СТАТИСТИЧЕСКИЕ И ЭКСПЕРТНЫЕ ОЦЕНКИ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ КОМПОНЕНТ КОРПОРАТИВНЫХ ИНФОРМАЦИОННЫХ СИСТЕМ

Мейко А. В.

Научный руководитель — д.т.н., профессор Моисеев В.С. Казанский государственный технический университет им. А. Н. Туполева

В данной работе для формирования исходных данных при расчетах надежности корпоративных информационных систем (КИС) предлагается использовать статистические данные по действующим системам, а также экспертные оценки ИТ-специалистов, занимающихся разработкой и эксплуатацией сложных КИС. Были получены следующие результаты обработки статистических данных по отказам 5 систем: m1=0,61, $\delta1=1,58$, $\lambda1=1,62$; m2=5,79, $\delta2=8,51$, $\lambda2=0,17$; m3=4,13, $\delta3=6,30$, $\lambda3=0,24$; m4=6,75, $\delta4=10,00$, $\lambda4=0,15$; m5=1,16, $\delta5=2,31$, $\lambda5=0,86$; по восстановлениям 3 систем: m1=8,63, $\delta1=9,70$, $\lambda1=0,11$; m2=9,58, $\delta2=10,47$, $\lambda2=0,10$; m3=1,03, $\delta3=2,02$, $\lambda3=0,97$, где mi-mat. ожидание [день], $\deltai-cp$. кв. отклонение [день], $\lambda i-cp$. кв. отклонение [день].

 $j=({}^{1,n})$, равным количеству систем, в разработке которых он принимал активное участие. Результирующие интенсивности отказов аппаратно-программных

 $\overline{\lambda_i} = \sum_{j=1}^n \lambda_{ij} \alpha_j / \sum_{j=1}^n \alpha_j$ средств КИС определялись по формуле вида: $\sum_{j=1}^n \lambda_{ij} \alpha_j / \sum_{j=1}^n \alpha_j$ количество экспертов, m — число аппаратно-программных средств, λ іј — результаты опроса j-го эксперта по надежности i-ой компоненты

В качестве степени согласованности мнений экспертов по конкретному аппаратно-программному средству может быть использована дисперсия σ_i^2 ,

 $\sigma_i^2 = \sum_{j=1}^n (\overline{\lambda_i} - \lambda_{ij})^2 \alpha_j / \sum_{j=1}^n \alpha_j$ і $= (\overline{1,m})$, которая определяется следующим образом: $\overline{\lambda} = 1,72$ Так, для ОС Solaris 8 $\overline{\lambda} = 2,79$ 10-5 1/ч, $\sigma = 7,16$ 10-6, для ОС MS Windows XP $\overline{\lambda} = 3,04$ 10-4 1/ч, $\sigma = 8,94$ 10-5, для сервера баз данных $\overline{\lambda} = 1,72$ 10-4 1/ч, $\sigma = 8,94$ 10-5. Доверительный интервал, в который с доверительной вероятностью β попадает истинное значение оценки надежности і-го аппаратнопрограммного компонента КИС: $\overline{\lambda_i} - t\sigma_i / \sqrt{m} \le \lambda_i \le \overline{\lambda_i} + t\sigma_i / \sqrt{m}$, где величина t имеет распределение Стьюдента с m-1 степенью свободы.

Для повышения качества обработки результатов экспертизы вычисляется степень согласованности экспертов, определяемая коэффициентом согласия Е. Коэффициент Е рассчитывается на базе коэффициентов корреляции личных

 $E=(1/m^2)\sum_{i=1}^m\sum_{l=1}^mR_{il}$ оценок экспертов и определяется в виде: , где Ril — коэффициент корреляции оценок i-го и l-го экспертов.

В нашем случае коэффициентом согласия Е = 0,0543.