𝑅
      (61) 

we get final expression for additional “electromagnetic” term of energy equation 

𝑄𝐻= j ∙ Е.     (62) 

Then, gas energy equation with presence of electromagnetic field is written 

in the form of: 

𝜌
𝑑𝑖∗

𝑑𝑡
=

𝜕𝑝

𝜕𝑡
+ 𝜆∆𝑇 + 𝜇∆ (

𝑊2

2
) +

1

3
𝜇(𝑊∇)𝑑𝑖𝑣𝑊 +

1

3
𝜇(𝑑𝑖𝑣𝑊)2 + 2𝜇𝛺 + 𝑗𝐸  (63) 

In many cases, work of the electromagnetic forces is represented in other 

form, which can be gained by substitution (22) of current density in scalar product 

(62) by magnetic induction 

𝑄𝐻 =
𝐸

𝜇𝐵
𝑟𝑜𝑡𝐵    (64) 

and by using known expression from the field theory 

div[E X B]=B rote-ErotB.    (65) 

In case of steady magnetic field (
∂B

∂t
= 0) from (18) we know that rot  

Е = О, and correspondingly 

ErotB= – div [Е X В]. (66) 
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Sunstituting this result to (64) we go on next expression for additional 

electromagnetic term in the energy equation: 

𝑄𝐻 = −
1

𝜇𝐵
𝑑𝑖𝑣 [Е х В].         (67) 

After the substitution in the (63) of the last term by expression (67) we get 

another energy equation form for magnetic gas dynamics: 

𝜌
𝑑𝑖∗

𝑑𝑡
=

𝜕𝑝

𝜕𝑡
+ 𝜆∆𝑇 + 𝜇∆ (

𝑊2

2
) +

1

3
𝜇(𝑊∇)𝑑𝑖𝑣𝑊 +

1

3
𝜇(𝑑𝑖𝑣𝑊)2 + 2𝜇𝛺 −  

−
1

𝜇𝐵
𝑑𝑖𝑣 [Е х В].     (68) 

In steady state and without viscosity and heat conductivity, energy equation 

(68) has a form of: 

𝜌
𝑑𝑖∗

𝑑𝑡
= −

1

𝜇𝐵
𝑑𝑖𝑣 [Е х В].    (69) 

After appearance of the additional term in the electric conductive fluid 

motion in the magnetic field equation (48) the necessity to add new similarity 

criteria, which takes relation of magnetic field to inertial field into account, 

appears. Lets transform the last term of equation (82) right side to a non-

dimensional form by dividing it to the value of 𝜌0𝑈0
2\𝑙 . As result we get 

𝑗0𝐵0𝑙

𝜌0𝑈0
2 (

𝑗𝑦𝐵𝑧

𝑗0𝐵0
−

𝑗𝑧𝐵𝑦

𝑗0𝐵0
) (70) 

here l is characteristic dimension; 𝜌0, 𝑈0, 𝑗0, 𝐵6  – are fluid density, velocity, 

current density and magnetic induction j values in same characteristic flow point. If 

electromagnetic force is written as in motion equation (49), corresponding term of 

this equation can be presented in non-dimension form as: 

𝐵0
2

𝜇𝐵𝜌0𝑈0
2 [

𝐵𝑥

𝐵0

𝜕
𝐵𝑥
𝐵0

𝜕
𝑥

𝑖

+
𝐵𝑦

𝐵0

𝜕
𝐵𝑥
𝐵0

𝜕
𝑦

𝑖

+
𝐵𝑧

𝐵0

𝜕
𝐵𝑥
𝐵0

𝜕
𝑧

𝑖

−
1

2

𝜕(
𝐵

𝐵0
)2

𝜕
𝑥

𝑖

]   (71) 
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It is obvious, that dynamic similarity of the model bypassing and full-scale 

object in electric conductive fluid with presence of the external magnetic field 

require for model and object similar values of: 

𝑗0𝐵0𝑙

𝜌0𝑈0
2 = 𝑆𝑗 = 𝑖𝑑𝑒𝑚      (72) 

or with taking 𝑗0 ≈
1

𝜇𝐵

𝐵0

𝑖
 into account according to (65) we have 

𝐵0
2

𝜇𝐵𝜌0𝑈0
2 = 𝑆𝐵 = 𝑐𝑜𝑛𝑠𝑡       (73) 

This multiplier characterize relation of the magnetic and kinetic energy of 

the elementary volume. Value А = √𝑆𝐵 is called Alfven number. Of course it is 

necessary to other hydrodynamic similarity criteria (numbers of Strouhal, Froude, 

Mach and Reynolds) to be the same. 

Considering that with finite conductivity according to the Ohm’s law current 

density which is inducted by magnetic field is proportional to the relation 

𝜎𝑅0𝑈0 𝐵0~𝑗0 (74) 

we can gain from the (72) the magnet-hydrodynamic interaction criterion, whch 

express the relation of magnetic force from the inducted currents to inertial force 

𝑆0 =
𝜎𝑅0𝐵0

2𝑙

𝜌0𝑈0
= 𝑖𝑑𝑒𝑚           (75) 

So value is called magnetic-hydrodynamic interaction criterion. 

By non-dimensionalizing of the Ohm’s law terms: 

𝑗𝑥

𝑗0
=

𝜎𝑅0𝐸0

𝑗0

𝜎𝑅

𝜎𝑅0
[

𝐸𝑥

𝐸0
+

𝑈0𝐵0

𝐸0
(

𝑣𝐵𝑧

𝑈0𝐵0
−

𝑤𝐵𝑦

𝑈0𝐵0
)]  (76) 

If j0 is conductivity current in characteristic point; 𝑗0 = 𝜎𝑅0𝐸0. Then we 

have: 

𝑗𝑥

𝑗0
=

𝜎𝑅

𝜎𝑅0
[

𝐸𝑥

𝐸0
+

𝑈0𝐵0

𝐸0
(

𝑣𝐵𝑧

𝑈0𝐵0
−

𝑤𝐵𝑦

𝑈0𝐵0
)]  (77) 
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Here the relation of the current inducted by magnetic field to current of 

external electric field is determined with 𝜎𝑅 = 𝜎𝑅0 by non-dimensional criterion: 

П =
U0B0

E0
=

U0

E0\B0
=

U0

Wд
      (78) 

Here Wд is a drift velocity. The value 

 Э =
S0

П
 ,  (79) 

which characterizes the relation of the electromagnetic force from the current 

applied from the external to inertial forces, is called electric-hydrodynamic 

interaction criterion. 

By non-dimenionalizing of the magnetic induction equation (51) we have: 

𝑙

𝑖0𝑈0

𝜕
𝐵𝑥

𝐵0

𝜕
𝑖
𝑖0

=
1

𝜇𝐵𝜎𝑅𝑙𝑈0

[
𝜕2 𝐵𝑥

𝐵0

𝜕 (
𝑥
𝑙

)
2 +

𝜕2 𝐵𝑥

𝐵0

𝜕 (
𝑦
𝑙

)
2 +

𝜕2 𝐵𝑥

𝐵0

𝜕 (
𝑧
𝑙
)

2] +
𝜕2 𝑢𝐵𝑥

𝑈0𝐵0

𝜕 (
𝑥
𝑙

)
2 +

𝜕2 𝑢𝐵𝑥

𝑈0𝐵0

𝜕 (
𝑦
𝑙

)
2 +

𝜕2 𝑢𝐵𝑥

𝑈0𝐵0

𝜕 (
𝑧
𝑙
)

2 − 

− 
𝐵𝑥

𝐵0
[

𝜕2 𝑢

𝑈0

𝜕(
𝑥

𝑙
)

2 +
𝜕2 𝑣

𝑈0

𝜕(
𝑦

𝑙
)

2 +
𝜕2 𝑤

𝑈0

𝜕(
𝑧

𝑙
)

2]                                                                        (80) 

In the left side of (80) known non-dimensional criterion (Strouhal number) is 

placed. In the right side new non-dimensional multiplier appear. The inverse value 

of the multiplier is called magnetic Reynolds number: 

𝑅𝐻 = 𝜇𝐵𝜎𝑅𝑙𝑈0 =
𝑙𝑈0

𝑣𝐻
                     (81) 

This criterion characterizes relation of the magnetic field from the inducted 

currents to applied external magnetic field. Sometimes, relation of the magnetic 

Reynolds number to usual Reynolds number, i.e. magnetic Prandtl number, is used 

𝑃𝑟𝑚 =
𝑅𝐻

𝑅
= 𝜇𝐵𝜎𝑅𝑣 =

𝑣

𝑣𝐻
                     (82) 

which represents the relation of the common viscosity to magnetic viscosity. If the 

magnetic-hydrodynamic interaction criterion is multiplied on the Reynolds number 
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we get the relation of the magnetic force from the field inducted by magnetic 

current to the viscosity force: 

𝑆0𝑅 =
𝜎𝑅𝑙𝐵0

2

𝜌0𝑈0
 
𝑙𝑈0

𝑣
=

𝜎𝑅𝑙𝐵0
2

𝜌0𝑣
                    (83) 

Square root from this value is called Hartmann number 

На= 𝑙𝐵0 √
𝜎𝑅

𝜇
  84) 

Here 𝜇 = 𝜌0𝑣 is dynamic viscosity coefficient. during Hartmann number 

determination opposite channel dimension is used as characteristic dimension. 

Hartmann number is a main similarity criterion in such magnetic-hydrodynamic 

tasks where viscous forces acts prime role. 

Only three of listed additional criteria of magnetic hydrodynamics are 

mutually independent (for example, numbers П, На and Rн). The rest parameters 

(S, Э, Рrm) can be gained from the expressions mentioned above. 

At some values of the certain criteria system of the magnet hydrodynamics 

equations assume simplification. If Rн<1, magnetic fields from the inducted 

currents can be neglected and we can assume that current occurs only due to 

external magnet field action. Such flows take place in magnet hydro- and gas 

dynamics of channels (moving with presence of the electromagnetic fields of 

technical plasma or liquid metals in tubes, channels of magnetic pumps and 

magnetic gas dynamics generators of electric current) and in case of body 

bypassing when electric conductivity of the media is not large. 

If Rн> 1 magnetic field became frozen in media and move with it. 

This area of magnet gas dynamics finds its application in astrophysics which 

deals with very extensive spaces of very rarefied interstellar gases or with 

very heated conductive stellar material, which is heated to several millions 

degrees (for example, solar prominence). 

During the laboratory experiments with liquid metals Rн is usually equal to 

0,01—0,1, and Hartmann number can reach several hundreds. In experiments with 
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technical plasma (temperatures near 104 К) it is possible to reach Rн value equal to 

1, because П number can be more or less, than 1. 

10.4. Magnet gas dynamics equations for elementary jet. 

The conception of the elementary jet in magnet gas dynamics doesn’t find 

such universal application as in usual gas dynamics because only in several cases 

the values and directions of electric field intensity and magnetic induction vectors 

as well as vector of current density and electromagnetic force. 

There are two examples of magnet gas dynamics flow where elementary jet 

conception is strictly fair. 

1. Channel with a constant section area z = ±а, which is generated by two 

parallel walls where in the x direction electric conductive gas flow. The walls of 

the channel are opposite electrodes with infinite conductivity. Viscosity and heat 

conductivity are not taken into account. 

If difference of potentials are kept on the walls electric current 𝑗𝑧,which 

induces its own magnetic field, appears. Stream lines of such field are directed 

perpendicularly to the flow plane (to y axis) accordingly to Ampere rule. 

Flow in such channel is equivalent to flow of the elementary jet, which is 

placed in constant crossed electromagnetic fields W(u,0,0), E(0,0,Ez), B(0,𝐵𝑦 , 0), 

f(fx, 0,0). 

2. Uniform gas flow before and after magnet gas dynamics wave (with lines 

of magnetic induction, which are perpendicular to the flow direction). Let’s write 

the magnetic gas dynamics equations for elementary jet neglecting viscosity and 

heat conduction. Let’s consider fluid moving and magnetic field steady and vector 

[Е X В], which determines electromagnetic force work, is directed in parallel in 

velocity vector W. In this case vector flow [Е X В] is directed normally to opposite 

jet flow. 

As it is known from the field theory 

𝑑𝑖𝑣[𝐸 𝑥 𝐵] = lim
∆𝑣→0

1

∆𝑣
∫ [𝐸 𝑥 𝐵]𝑛𝑑𝑆

𝑆
   (85) 
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where ∆𝑣 is volume, which is seized by the closed surface S. Vector [Е X В] п 

flow is directed through this surface and n is external surface normal to a surface S. 

In our case, with infinity small volume ∆𝑣 we have 

∫ [𝐸𝑥𝐵]𝑑𝑆 = ∆([𝐸𝑥𝐵]𝑙𝐹)
𝑆

 . (86) 

Here F is a flow section area, l index points to vector [Е X В] projection to 

stream line. Volume of the jet with dl length is equal to dv=Fdl, so 

𝑑𝑖𝑣[𝐸 𝑥 𝐵] =
1

𝐹

𝑑

𝑑𝑙
[(𝐸 𝑥 𝐵)𝑙𝐹] (87) 

Substituting this expression to the energy equation (94) b considering that 

W=dl\dt we have: 

𝜌𝑊𝐹
𝑑𝑖∗

𝑑𝑙
= −

1

𝜇𝐵

𝑑

𝑑𝑙
([𝐸 𝑥 𝐵]𝑙𝐹) (88) 

Because fluid mass flow rate 

𝜌𝑊𝐹 = 𝐺𝑐𝑒𝑘 = 𝑐𝑜𝑛𝑠𝑡  (89) 

along the stream line doesn’t change, after integration we have: 

𝜌𝑊𝐹𝑖∗ +
1

𝜇𝐵
[𝐸 𝑥 𝐵]𝑙𝐹 = 𝑐𝑜𝑛𝑠𝑡 . (90) 

From this expression we get effective value of total heat content 

𝑖𝑐
∗ = 𝑖∗ +

[𝐸 𝑥 𝐵]𝑙

𝜇𝐵𝜌𝑊
= 𝑐𝑜𝑛𝑠𝑡     or  𝑖𝑐

∗ = 𝑖 +
[𝐸 𝑥 𝐵]𝑙

𝜇𝐵𝜌𝑊
+

𝑊2

2
= 𝑐𝑜𝑛𝑠𝑡    (91) 

So, effective value of the total heat content 𝑖𝐵
∗ , which include electromagnet 

energy, remains constant along the stream line, if electromagnetic energy flow is 

directed along velocity vector. 

In case of E=0 or if vectors of electric magnetic fields intensity are parallel, 

equation (91) represents total heat content continuity condition for energetically 

isolated jet. Vector E can be excluded from the energy equation. 

Е=(v H ro tB-[W x  B])   (92) 
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which leads to 

[Е X В] = (VH [гоtB X В] – {[W X В] X В}). (93) 

In projection to stream line direction we get: 

[Е X В]x={VH[rotBxB]x+u(By
2+Bz

2)}   (94) 

Here assumed that x axis is directed along the jet (v= w=0). Substituting last 

expression in (91) we get energy equation for jet if Е_|_W and B_|_W: 

𝑖𝑐
∗ = 𝑖∗ +

𝑣𝐻

𝜇𝐵𝜌𝑊
[𝑟𝑜𝑡𝐵 𝑥 𝐵]𝑥 +

𝐵2

𝜇𝐵𝜌
= 𝑐𝑜𝑛𝑠𝑡    (95) 

Expression (95) can be simplified because all parameters in the opposite 

section of the elementary jet are considered constant. Indeed in this case (V = w = 

Вх = Вz = Ех = Еу = 0, т. е. W= и, В = Ву, Е = Еz) terms of the magnetic 

induction rotor: 

𝑟𝑜𝑡𝑥𝐵 =
𝜕𝐵𝑧

𝜕𝑦
−

𝜕𝐵𝑦

𝜕𝑧
= 0,   

𝑟𝑜𝑡𝑦𝐵 =
𝜕𝐵𝑥

𝜕𝑧
−

𝜕𝐵𝑧

𝜕𝑥
= 0,    (96) 

𝑟𝑜𝑡𝑧𝐵 =
𝜕𝐵𝑦

𝜕𝑥
−

𝜕𝐵𝑥

𝜕𝑦
=

𝜕𝐵

𝜕𝑥
     

and term of the vector product 

[гоt В X В]x = (гоty В) Bz – (rotz В) Вy=-B
𝜕𝐵

𝜕𝑥
= −

1

2

𝑑𝐵2

𝑑𝑥
  (97) 

Substituting this expression to (95) we can get the next form of the energy 

equation for the jet placed in the crossed electromagnetic fields: 

𝑖𝑐
∗ = 𝑖∗ +

𝑣𝐻

𝜇𝐵𝜌𝑊

𝑑𝐵

𝑑𝑥
+

𝐵2

𝜇𝐵𝜌
= 𝑐𝑜𝑛𝑠𝑡    (98) 
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If gas has a very high conductivity (𝜎𝑅 → ∞, 𝑣𝐻 → 0), last term in the (98) 

equation can be neglected. After that condition of effective total heat content 

continuity for jet in crossed fields is written as 

𝑖𝑐
∗ = 𝑖∗ +

𝐵2

𝜇𝐵𝜌
= 𝑐𝑜𝑛𝑠𝑡        (99) 

Magnetic induction equation (51) applied to elementary jet is significantly 

simplified. 

Only one term of the current density in energy equation in crossed 

electromagnetic field (Вх = Вz = Ех = = Еу = v = w = д/ду = д/дz = 0, W = и, 

В =By, Е = Ег , j =jz) is saved 

𝑗𝑧 = 𝜎𝑅(Еz + иВу) .     (100) 

From the Maxwell equation (27) for stationary field  (дВ/дt = 0) we have 

Е =Е z = const                  (101) 

and from the Maxwell equation (22) we have 

𝑗𝑧 =
1

𝜇𝐵
𝑟𝑜𝑡𝑧𝐵 =

1

𝜇𝐵

𝑑𝐵𝑦

𝑑𝑥
    (102) 

Here we have induction equation for jet in opposite crossed field 

𝑢𝐵𝑦 =
1

𝜇𝐵𝜎𝑅

𝑑𝐵𝑦

𝑑𝑥
+ 𝑐𝑜𝑛𝑠𝑡        (103) 

where  

const = —Еz     (104) 

If the gas conductivity is very high ((𝜎𝑅 → ∞), magnetic induction for 

elementary jet placed in the opposite magnetic field equation transform to very 

simple form: 

иВу =const     (105) 
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In case of non-viscous fluid (𝜇 = 0, р = const) it is possible to gain another 

energy equation form for elementary jet. Motion equation (49) is used for this 

purpose which in projection to jet direction (W=u, v = w = 0) with opposite 

magnetic field (В = Bу, Вх = Вz = 0) has a next form: 

𝜌𝑢
𝜕𝑢

𝜕𝑥
= −

𝜕

𝜕𝑥
(𝑝 +

𝐵2

2𝜇𝐵
)       (106) 

After integration of (106) we have 

𝑝𝑐
∗ = 𝑝 + 𝜌

𝑢2

2
+

𝐵2

2𝜇𝐵
= 𝑐𝑜𝑛𝑠𝑡       (107) 

or 

𝑝𝑐
∗ = 𝑝∗ +

𝐵2

2𝜇𝐵
= 𝑐𝑜𝑛𝑠𝑡.     (108) 

Equation (108) is Bernoulli equation for the jet of incompressible electric 

conductivity fluid which is placed in opposite magnetic field. The third term of this 

equation is called magnetic pressure 𝑝𝑚 =
𝐵2

2𝜇𝐵
. After summarizing of the рт with 

total pressure р* we get effective total pressure 𝑝𝑐
∗ which is constant along the jet 

length. 

If jet is affected by the direct-axis magnetic field (В = ВХ, Ву = Вz = 0), 

integration of the (49) equation lead to usual (hydraulic) form of the Bernoulli 

equation: 

𝑝 + 𝜌
𝑢2

2
= 𝑝∗ = 𝑐𝑜𝑛𝑠𝑡    (109) 

because during this: 

−
𝜕

𝜕𝑥
(

𝐵2

2𝜇𝐵
) +

1

𝜇𝐵
 𝐵𝑥  

𝜕𝐵𝑥

𝜕𝑥
= 0        (110) 

Let’s compose momentum equation for jet placed in the electromagnetic 

fields. Common form of the momentum equations for elementary jet is fair for all 

cases of motion: 
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𝑃𝑥 = 𝐺(𝑢2 − 𝑢1)     (111) 

Taking magnetic field action into account is that projection of the total force 

is divided into two parts: 

Рх = Рхр + Рхт,     (112) 

where Рхр is a projection of the all hydrodynamic forces, Рхт is a projection of 

electromagnetic volumetric forces, applied on the jet 1-2 area. 

Projection of the electromagnetic force, applied to the elementary volume, 

according to (34) is equal to 

𝑓𝑥 = [𝑗 𝑥 𝐵]𝑥 =
1

𝜇𝐵
[𝑟𝑜𝑡 𝐵 𝑥 𝐵]𝑥   (113) 

Projection of the force, acting on the elementary volume, on the x axis is 

equal to 

𝑑𝑃𝑥𝑚 = 𝑓𝑥𝐹𝑑𝑥    (113) 

here F is an area of the jet opposite section, dx is a length of its elementary area (in 

the direction of velocity vector u), 

Elementary force, acting on the jet 1-2 area, projection is 

𝑃𝑥𝑚 = ∫
𝐹

𝜇𝐵

2

1
[𝑟𝑜𝑡 𝐵 𝑥 𝐵]𝑥𝑑𝑥   (114) 

Electromagnet force, applied to the finite area of elementary jet of constant 

section with opposite magnetic field, is equal to 

𝑃𝑥𝑚 =
𝐹

2𝜇𝐵
(𝐵1

2 − 𝐵1
2)        (116) 

The force of the hydrodynamic pressure in this case is equal to: 

Рxm =F(p1-p2)     (117) 

Because of that momentum equation for elementary jet of constant section 

with opposite magnetic field has a next form: 
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Рхр + Рхт=G(u2-u1)     (118) 

Here, according to continuity equation (G= ρuF = 𝑐𝑜𝑛𝑠𝑡) we have: 

𝑝1 − 𝑝2 +
(𝐵1

2−𝐵1
2)

2𝜇𝐵
= 𝜌1𝑢1(u2 − u1) = 𝜌2𝑢2

2 − 𝜌1𝑢1
2   (119) 

Introducing effective pressure, which is equal to hydrodynamic and 

magnetic pressure sum, to (119) equation 

𝑝𝑐 = 𝑝 + 𝑝𝑚 = 𝑝 +
𝐵2

2𝜇𝐵
 (120) 

we transform momentum equation for the elementary  jet of constant section with 

opposite magnetic field to next simplest form: 

𝑝𝑐1 + 𝜌1𝑢1
2 = 𝑝𝑐2 + 𝜌2𝑢2

2        (121) 

Sometimes, it is comfortable to present momentum equation in the next 

form: 

𝑝 +
𝐵2

2𝜇𝐵
+ 𝜌 𝑢2 = 𝑐𝑜𝑛𝑠𝑡    (122) 

Momentum equation (122) on the contrary from the Bernoulli equation 

(108) is suitable not only for incompressible fluids but also for gases, i.e. media 

with changing density. 

10.5. Action inversion condition for gas flowing in the electromagnetic field 

Let’s consider steady 1-d flow (W(x) = (и, 0, 0)) of non-viscous and non-

heat-conductive gas with finite conductivity in opposite crossed magnet and 

electric fields. 

Assuming, that inducted magnetic field can be neglected, let’s specify 

distribution of the section-mean values of the electric field intensity and magnetic 

induction along the channel with changing section length Е(x) = (0, Еу, 0), В(x)= 

(0, 0, Вz). It allows solving the task without introducing Maxwell’s equations. 
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Derivating continuity equation 

ρuF = const = G      (123) 

by the direction of motion we get 

1

ρ

𝑑ρ

𝑑𝑥
+

1

u

𝑑u

𝑑𝑥
+

1

F

𝑑F

𝑑𝑥
= 0      (124) 

Similarly from the condition equation for ideal gas we have 

𝑑ρ

𝑑𝑥
= 𝑅ρ

𝑑𝑇

𝑑𝑥
+

𝑎2

k

𝑑ρ

𝑑𝑥
     (125) 

Motion equation (49) for 1-d flow of non-viscous and non-heat-conductive 

gas with opposite electromagnetic fields can be transformed to form of: 

ρu
𝑑u

𝑑𝑥
+

𝑑p

𝑑𝑥
= 𝜎𝑅[𝐸 − 𝑢𝐵]𝐵     (126) 

Energy equation of such 1-d flow we get from (63) and (54) 

ρu
𝑑i∗

𝑑𝑥
= 𝜎𝑅[𝐸 − 𝑢𝐵]𝐸          (127) 

Considering that i*=i+u2\2 , R=cp-cv and ср = ксv energy equation (127) with 

при ср = соnst has a next form: 

𝑘

𝑘−1
𝑅𝜌𝑢

𝑑𝑇

𝑑𝑥
+ ρu2 𝑑u

𝑑𝑥
= 𝜎𝑅𝐸[𝐸 − 𝑢𝐵]    (128) 

In these equations all parameters depend only on velocities of the magnetic 

and electric fields with и(х) velocity directed to x axis and intensities of the 

magnetic and electric fields are directed perpendicularly to each other and to 

motion direction. Let’s consider functions Вz and Еу and also F(x) as describing 

channel section area are set. 

System of equations (124)-(127) in common case cannot be solved in 

explicit form but it helps to determine how velocity and Mach number derivatives 

depend on main task parameters. 

Excluding from (125) and (129) temperature gradient we gain: 
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𝑘

𝑘−1
(

𝑑𝑝

𝑑𝑥
−

𝑎2

𝑘

𝑑𝜌

𝑑𝑥
) + 𝜌𝑢

𝑑𝑢

𝑑𝑥
=

𝜎𝑅𝐸

𝑢
[𝐸 − 𝑢𝐵]     (129) 

Substituting density gradient in this expression by (124) we get an 

expression: 

(𝑀2 − 1)
1

𝑢

𝑑𝑢

𝑑𝑥
=

1

𝐹

𝑑𝐹

𝑑𝑥
−

𝑘

𝜌𝑎2

𝜎𝑅𝐸

𝑢
(

𝐸

𝐵
− 𝑢) (

𝐸

𝐵

𝑘−1

𝑘
− 𝑢)   (131) 

which shows how changing of the section area and factor that reflect 

electromagnetic field behavior (second term in the right side) influence on 

changing of the velocity along the channel length. 

If electromagnetic field is absent, equation (131) is transformed into the 

known relation for the Laval nozzle. If terms which characterize changing of the 

mass flow rate, friction work, addition of heat and mechanical work are added 

equation (131) by some elementary transformations can be transformed to inverse 

condition. 

(𝑀2 − 1)
1

𝑢

𝑑𝑢

𝑑𝑥
=

1

𝐹

𝑑𝐹

𝑑𝑥
−

1

𝐺

𝑑𝐺

𝑑𝑥
−

1

𝑎2

𝑑𝐿

𝑑𝑥
−

𝑘 − 1

𝑎2

𝑑𝑄нар

𝑑𝑥
−

𝑘

𝑎2

𝑑𝐿тр

𝑑𝑥
− 

𝑘

𝜌𝑎2

𝜎𝑅𝐸

𝑢
(

𝐸

𝐵
− 𝑢) (

𝐸

𝐵

𝑘−1

𝑘
− 𝑢)   (132) 

The term, which takes electromagnetic action into account, in equation (132) 

is differ from the rest terms of this expression because it includes the values of real 

parameters rather than their derivates and, besides, his value depends on absolute 

gas velocity and pressure values and its sign is determined by product of two 

differences: the first is difference between gas velocity и and drift velocity 

WД=Е/В, and the second one is difference between gas velocity and next velocity 

𝑈1 =
𝐸

𝐵

𝑘−1

𝑘
= 𝑊Д

𝑘−1

𝑘
    (133) 

Thereby, if all actions except for the electromagnetic are neglected, i.e. 

considering ideal 1-d flow in the heat isolated channel of constant section with 



123 

presence of crossed electromagnetic fields, inverse condition for velocity derivate 

can be written as: 

(𝑀2 − 1)
𝑑𝑢

𝑑𝑥
= −𝜎𝑅𝐸

𝑘

𝜌𝑎2
(𝑢 − 𝑈1)(𝑢 − 𝑊д) =

𝜎𝑅𝐵2

𝑝
(𝑢 − 𝑈1)(𝑢 − 𝑊д) (134) 

During the gas flow with drift velocity inducted electric field is equal and 

opposite to applied that results in absence of the current through the gas and 

magnetic hydrodynamic interaction. As it can be seen, with constant value of the 

electromagnetic action the sign of velocity derivate is changed during the transfer 

from the subsonic flow (М<1) to supersonic (М>1) and vice versa. 

Inverse condition for Mach number derivate along the channel length can be 

expressed the same way. In case of dF\dx≠ 0  we have similar to (131) expression: 

(𝑀2 − 1)
1

𝑀(1+
𝑘−1

2
𝑀2)

𝑑𝑀

𝑑𝑥
=

1

𝐹

𝑑𝐹

𝑑𝑥
−

𝑘

𝜌𝑎2

𝜎𝑅𝐵2

𝑢
(

𝐸

𝐵
− 𝑢) (

𝐸

𝐵

1+𝑘𝑀2

2𝑘

𝑘−1
+𝑘𝑀2

− 𝑢)   (135) 

For channel with constant section (dF\dx=0) we have: 

(𝑀2 − 1)
1

(1 +
𝑘 − 1

2
𝑀2)

𝑑𝑀

𝑑𝑥
= −

𝑘

𝜌𝑎3
𝜎𝑅𝐵2(𝑢 − 𝑊д)(𝑢 − 𝑈2) = 

− 
𝜎𝑅𝐵2

𝑎𝑝
(𝑢 − 𝑈2)(𝑢 − 𝑊д)   (136)  

where 

 𝑈2 = 𝑈1
1+𝑘𝑀2

2+(𝑘−1)𝑀2
= 𝑊д

1+𝑘𝑀2

𝑘𝑀2+
2𝑘

𝑘−1

 (137) 

Thereby. in expression for dM/dx new characteristic velocity U2 which 

value depends on Mach number appear. 

With the help of (135) and (136) diagram of possible 1-d gas flow regimes 

in crossed electric and magnetic fields. Velocity values are on the horizontal axis 

and Mach number values are on the vertical axis. Direct lines и=U1,u=Wд, M=1 

and curve U2(М) divide plane on the next areas: 
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Consider u and M known in some section x. During displacement along x 

axis this parameters are changing in such way that in the areas A1, В2 and D1 

displacement takes place to the left and down, in the areas А2, В1, В2 — 

displacement takes place to the up and in the areas С1 и С2  – to the left and up. 

 

 

Fig. 10.1. Possible regime of the 1-d flow in crossed electromagnetic fields 

 

From the equation (194) it is known, that on the lines и = WД and и = U1 

smooth transfer across the value of М =1 in the first point in the M increasing 

direction and in the second similar transfer in the M decreasing direction is 

possible. 

In the С1 and C2 areas flow acceleration with decreasing of the M number 

takes place. Here speed of sound increases faster than flow velocity. 
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The received results are easily explained if we note that electromagnetic 

field influence to the gas flow results in mechanical work of electromagnetic force, 

applied to an elementary volume 

—F ∙ W = —W ∙ [j X В]   (138) 

and in addition of the Joule heat. The total energy with taking this heat into 

account in elementary volume will be equal to 

𝑄𝐻 = 𝐸𝑗 (139) 

In considered 1-d case the relation of mechanical work to total energy is 

equal to 

П =
𝜎𝑅[𝐸−𝑢𝐵]𝑢𝐵

𝜎𝑅[𝐸−𝑢𝐵]𝐸
=

𝑢

𝑊д
   (140) 

If и > Wд mechanical work of the electromagnetic force exceed changing of 

the gas total energy, i.e. mechanical work is partially transfer to electromagnetic 

field energy in the form of current, which can work in the outer circuit of the 

generator. If u<Wд, energy of the electromagnetic field is transferred to a gas as 

mechanical work or heat (pump or accelerator). 

In first case electromagnetic force is directed against gas motion, in the 

second –case it is directed along the gas motion. In the second case, if П close to 1, 

field action is represented by electromagnetic forces work, and if if П close to 0, 

they are represented by heat adding. 

If и=U1, i.e. П = U1/WД, heat and mechanical actions of the electromagnetic 

fields are compensated. That’s why gas velocity doesn’t change (dи/dх =0). If и = 

WД both actions are equal to 0 so dи/dх = 0 again. Line и = U2 feature is that in the 

point of its intersections with u(М) curves changing of the speed of sound values 

are proportional to gas velocity values changing, so Mach number derivate by 

channel length is always equal to 0 if u = U2. Transfer across the и =U2 on the fig. 

13.20 line is possible only in vertical direction (if M=const). 
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Chapter 11. NUMERICAL METHODS IN GAS DYNAMICS 

11.1 Analysis of the fluid motion equation and methods of its solving 

Fluid mechanics is based on the assertions of classical Newtonian 

mechanics, thermodynamics, and the hypothesis of continuity. 

The first assertion implies that the study of motion with velocities small 

compared to the speed of light, and macroscopic objects are considered whose 

dimensions are much greater than the size of the microcosm. 

The second assertion suggests that in a neighborhood of each point the liquid 

is in a state of thermodynamic equilibrium or close to it, so you can use the 

thermodynamic laws. 

Finally, the third statement involves replacing the real fluid (gas) with its 

discrete molecular structure model of continuous distribution of matter on the 

considered volume. According to the hypothesis of the continuity the fluid is 

modeled by a continuous solid medium. From a mathematical point of view this 

means that the functions characterizing the state of the environment should be 

sufficiently smooth, ie, continuous and differentiable in space and time. 

Discontinuity is allowed only on separate lines or surfaces. Continuity hypothesis 

combines liquids and gases in a single category of fluid easily deformable media. 

In solid mechanics either concentrated or distributed forces are considered. 

In fluid mechanics only distributed forces are applied because concentrated force 

application leads to fluid discontinuity. 

To characterize the mass forces entered the stress vector of mass forces J, 

having the dimension of acceleration. Expanding the vector J along the coordinate 

axes (unit vectors), we obtain: 

J = iX+ jУ + кZ, 

where X, Y, Z – the projection of the mass forces on the coordinate axes (single 

mass forces), and i, j, k – unit vectors. 
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During mass forces considering stress vector of the surface force in the fluid 

point pn, numerically equal to pressure, is introduced. 

In general, the pn depends not only on the position of the point on the surface 

(the coordinate x, y, z) and time t, but also on the orientation in space area S, i.e. 

 ) , , , ,( ntzyxpn




. 

 

 

Fig. 11.1 – Elementary volume 

 

Consequently, рn stress is not usual vector because it can reach different 

values depending on area placement. If its position is fixed, рn will be usual vector 

wich can be expanded along coordinate axes. For example, area perpendicular to 

Oх axis is chosen. Stress vector pn = pх in common case doesn’t coincide with 

surface normal n direction (in this case with Oх axis direction) and can be 

expanded on normal ху and tangent xz terms рx = iх + jху + кхz. The second 

index of tangent stresses point to axis in which direction stress  is projected. 

With area perpendicular to the axes y and x, we get two more expansions 

stress: 

py = ix + jy + yz, 

pz=izx + jzy + кz. 
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At an arbitrary location of the site with the outward normal n vector рn can 

be expressed in terms of vectors рх, ру, рz by the following relation: 

pn = npnn = pxcos(nx) + py cos(ny) + pzcos(nz) 

Projecting рn  on coordinate axes, we get 

pnx = xcos(nx) + yxcos(ny) + zxcos(nz), 

pny = xycos(nx)+ ycos(ny)+zycos(nz), 

pnz = zxcos(nx) +  yzcos(ny) +  zcos(nz). 

Physical value which is characterize in that point by рn vector, which takes 

on different values depending on the orientation of the area, is called the tensor. 

Thus, the surface tension is determined by nine scalar quantities х, у, z,  ху, хz, 

ух, уz, zх, zу. Stress tensor at an arbitrary point in space has the symmetry 

property (Cauchy's theorem of reciprocity of shear stresses), that is, ху =уz,  

zх = zх, zу = уz. 

Consequently, the surface tension is determined by not nine but six scalar 

values. 

Occurrence of shear stresses in a fluid is caused by its toughness and 

movement (relative displacement). 

In motionless liquid, as well as in a moving fluid devoid of viscosity (perfect 

fluid), the shear stresses are zero (xy = yz = zx = 0) and surface forces are 

determined only by the normal stresses  x,  y,  z, independent of the orientation 

of area, i.e. x, у, z= –рnn. 

Euler equations of motion for an ideal fluid in a Cartesian coordinate system 

have the form: 
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1

1

1

х

у

z

dc p
X

dt x

dc p
Y

dt y
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 (11.2) 

Considered equations (11.1), (11.2) are the mathematical expression of the 

conservation of momentum law at each point of the liquid element: the rate of 

change of momentum vector is the sum of all the mass and surface forces acting on 

the fluid element. 

The system of differential equations of motion of the Euler (11.2) with 

partial derivatives of the unknown functions (the projection of the velocity vector 

сx, сy, сz, density  and the pressure p) is not closed in the sense that the number of 

unknown functions exceeds the number of equations. In addition, the system of 

equations is nonlinear: unknown functions and their partial derivatives are included 

in the form of products. 

To close the system we use differential equation of continuity 

     
0

yx z
cc c

t x y z

    
   

   
. (11.3) 

This equation reflects the law of conservation of fluid mass and the 

condition of continuity, so takes place not only for perfect, but for a viscous fluid. 

For an incompressible fluid (p = const) from (11.3) we have: 

 0
yx z

cc c

x y z

 
  

  
. (11.4) 



130 

Incompressible fluid motion equations, written with taking viscosity into 

account, are significantly complicated in comparison with (11.2) system of 

equations: 
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Written motion equations, which are called Navier Stokes equations, are 

united to one vector equation if Laplace operator is used: 

. 

For the mathematical formulation of the problem Euler and Navier Stokes 

equations must be supplemented by the continuity equation and other 

dependencies. For specific tasks it is necessary to determine the initial and 

boundary conditions. For an incompressible viscous fluid boundary conditions 

result from the hypothesis of liquid adhesion to the streamlined surface, according 

to which both the normal and tangential components of the velocity on the surface 

of the body vanish. Experiments show that this hypothesis is correspond to reality 

and is broken only at a strongly rarefied gases flow of solid surfaces. 

For homogenous liquid with the absence of the free surface, mass forces are 

balanced by hydrostatic lifting force and, if pressure is difference between real 

pressure and stand-by pressure, these forces are excluded from the motion 

equation. So we have: 
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Differential equations of motion of the Navier-Stokes equations for a 

viscous incompressible fluid with constant viscosity contain the same dependent 

variables of Euler: сx, сy, сz, p, which are included in differential equations for an 

ideal incompressible fluid. The difference between these equations is only in the 

fact that in the right sides equations systems, an additional term equal to the 

product of the dynamic viscosity coefficient  on Laplace operator from the 

respective projections of the velocity vector appears. 

Thus the introduction of viscosity resulted in an increase in of the order of 

partial derivatives of the velocity vector projection, and changing in the boundary 

conditions. If for ideal fluid it was enough to streamline the solid surface to 

introduce the conditions of impermeability and unseparated liquid particles, then 

for a viscous incompressible fluid it is necessary to introduce the condition for the 

fluid particles sticking to the impenetrable solid surface, i.e., vanishing full speed. 

Based on the above it follows that the equations of motion of Euler and 

Navier Stokes equations in general, cannot be integrated. 

However, with some additional conditions, such integration is possible. 

Thus, the simplest problem of the flow of an ideal fluid efficiently solved using the 

methods of the theory of functions of a complex variable. Exact solutions of the 

Navier-Stokes equations for some particular cases also available. These decisions 

relate to problems in which all the inertial terms on the left side of equations 

disappear. In particular, this property have so-called layered flow, which is a sign 

of the presence of only one component of the velocity. If this component is the 

velocity cх and components cу and cz are zero, then the continuity equation implies 

that 0




x

xс  and, consequently, сх  is independent from the x coordinate. Thus, for 

layered flows have 

cx = cx(y,z), cy = 0, cz = 0,  

and instead of the full non-linear system of equations (11.2) we obtain for the 

steady (stationary) flow linear differential equation for the velocity cx(y,z) 

0, 0
dp p

y z


 

 
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Note that since a ratio on the left is a function of the x coordinates, and the 

right – the function of the coordinates y and z, then the equality of these functions 

is only possible at a constant pressure gradient, i.e., const
dz

dp
. 

Using equation we obtain exact solutions of the equations of motion for the 

Navier-Stokes cases: a plane-parallel flow in a channel bounded by two parallel 

flat walls; Couette flow and layered motion of an incompressible fluid in the pipes. 

In the first case, the flow rate of cх does not depend on the coordinate z. Couette 

flow takes place between two parallel plates, one of which moves with constant 

velocity cxo. This case differs from the previous one only by the boundary 

conditions. Layered motion of an incompressible fluid in pipes has axial 

symmetry. The solution of the problem is simplified by using the equations of 

motion of the Navier-Stokes equations written in cylindrical coordinates. 

Application of the equations of motion of the Navier-Stokes equations to a 

variety of other cases of viscous incompressible fluid flows created great 

difficulties because of their non-linearity. This forced many researchers to explore 

the possibility of using not complete exact equations of motion, but simplified 

approximate differential equations. 

For example, for some tasks inertial forces can be very small compared to 

the viscous forces. Discarding all terms in the equations on the left side we came 

instead of the nonlinear system to an inhomogeneous Poisson linear equations 

whose solutions are known. This way of linearization is most simple, but it is 

applicable to a very slow creeping flow. 

Another example relates to simplification of equations of flow at high 

Reynolds numbers. In this case, you can use the method of comparative 

assessments of the terms in the Navier-Stokes equations, and on that basis try to 

simplify the original system, omit the terms that have a relatively small order. Such 

simplification was proposed by Prandtl in 1904 for the flow region, located 
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directly near the surface. This was the basis for the establishment and further 

development of the theory of the boundary layer. Differential equations follow 

from the boundary layer of the Navier-Stokes equations. 

Turbulent motion is the most common form of the motion of liquids and 

gases in nature and technical devices. However, quite universal and valid methods 

for calculating turbulent flows do not exist, despite the fact that it was researched 

for nearly one hundred years. 

Semi-empirical theory of turbulence are used mainly for flows of boundary 

layer (wall surface and jet). Problems with complex internal structure (spatial 

flows, separated flows and others.) by using semi-empirical theories are hardly 

calculated. This is due to the following reasons: the complexity of the 

mathematical description of the mechanism of the phenomenon, limited 

possibilities of the traditional trends in the theory of turbulence, as well as the lack 

of necessary detailed experimental data. Obviously, the new approaches in the 

theory of turbulence are necessary. 

Currently, there are two points of view of the mathematical description of 

the developed turbulent flow. According to the first of them, based on the 

fundamental ideas of O. Reynolds, equations of Navier-Stokes are taken as basis 

and they are added by lacked relations of turbulent flow. The second view is that 

the turbulent motion is the random process, and hence the equations describing it 

must be prepared on a statistical basis. 

Brief analysis on the example of the equations of fluid motion allows noting 

that, in dealing with complex nonlinear problems of deformable continuum, 

classical methods of mathematical analysis of continuous functions for obtaining 

quantitative information are mostly unusable. 

11.1. Summary of numerical methods 

As we know fluid flows can be described by the system of partial differential 

(or integral-differential) equations, which cannot be solved analytically, except in a 

few special cases. Its approximate solution in digital form can be obtained by 
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sampling, which approximates the differential equation system of algebraic 

equations. They then can be solved by a computer. An approximation is applied to 

small areas in space and / or time. Thus, the results of the numerical solution are 

provided at discrete points in space and time. The accuracy of the numerical 

solutions depends on the degree of perfection of the used sampling methods. 

11.1.1 Possibilities and limitations of numerical methods 

When using numerical methods of mathematical physics it is always 

necessary to remember the fact that the results are always approximate numerical 

solutions. There are several reasons for the discrepancies between the results of 

calculations and the actual physical process. Errors accumulate in each part of the 

process used to obtain numerical results: 

 the original differential equations involve assumptions, due to an 

idealization of real physical processes; 

 algebraic equations involve approximation error obtained during the 

sampling of differential equations; 

 in the solution of algebraic equations iterative methods are used. 

When the calculation equations are exact analytical solutions (e.g., the 

Navier-Stokes equations for incompressible Newtonian fluids), the calculation 

results can be obtained with any desired degree of accuracy. However, for many 

physical phenomena, such as turbulence, combustion, multiphase flow, the exact 

equation or impossible to formulate or impossible to get the exact numerical 

solution. Even if the numerical solution of the equation was accurate from a 

computational point of view, it would not be a good representation of reality. To 

test the adequacy of the models, it is necessary to attract the experimental data. 

Sampling error can be reduced by using a more accurate interpolation or 

approximation by averaging flow parameters within the smaller areas, but this 

increases the time and cost of obtaining solutions. Therefore, for the application of 

numerical methods in engineering problems it is necessary to find a compromise. 
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Compromises also necessary for solving discretized equations. Direct 

modeling, through which you can get the exact solution in practice is rarely used 

because it is too expensive computationally. Iterative methods for solving more 

common, but during their use it is necessary to take into account the errors due to 

incomplete convergence of the iterative process. 

11.2 The components of the numerical method 

11.2.1 Mathematical model 

The starting point of any numerical method – a mathematical model. It is a 

system of differential or integral-differential equations and boundary conditions. 

Everyone chooses the appropriate model for the target application (incompressible, 

non-viscous, turbulent, two – or three-dimensional flow, etc.). This model may 

include simplification of exact conservation laws. Method of solution is usually 

created taking into account the specifics of the system of equations. 

11.2.2 Method of sampling 

After mathematical model selecting it is necessary to choose appropriate 

sampling method, i.e. approximation method of the differential equations by 

system of algebraic equations for variables in some variety of discrete positions 

(points) in space and time. There are many of methods, most notable of which are: 

 finite difference method (CDM (FD)). The advantage of this method is 

its simplicity. The finite difference method is used by programs FlowEr, 

CIAM, TsAGI et al. 

 The Finite Element Method (FEM). The finite element method is used 

by programs Flotran, Flow Plus, Cosmos Flow et al. 

 finite volume method (FVM (FV)). The classical description of this method 

is given in. This method is used by programs CFX, Fluent, StarCD et al. 

Each method leads to the same solution if you are using a relatively dense 

mesh. However, some methods are more appropriate for specific classes of 

problems than others. 
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11.2.3 Coordinate system 

The conservation equations can be written in different forms, depending on 

the coordinate system used, and basis vectors. For example, you can choose 

coordinate system: Cartesian, cylindrical, spherical, curved, rectangular or non-

rectangular, which may be stationary or moving. Selection of the coordinate 

system depends on the nature of particular solved problem. The choice of 

coordinate system can also affect the sampling method and the type of finite 

element mesh. 

In addition, you need to select the starting point (the beginning of the flow), 

which will determine the vector and tensor (fixed or variable, covariant or 

contravariant, etc.). 

11.2.4 Estimated finite element mesh 

The positions of the discrete points, where variables are calculated, are 

determined by calculated finite-element mesh which is discrete visualization of the 

flow geometric area. It split calculated area into finite number of subsectors 

(elements, control volumes etc.). Calculated mesh can be structured or non-

structured. 

Classification of unstructured grid generation is shown in Fig 11.2. 

 

Fig. 11.2 – Classification of the finite-element meshes 
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Structural (regular) grids consists of rows of the grid, the elements of one 

kind do not cross each other and intersect each other branches of element only 

once. This allows numbering the line of the set sequentially. The position of any 

point of the mesh (or control volume) is uniquely defined within the area index in 

the two (in the two-dimensional field) or three numbers (three-dimensional field), 

for example (i, j, k). This is the most simple grid structure, as it is logically 

equivalent to the Cartesian coordinate system. Each point has four nearest 

neighbors in two dimensions and six in three-dimensional; one of the indices for 

each neighbor of the point P (the indices i, j, k) differs by ± 1 from the respective 

index P. This task of neighboring relations simplifies programming and the matrix 

system of algebraic equations is a regular structure that can be used in the creation 

of the method of solving. The disadvantage of structured grids is that they can be 

built only for simple geometric areas of solutions. Another disadvantage is the 

difficulty of controlling the distribution of grid points: a large concentration of 

points in a single area to ensure the accuracy of calculation results creates too 

small interval in other parts of the area of solutions and causes unnecessary 

Resource Costs. This problem is compounded in three-dimensional problems. 

Long, thin cells can also impede the convergence of the solution. 

11.2.5 Finite approximation 

After selecting of the grid type it is necessary to choose approximation 

algorithm which will be used in sampling process. In finite difference method 

approximations for derivates in the grid points must be selected. In finite element 

method shape forms (elements) and weight functions must be selected. 

Their selection will affect the accuracy of the approximation. This also 

applies to the difficulty of developing a method of solutions. More accurate 

approximations include more nodes and provide a more complete matrix. 
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11.2.6 Solution method 

The result of a sampling is a system with a large number of non-linear 

algebraic equations. 

For unsteady flows methods, which are based on using time-step differential 

equation solution with starting conditions, are applied. 

In each case in solution of elliptic task time step must be given. 

Steady tasks usually use quasi time step or equivalent iteration scheme.  

Since the equations are nonlinear, for their solution iterative scheme is used. 

These methods use a consistent linearization of the equations, and the resulting 

linear systems are almost always solved by iterative methods. 

The choice of method depends on the type of solutions and the number of 

grid nodes selected to approximate the derivatives in each of algebraic equations. 

11.2.7. Convergence criteria 

For iteration method it is necessary to establish convergence criteria. There 

are usually two levels of iteration: inner iteration within which linear equation is 

solved and outer iteration where solving is connected with non-linearity and 

equation mutual effect. It is important to decide when it is necessary to stop the 

iterative process in terms of accuracy and efficiency. 

11.3 Properties of numerical methods for solving 

11.3.1 Reliability 

Discretization is carried out the more accurate the closer the grid spacing 

tends to zero. The difference between the discretized equations and the exact 

solution is called the error of the method. It is usually estimated by replacing all 

values of a discrete approximation of the nodes in the Taylor series expansion at 

each point. As a result, the original differential equation is restored plus the 

remainder, which is the error of the method. To ensure the reliability of the 

method, method error tends to zero when the grid spacing t→0 and / or 
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xi→0. Error of the method is usually proportional to the grid interval xi and / 

or time step t. If the most important member is proportional to (x)n,, or (t)n 

method is called the nth-order approximation. For consistency n> 0 is required. 

Ideally, all members must be discretized with the approximation of the same order 

of accuracy; However, some members (such as convective members of the flow 

with high Reynolds number of diffusion members in the flow with low Reynolds 

number) may be dominant in the stream, and this calculation may require a higher 

accuracy than others.  

Some methods of sampling lead to errors in method, which is a function of 

xi to t or vice versa. In this case, the requirement of reliability is performed only 

if and when xi and t must be reduced in such way that the corresponding ratio 

tends to zero. 

Even if approximation is consistent, it does not necessarily mean that the 

solution of the discretized system equations will be the exact solution of the 

differential equation with unbounded size step reduction. In order to this to happen, 

the method of solution must be stable. 

11.3.2 Stability 

The decision of the numerical method is stable if it does not increase (not 

accumulate) errors that appear in the solution process. For non-stationary problems 

(problems with time dependence) stability ensures that the method gives the final 

decision whenever solution of the exact equation is limited in time. For iterative 

methods stable method is those which is not diverged. Stability can be difficult to 

diagnose, especially when the boundary conditions non-linearity are present. 

Therefore, the research of method stability for linear tasks is carried out with 

constant coefficient without boundary conditions. Experience shows that results 

obtained in this way can often be applied to more complex tasks, but there are 

exceptions.  

The most widely used method for the study of stability of numerical 

schemes is Neumann method. 
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11.3.3 Convergence 

A numerical method has convergence, if the solution of discretized 

equations tends to the exact solution of differential equations, when the grid 

spacing tends to zero. For linear problems with initial conditions a simple 

equivalence theorem (Richtmyer and Morton, 1967) states that "properly 

formulated linear problem with the initial conditions and approximations by finite 

differences, which satisfies the conditions of reliability and stability is a necessary 

and sufficient condition for convergence." Obviously, reliable scheme is useless if 

a method does not converge. 

For nonlinear problems, which are influenced by the boundary conditions, 

stability and convergence of the method are difficult to identify. Therefore, the 

convergence is usually tested using numerical experiments, ie repetition of 

computing grids upgraded consistently. If the method is stable and all 

approximation that used in discretization process are compatible, the solution 

converges to grid independent solution. For sufficiently small mesh sizes 

convergence value is controlled in accordance with the error of the main 

component. 

11.3.4 The conservation laws 

Since the equations of the Navier – Stokes equations are the conservation 

laws, the numerical scheme must comply with these laws, both the local and global 

level. This means that in the steady task an amount of matter which enters the 

volume is equal to amount of matter that leaves the volume. If rigid form of the 

conservation laws and finite volume method are used it guarantees conservation 

law accomplishment for any individual control volume and whole calculated area. 

Other methods of sampling may be less accurate in the implementation of 

conservation laws. 

It is an important property of the solution method because it determine the 

solution error. If mass, momentum and energy conservation laws are provided, 
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calculation error can be only in their inappropriate distribution in the calculated 

area. 

11.3.5 Limitations in the calculation 

Numerical solutions should be within the proper boundaries. Physically non-

negative parameters such as density, turbulent kinetic energy, must always be 

positive. Other parameters, such as concentration, should be in the range between 

0% and 100%. In the absence of sources, some of equations (for example, the heat 

equation for the temperature when heat sources are not available) require that the 

minimum and maximum values of the variables are in the range of values given on 

the borders of the region. These conditions must be taken into account by 

numerical approximation. 

Observance of these limits is difficult to guarantee. Below it will be shown 

that only some of the first order schemes ensure compliance with this condition. 

Schemes of higher order can lead to a change in the results of unlimited solution. It 

is usually occurs only in too large grids. Therefore, the solution results, which are 

placed outside pointed limitations, are indicators of the fact that solution errors are 

large and grid require modification (at least, locally). 

11.3.6. Adequacy 

Models of complex phenomena, which description includes turbulence, 

combustion or multiphase flow, must guarantee gaining of physically realistic 

solution. This is not a numerical problem per se, but the wrong model can lead to 

unphysical solutions or divergent iterative process. 

11.3.7 Accuracy 

Numerical methods of the fluid flow and heat exchange calculation give 

only approximate solutions. In additions for errors which can be admitted during 

solution algorithm development or boundary condition setting, the results of the 

numerical solutions always include three types of systematic errors: 
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 modeling error, defined as the difference between the experimental results 

and the results of mathematical model solution; 

 sampling error, defined as the difference between the exact solution of 

differential equations of conservation and the exact solution of the 

algebraic system of equations obtained by discretization of differential 

equations. 

 iterative error, defined as the difference between iterative and exact 

solution of the system of algebraic equations. 

Iterative errors are often called convergence errors. However, the term 

convergence is used not only in relation to the imperfections of the iterative 

procedure, but is also determined by the convergence of numerical solutions 

regardless of the grid and is connected to a sampling error. 

It is important to know about the existence of these errors, and, what's more, 

to distinguish one from the other. Various errors may cancel each other so the 

solution obtained on the coarse grid can be coordinated better with experiment than 

the solution obtained on the finer grid, which, by definition, must be more precise. 

Modeling errors depend on the assumptions made in the preparation of 

physical equations for the variables. They can be neglected in the study of laminar 

flow, as the Navier-Stokes equations represent sufficiently precise flow model. 

However, in turbulent flows, two-phase flow, combustion, etc., modeling error can 

be very significant. That is, even the exact solution of the equations can be 

qualitatively incorrect. Modeling errors are possible due to the simplification of 

geometry – area of solution, as well as due to the simplification of boundary 

conditions, etc. These errors are not known at once; their assessment can only be 

made by comparing the solution in which sampling and errors of convergence are 

insignificant with accurate experimental data or with the data obtained from more 

accurate models (for example, data obtained as a result of direct numerical 

simulation of turbulence, etc.). This comparison is very important to control the 

process of convergence and error estimates sampling to create models of physical 

phenomena. 
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11.4. Finite volume method 

11.4.1 Introduction 

When using the finite volume method, the solution space is divided into a 

grid on a finite number of small control volumes, which, in contrast to the finite 

difference method, defines the boundaries of the control volume, rather than 

compute nodes. 

Finite volume method uses as a starting point the integral form of the 

conservation equations: 

s s

ndS Гgrad ndS q d


         (11.1) 

The classic method is to determine the volume of the control grid and assign 

a compute node in the center of the control volume. However, the structured grids 

may also determine the location of first node, and then create control volumes 

around them, so that the control volume faces lie halfway between the nodes (see. 

Fig. 11.3). Nodes for which the boundary conditions imposed are shown as black 

dots. 

The advantage of the first method is that the value represents the average 

node value over the entire volume of volume control with higher precision (second 

order) than in the second method, because the node is located at the midpoint of 

the control volume. The second method is that the approximation of the derivatives 

on the faces of the control volume are more accurate in the middle of the edge 

between two nodes. In practice, the first option is often used. 

The principles of sampling are the same for all variants. The only thing that 

you need to take into account is the ratio between the different locations (points) 

within the scope of integration. 

Integral conservation equation (11.1) refers to every control volume as well 

as to whole solution area. If equations for every control volume are summarized 

we get global conservation equation because integrals by surfaces and inner faces 
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are balanced. Thus, global conservation is incorporated in method which provides 

to him one of the most important advantages. 

 

 

Fig. 11.3 Nodes centered in control volume 

 

To get algebraic equations for specific control volume, surface and volume 

integrals must be approximated by least square method. 

The typical 2-d and 3-d control volumes in Cartesian coordinates are 

presented on fig. 11.4 and 11.5. The surface of the control volume consists of four 

(in two-dimensions) or six (in three-dimensional) plane faces denoted in lower case 

letters corresponding to the their direction (e, w, n, s, t, and b) relatively to the 

central node (P). Dimensional version can be taken as a special case of three-

dimensional, in which the dependent variables are independent of z. 

Flow across the boundary control volume is the sum of the integrals over the 

four (in two-dimensional case) or six (in three- dimensional case) control volume 

faces: 

е
kS S

f dS fdS  , (11.2) 

where f is a component of convective n  or diffusive ( nÃgrad  ) flow vector in 

the direction normal to control volume face. 

Since velocity field and fluid properties are known, the only unknown 

variable is φ. If velocity field is unknown, the task became more complicated 

and includes double non-linear equations. 
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Fig. 11.4. Typical 2-d control volume in Cartesian coordinate system 

 

Fig. 11.5. Typical 3-d control volume in Cartesian coordinate system 

To maintain the conservation equations, it is important to control volumes 

not to be overlapped; each face of the control volume is the only for the two 

control volumes, which lie on both sides. 

Further, only ‘e’ face, which is typical for 2-d control volume shown on the 

fig. 1.3, will be considered. Similar expressions can be obtained for all facesby 

making the appropriate substitution of index. 

To accurately calculate the surface integral in equation (11.2), the only thing 

you need to know – is the integrand f  across the surface Se, which is not known. 

Once the values of the nodes φ (center of control volume) will be calculated, the 

approximation may be possible. This is best done by using two-level 

approximation: 
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 integral is approximated in terms of the variable values in one or more 

locations on the edge of the cell; 

 the nominal cell values are approximated in terms of the node (center of 

control volume) values. 

The simplest approximation for the integral is a midpoint rule: integral is 

approximated as the product of the integrand in the center of the face of the cell 

(which is itself an approximation to the average over the surface) and cell surface 

area: 

e e

e

e eS eS

S

F fdS f f   . (11.3) 

This approximation provides the integral value of f at the location of ' e ' and 

has a second-order accuracy. 

Since the value of f is not available in the center of the face 'e', it must be 

obtained by interpolation. To maintain the accuracy of the second order 

approximation of the midpoint rule surface integral value fe must be calculated 

with an accuracy of at least second order. 

Other second-order approximation of the surface integral for two-

dimensional case is a trapezoid rule: 

( )
2

e

e
e ne se

S

S
F fdS f f   .  (11.4) 

In this case it is necessary to estimate the flow in the corners of the control 

volume. 

To approximate the higher order surface integrals flow should be evaluated 

in more than two points. Fourth-order approximation is a Simpson rule that 

evaluates the integral over Se as: 

( 4 )
6

e

e
e ne e se

S

S
F fdS f f f    . (11.5) 

Here you need to know the values of f at the three points in the center of the 

face 'e' and the two corners of the 'ne' and 'se'. To maintain the accuracy of the 
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fourth order, these values should be obtained by interpolation of nodal values at 

least as accurate as a rule of Simpson. 

In 3-d case, midpoint rule is a simplest second-order approximation. In three 

dimensions, usually middle – the simplest approximation of the second order. 

Approximation of higher order, which require the integrand in locations other than 

center of the cell faces (e.g., corners and centers of the edges) are possible, but they 

are more difficult to implement. 

If f variation, as supposed, has some specific simple form (e.g., polynomial 

interpolation), integration is easy to do. Then, approximation accuracy depends on 

order of the shape function. 

11.4.3 Approximation of integrals over volume 

Some variables in the initial differential equations require integration over 

the control volume. The simplest approximation of the second order of accuracy is 

to replace the volume integral by the product of the average value of the integrand 

and volume control volume and to approximate the form as a value in the centre of 

the control volume: 

p pQ qd q q


      ,  (11.6) 

where qP replaces the value of q in the center of the control volume. This amount is 

easily calculated; since all the variables are available at the node P, and there is no 

need for interpolation. The above approximation becomes exact if q – constant or 

varies linearly within the control volume; otherwise, it contains the second-order 

error. 

Approximation of higher order requires values of q in more points than only 

in the center. These values must be obtained by interpolating the values in the 

nodes or equivalently, by using shape functions. 

In the two-dimensional formulation volume integral becomes the integral of 

surface. Fourth-order approximation can be obtained by using biquadratic shape 

function: 
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2 2 2 2 2 2

0 1 2 3 4 5 6 7 8( , ) .q x y a a x a y a x a y a xy a x y a xy a x y            (11.7) 

The nine coefficients obtained by adapting the function to the values of q at 

nine points ('nw', 'w', 'sw', 'n', P, V, 'ne', 'e' и 'se', look at fig. 1.3). The integral can 

then be calculated. In two dimensions, the integration gives (for grids in the 

Cartesian coordinate system): 

       
2 2 2 23 4 8

0
12 12 144

p

a a a
Q qd q x y a x y x y



 
               

 
 . (11.8) 

In this case only four coefficients must be determined, but they depend on 

the values of q in all nine of the above points. On a uniform grid in Cartesian 

coordinates, we obtain: 

16 4 4 4 4 4 4 4 4
36

p p s n w e se sw ne nw

x y
Q q q q q q q q q q

 
           .  (11.9) 

Since, the value exist only in P node, interpolation must be used to obtain q 

values in other points. It should be at least the fourth order of accuracy, holding 

precision of integral approximation. 

Aforementioned fourth order approximation of the volume integral in the 

two-dimensional case can be used to approximate the surface integrals in the three-

dimensional formulation. Approximation of higher order volume integrals in the 

three-dimensional case are more complex, but can be found by using the same 

methods. 

11.4.4 Interpolation and methods of differentiation 

Approximation to the integrals require variable values at points other than 

the compute nodes (control volume centers). Integrand, mentioned in previous 

sections as f, includes product of several variables and/or variable gradients in 

next points:  f =·n for convective flow and f =Гgrad·n for diffusive flow. 

Assuming that the velocity field Г and the properties of the fluid  are known 

in all points, to calculate the convective and diffusive flow, it is necessary to 

know the value φ and its gradient normal to a face of the cell in one or more 
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points on the surface of the control volume. Integrals by source terms volume 

can also require these values. The must be expressed by interpolation as values 

terms in nodes. 

11.4.4.1 Interpolation upstream 

Approximation of еφβ  by its value in the node, placed upstream than 'e', is 

equivalent to using the reverse or direct difference approximation for the first 

derivate. Consequently, this approximation can be called scheme of the upstream 

differences calculation (UD). In UD еφβ is approximated as: 












0)(

0)(

eE

ep
e

nvif

nvif






.  (11.10) 

This is only approximation, which unequivocally meets the criterion of 

restrictions, i.e., the use of this interpolation will never lead to oscillatory 

solutions. However, this is achieved by the numerical diffusion. 

Taylor series expansion for Р Ρ gives (for the grid in Cartesian coordinates  

(v · n)e> 0): 
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 
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P
PeÐe 
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




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
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










2

22

2


 , (11.11) 

where НΗ are variables of a higher order. Approximation UD saves only the first 

variable on the right side, so it is a scheme of the first level. The main error of the 

method is diffusion, i.e. it resembles the diffusion flux: 

e
e

d
e

x
Ãf 















 (11.12) 

Coefficient of the numerical, artificial or false diffusion is equal to Гe
num = 

(pu)ex/2. Then, the method error generates diffusion in the direction, normal to 

flow, as in the direction of flow, which causes serious error.  Peaks or rapid 

variations of the variables will be removed.  
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11.4.4.2. Linear interpolation (CD) 

Other direct approximation for the value in the center of the control volume 

faces is a linear interpolation between the two closest nodes. At the point 'e' of the 

grid in the Cartesian coordinate system we have (see. Fig. 11.4 and 11.5): 

(1 )е E e P e       ,  (11.13) 

where the linear interpolation factor å  is defined as: 

pE

pe
e

xx

xx




 . (11.14) 

Equation (11.11) is the equation of the second order of accuracy that can be 

shown by using a Taylor series expansion φβ at XP to remove the first derivative in 

equation (11.11): 

   2

2
(1 )

2

e P e P

е E e P e

P

x x x x
H

x

    
         

 
. 

The main error of the method is proportional to the square of the grid 

spacing on uniform or non-uniform grids. 

As with all approximations of order higher than the first order, this scheme 

can lead to oscillatory solutions. This is the simplest scheme of the second order. It 

is the most widely used. This scheme corresponds to central-difference 

approximation of the first derivate in finite differences method and is called CD. 

The assumption of a linear relationship between the nodes Ρ and Ε also offers a 

very simple approximation of the gradient, which is necessary to evaluate the 

diffusion fluxes: 

E p

e E px x x

  
 

  
. 

When using a Taylor expansion around e it can be shown that the error of 

the method of aforementioned approximation: 
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 
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

          
     

      
 

When the point 'e' is in the middle between the nodes Ε (for example, in a 

regular grid) and the approximation has an accuracy of second order, since the first 

term on the right-hand side vanishes, then a leading member of the residual time is 

proportional to (Δх)2. When the grid is not uniform, the leading error term is 

proportional to the product of х and grid expansion coefficient. Despite the 

formal accuracy of first level in this circuit there is a decrease to improved grid 

errors, like a second-order approximation even on irregular meshes. 

11.4.4.3. Quadratic interpolation against the flow (QUICK) 

The next logical refinement in the direction of improving the approximation 

was the description of the change in the variable between the point by the parabola, 

and not straight. To create a parabola, it is necessary to use the data in another 

point. Correspondingly with convection nature, the third point is taken in the 

location upstream, i.e. W if the flow from РΡ to ЕΕ (i.e. ux> 0) or EE, if ux <0 

(fig. 11.5). So we have: 

   UUUUDue gg   21 , (11.15) 

 

where D, U and UU are designations for main direction, first and second upstream 

node correspondingly (E, P, and W or ЕΡ, РΕ, and EE dependently on flow 

direction). Coefficients g2 and g1 can be expressed trough the node coordinates: 
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( ) ( )

e U e UU

D U D UU

x x x x
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x x x x

 
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 
; 
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e U D e

U UU D UU

x x x x
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 


 
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For regular grids coefficients of three node values which are include in 

interpolation are taken:  3/8 for main direction point, 6/8 for the first upstream 

node and 1/8 for the second upstream node. 

This scheme is somewhat more complex than the CD scheme, because the 

computational region is extended to one node in each direction (for two-

dimensional case, the nodes included EE, WW, NN and SS). At the same time on 

non-orthogonal and / or non-uniform grids, the expressions for the coefficients gi 

are not simple. Leonard (1979) made this scheme popular and gives it a name 

QUICK (Quadratic Upstream Interpolation with Convective Kinetics). 

In this quadratic interpolation scheme error of the method corresponds to the 

third order accuracy either on uniform or non-uniform grids. This can be 

demonstrated by eliminating the second derivative of the equation (11.15), the use 

of w, which, on a uniform grid in Cartesian Coordinate system with ux> 0results 

in: 

 
2 2

3

36 3 1

8 8 8 48
е Р Е W

P

x
H

x

   
         

 
. 

The first three terms on the right side represent an approximation QUICK, 

while the last term – the basic error of the method. When this interpolation scheme 

is used together with midpoint rule approximation of the surface integral, full 

approximation of second order of accuracy (Quadratic approximation accuracy). 

Approximation QUICK is little more accurate than a CD. 

11.4.5. The implementation of the boundary conditions 

Each control volume provides one algebraic equation. Integrals by volume 

are calculated in the same manner as for each control volume, but flows through 

the faces of the control volume, coinciding with the area, require special handling. 

These flows must be known, or expressed as a combination of values of internal 

and boundary conditions. Since they do not provide additional equations, they 
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should not give additional unknowns. There are no nodes outside the boundary, so 

these approximations should be based on one-sided differences or extrapolations.  

Usually, convective flows are attributed to the front border. Convective 

flows are zero in impermeable walls and planes of symmetry, and are commonly 

used independent of the coordinate normal to the outflow; In this case, the 

upstream approximation can be used. Diffusion fluxes are sometimes defined in 

the wall, for example, a specific heat flow (including the special case of adiabatic 

surfaces with zero heat flow) or when the boundary values of variables are 

prescribed. In this case, the diffusion fluxes evaluated using normal approximation 

for unilateral gradients. If gradient itself is determined, it is used to calculate the 

flow, and approximation for flow can be used in terms of node values to calculate 

bpundary value of the variable. 

11.4.6. Algebraic system of equations 

Summarizing the approximations of flow and the source of variables, we 

create an algebraic equation that relates the variable value in the center of the 

control volume to values in points of several neighboring control volumes. 

Numbers of equations and variables are equal to number of control volumes, so the 

system is well laid out. There is a form [17] of algebraic equation for specific 

control volume and system of equations for entire solution area gives matrix form 

of equation. 

11.5. Solution of the Navier – Stokes equations 

As a result of the sampling every equation is presented as system of linear 

equations which have unknown values of flow parameters which are determinate 

from this equation solution. To solve the system of algebraic equation two groups 

of methods are currently used. Conjugate gradient methods are based on finding a 

multidimensional vector function to minimize the residuals obtained by 

substitution of the approximate solution to the system of linear equations. The 

most promising method of finding a solution to a system of linear equations is the 
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multigrid method. Some programs use some simplified algorithms: tridiagonal 

Thomas algorithm (TDMA) and Gauss-Seidel method. 

To increase stability and convergence relaxation is most commonly used. 

Relaxation is a limit on the change of the variable during the iteration: 

  1ii
, 

where 

 – relaxation coefficient 

i – iteration number. 

Solution of the Navier – Stokes equations numerically itself is not difficult. 

The real difficulty is related to the definition of the velocity field with an unknown 

pressure field. The pressure gradient is part of the source term of the Navier – 

Stokes equations. The equations for pressure determination, however, are not 

introduced into the system. Therefore, the pressure field is determined by the 

continuity equation. If the “correct” pressure field is substituted into the Navier – 

Stokes equations, the velocities, obtained as result of its solution, will satisfy to the 

continuity equation. 

One of the possible solutions of the system of equations is as follows: 

 approximate pressure field is given; 

 Navier-Stokes equation is solved and u*,v*,w*are determined; 

 pressure correction 
*p p p    is determined, where p – the pressure 

field, which satisfies the continuity equation; 

 
*p p p   is determined; 

 specified values of the velocities u,v,w are determined 

 temperature distribution T is determined; 

 temperature dependant media properties (, , ср, R) are renewed; 

 turbulence parameters distribution is determined; 

 turbulence dependant media properties (Т) are determined. 
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This algorithm is called a semi-implicit method for connecting the 

pressure equations and is better known under the name SIMPLE. 

The discrepancy concept is often used as a solution convergence 

criterion. Let for the differential equation 0)( ÔL  approximate solution Ô  was 

found. The value )(ÔLR   is called discrepancy. Obviously, the closer to zero 

the discrepancy, the closer the resulting numerical solution to a real solution of 

the system of equations. Convergence condition is the condition that the 

maximum value R  should not exceed a certain small number. Maximum 

discrepancy is usually appointed within  110-2…110-4. 
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