Совершенствование деятельности кадровых служб государственных и муниципальных органов по управлению персоналом возможно лишь в результате решения следующих залат:

- разработки и реализации нормативно-правовой базы, отвечающей современным потребностям реформирования государственной и муниципальной службы с учетом стратецических направлений их реавития;
- создания федеральных, отраслевых, региональных банков кадровой информации;
- повышения статуса кадровых служб органов власти, оптимизации их структуры, повышения уровня квалификации специалистов, работающих в кадровых подразделениях;
- обеспечения организационной и ваучно-методической помощи кадровым службам на федеральном, региональном и муниципальном уровнях;
- внедрение инновационных разработок в деятельность кадровых служб.

От усилий и плодотворной деятельности государственных и муниципальных кадровых служб, от найма компетентных служащих и их деятельности в аппарате властв во многом зависят успешная реализации реформ, их кадровое обеспечение, максимально эффективное использование человеческих ресурсов и деятельность симого аппарата власти. [1]

Библиографический список:

- Турчинов А. И. Государственная служба: кадры, организация, управление.
 М.: РАГС, 2003.
 - 2. Петухов В. И. Управление персоналом. М.: РАГС, 2004.

ПРИБЛИЖЕННЫЙ АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ ЦЛП

А. Исмаилева

4 курс, факультет экономики и управления Научный руководитель – дои. В.М. Монтлевич

В настоящей работе исследуется апгоритм приближенного решения задач ЦИП (целочисленного липейного программирования), основанный на клее жадного выбора с последующим улучшением полученного решения.

Алгоритм выполняется в два этапа. На первом с помощью процедуры жадного выбора находится начальное приближение, которое затем улучшается на втором этапе.

Идея алторитма улучшения состоит в следующем. Выбираем две переменные: x_i , значение которой будет уменьшено на величину Δ_1 , и x_i , значение которой будет увеличено на величину Δ_2 . Δ_1 и Δ_2 выбираются таким об-

разом, чтобы новый план задачи был допустимым и давал лучшее значение целевой функции. Алгоритм улучшения состоит из следующих шагов.

 В качестве начального плана, берется решение, полученное жадным адгоритмом [1].

2. Выбираем еще не просмотренную переменную $x_i > 0$ в положим Δ_1 ^{∞}1. Переменные x_i выбираются в том порядке, в котором они были получены по ходу выподнения жалного алторитма.

3. Находим переменную х_{ii} = 0, значение которой можно увеличить, не нарушая допустимости плана и увеличив при этом целевую функцию. Выберем значение Δ₂, чтобы прирост целевой функция был мыксимальным. Если такую переменную найти пе удается, то возвращаемся на плат 2.

Шаги 2 – 3 повторяются до тех пор, пока все отянчные от 0 переменные начального плана, не будут просмотрены.

Разработаны легко реализуемые алгоритмически критерии выбора переменных x_{μ} и x_{μ} и оценки Δ_1 и Δ_2 .

Для оценки погрединости разработанного алгоритма было решено 760 тестовых задач и получены следующие результаты.

Средняя погрешность для задач с провзвольными переменными не превышает 8%, для задач с булевыми переменными — 2%.

Библиографический синсок

 Исмандова, А. Н. Применение жадного алгоритма для решения задачи о многомерном рюкзаке. // Соннально-экономические системы: вопросы развития и управления. Самара: Глагол, 2010. 219-220 с.

СТОХАСТИЧЕСКОЕ ОБОБЩЕНИЕ ТРАНСПОРТНОЙ ЗАДАЧИ

М. Ляхова

5 курс, факультет экономики и управления Научный руководитель – доц. В.Н. Никишов

Пусть некоторый продукт, в дальнейшем груз, сосредоточенный у m поставщиков A_i в количестве a_i единиц $i = \overline{1, m}$, необходимо доставить n потребителям B_i количествс b_i , $j = \overline{1, n}$.

Известна стоимость c_{ij} перевозки единицы груза от поставшика A, к потребителю B_{j} .

Потери груза при перевозке от A_i к B_j в размере x_g представим в виде: $x_g = l_g y_g$. Здесь случайная величина l_g есть индикатор события реализации риска, в то время как $y_g =$ размер фактического.

Индикатор I_{ii} принимает значения 0 или 1 [1]:

$$P(I_n = 1) = P(z_n > 0) = q_n$$
, $P(I_n = 0) = 1 - P(z_n > 0) = 1 - q_n = p_n$, [1]