УДК 631.35.02

ИССЛЕДОВАНИЕ АЭРОДИНАМИЧЕСКОЙ СИСТЕМЫ КОРМОУБОРОЧНОГО КОМБАЙНА НА БАЗЕ МЕТОДА ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА

Кузнецов А.В., Трусов Д.Ю. Научный руководитель – д.т.н., профессор Вальтер А.И. Тульский государственный университет

Цель исследования заключалась в определении воздушного потока (динамического давления) по поперечным сечениям и длине аэродинамического тракта, при введении в боковых стенках конфузора, радиально расположенных в зоне траектории движения ножей, дополнительных отверстий для забора воздуха, а также при изменении конфигурации формы сечения соединения конфузор — силосопровод и при изменении формы и размеров поперечных сечений силосопровода.

При измерении использован метод локального измерения скорости воздушного потока, при котором полный воздушный поток H и динамическое давление P измерялись трубкой Прандтля с выводом динамического давления на шкалу микроманометра типа ММН.

Измеряемые точки размещались в двух сечениях по длине аэродинамического тракта силосопровода (в начале и на выходе).

Диапазон изменения факторов приведен в таблице.

	Факторы				
Уровни факторов	Частота	Зазор между ножом и	Площадь до- полнитель-	Средняя площадь	Отношение площадей от-
	вращения ножевого	противоре-	ных боковых	проходно-	
	барабана,	жущей пла-	отверстий хз	го сече-	фузора и си-
	<i>X</i> ₁	стиной, х2		ния, х4	лосопровода,
					<i>X</i> ₅
	<i>П</i> , МИН ⁻¹	⊿ , MM	S, m ²	Н, м	S_1/S_2
Нижний	1330	20	0,10	0,20	0,62
Основной	1430	40	0,15	0,28	0,92
Верхний	1530	60	0,20	0,36	1,22

На основе метода математического планирования эксперимента выполнен анализ математической модели воздушного напора в выходном сечении силосопровода. Проверка адекватности модели целевой функции проведена по критерию Фишера. При уровне значимости α = 10 %, для числа степеней свободы faд = 27-21 = 6, f E = 54, табличное значение критерия Фишера Fкр = 1,5. Расчетное значение критерия Фишера F = 1,35.

В начале силосопровода

$$Y_{T} = 6.7 + 0.31X_{1} + 0.38X_{3} + 0.29X_{5} + 0.24X_{1}^{2} + 0.43X_{2}^{2} + 0.54X_{3}^{2} - 0.86X_{4}^{2} - 0.21X_{5}^{2} - 0.22X_{1}X_{2} + 0.64X_{1}X_{3} - 0.23X_{1}X_{4} + 0.89X_{2}X_{3} + 0.26X_{2}X_{4} - 0.32X_{3}X_{4} + 0.47X_{3}X_{5} - 0.34X_{4}X_{5}.$$
(1)

На выходе силосопровода

$$Y_{T} = 12.58 + 0.43X_{1} + 0.68X_{2} + 0.27_{4} + 0.42X_{5} - 0.35X_{1}^{2} - 0.25X_{3}^{2} + 1.23X_{1}X_{2} + 0.55X_{1}X_{3} - 0.78X_{1}X_{4} - 0.67X_{1}X_{5} - 0.44X_{2}X_{3} + 0.71X_{2}X_{4} - 0.51X_{2}X_{5} - 0.57X_{3}X_{4} - 0.39X_{3}X_{5} + 0.47X_{4}X_{5}.$$
(2)