ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА» (САМАРСКИЙ УНИВЕРСИТЕТ)

РАСЧЕТ ИДЕАЛЬНОГО ГАЗОВОГО ПОТОКА В КАМЕРЕ РАКЕТНОГО ДВИГАТЕЛЯ

Самара 2016

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА» (САМАРСКИЙ УНИВЕРСИТЕТ)

РАСЧЕТ ИДЕАЛЬНОГО ГАЗОВОГО ПОТОКА В КАМЕРЕ РАКЕТНОГО ДВИГАТЕЛЯ

Составители: Бирюк В.В., Диденко А.А., Угланов Д.А., Цыганов А.М.

САМАРА Издательство Самарского университета 2016 УДК 533.013 (075)

Составители: Бирюк В.В., Диденко А.А., Угланов Д.А., Цыганов А.М.

Рецензент: к.т.н., доцент Ш е л уд ь к о Л.П.

РАСЧЕТ ИДЕАЛЬНОГО ГАЗОВОГО ПОТОКА В КАМЕРЕ РАКЕТНОГО ДВИГАТЕЛЯ: метод. указания к курсовому проектированию / сост. Бирюк В.В., Диденко А.А., Угланов Д.А., Цыганов А.М.– Самара: Изд-во Самарского университета, 2016. - 20 с.

УДК 533.013 (075)

© Самарский университет, 2017

ОСНОВНЫЕ ПОЛОЖЕНИЯ

В курсовой работе выполняются расчеты идеального газового потока в камере ракетного двигателя, схема которой представлена на рис. 1.

Идеальный газовый поток поступает в камеру сгорания в виде струи, которая в начальном сечении камеры 0 имеет площадь живого сечения S_0 . После входа в камеру сгорания струя газа внезапно расширяется и в некотором сечении 1 полностью и равномерно заполняет поперечное сечение камеры сгорания с площадью S_{κ} . На участке от сечения 1 до конечного сечения камеры сгорания κ газовый поток получает внешнюю теплоту, эквивалентную теплоте сгорания ракетного топлива.

Из камеры сгорания газовый поток поступает в сверхзвуковое сопло с начальным сечением κ , узким (наименьшей площади) сечением y, выходным сечением a, площади которых равны S_K , S_V , S_a . Из сопла газ вытекает во внешнюю среду, давление в которой равно p_H .

ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТОВ

Для курсовой работы задаются значения следующих величин и параметров:

k - отношение теплоемкости газа при постоянном давлении к его теплоемкости при постоянном объеме,

R - удельная газовая постоянная,

 T_0^* и T_K^* - температуры торможения газового потока при втекании в камеру сгорания и в конце ее (перед соплом),

*p*₀ - давление в газовом потоке в сечении 0,

 \overline{S}_0 - отношение площадей S_0 / S_K ,

*r*_y - радиус узкого сечения сопла,

 \bar{r}_{K} , \bar{r}_{a} - отношения радиусов камеры сгорания r_{K} и выходного сечения сопла r_{a} к радиусу r_{V} ,

 \bar{x}_a - отношение длины сверхзвуковой части сопла x_a к радиусу r_y ,

4

β_y и *β_a* - полууглы раскрытия сверхзвуковой части сопла в узком и выходном сечениях сопла (углы между касательными к профилю сопла в этих сечениях и осью сопла).

ДОПУЩЕНИЯ ДЛЯ РАСЧЕТОВ

Газ идеальный, невязкий. Течение газа в камере сплошное, одномерное, стационарное. Газовый поток между сечениями 0 и 1 энергоизолированный, между сечениями 1 и κ с получением внешней теплоты, течение газа по соплу энергоизолированное. Давление газа на внутреннем торце камеры сгорания в сечении 0 равно давлению в струе газа p_0 . Скачок уплотнения в газовом потоке прямой и энергоизолированный. В живых сечениях газового потока расход газа одинаковый. Живые сечения считать плоскими сечениями, нормальными оси потока (оси камеры).

РАССЧИТЫВАЕМЫЕ ВАРИАНТЫ ГАЗОВОГО ПОТОКА

В курсовой работе рассчитываются следующие варианты идеального газового потока в камере ракетного двигателя:

1. Газовый поток при сверхвуковом расчетном истечении газа из сопла (при $p_a = p_H$).

2. Газовый поток со скачком уплотнения в выходном сечении камеры (сопла).

3. Газовый поток со скачком уплотнения в сечении 5.

4. Газовый поток со скачком уплотнения в сечении 4.

5. Газовый поток с критическим состоянием газа в узком сечении сопла и последующем дозвуковом течении газа по соплу.

Каждому варианту газового потока соответствуют значения p_H , определяемые по результатам расчетов.

ВЕЛИЧИНЫ И ПАРАМЕТРЫ ГАЗОВОГО ПОТОКА

По исходным данным и с учетом допущений определяются и расчитываются для живых сечений газового потока 0, 1, κ , 2, 3, y, 4, 5, a каждого из вариантов потока следующие величины и параметры: радиус r и площадь S живых сечений; числа λ , M; значения газодинамических функций $q(\lambda)$, $\tau(\lambda)$, $\pi(\lambda)$, $\varepsilon(\lambda)$, $f(\lambda)$; температура торможения T^* , давление торможения p^* , плотность торможения ρ^* газового потока; температура T, давление p и плотность ρ газа в потоке; критическая скорость a_{KP} ; скорость звука в газе a; скорость газового потока c; расход газа G; коэффициенты изменения давления торможения при внезапном расширении газового потока $\sigma_{B,P}$, при передаче потоку внешней теплоты σ_T , в прямом скачке уплотнения σ_{II} ; давление во внешней среде p_H ; импульс газового потока Φ ; силы воздействия газового потока на камеру сгорания P_{0-K} , на дозвуковую часть сопла P_{K-Y} , на сверхзвуковую часть сопла P_{Y-a} , на камеру в целом P_{0-a} ; внутренняя тяга камеры P_{BHYTP} , наружная состовляющая тяги камеры P_{HAP} , тяга камеры P.

ПОСТРОЕНИЕ ПРОФИЛЯ КАМЕРЫ

Подсчитываются значения длины камеры сгорания $x_K = 2 \cdot r_y$, длины дозвуковой части сопла $x_V = r_V \cdot \sqrt{\bar{r}_K \cdot (9,25 - \bar{r}_K) - 8,25}$, длины сверхзвуковой части сопла $x_a = \bar{x}_a \cdot r_V$, радиуса камеры сгорания $r_K = \bar{r}_K \cdot r_V$, радиуса газового потока при входе в камеру сгорания $r_0 = r_K \sqrt{\bar{S}_0}$, радиуса выходного сечения сопла $r_a = \bar{r}_a \cdot r_V$.

Профиль камеры строится в соответствии с рис. 1 в стандартном масштабе и с указанием размеров в мм.

Профиль дозвуковой части сопла образуется сопряженными дугами двух окружностей с радиусами 1,625 r_y и 2 r_y . Профиль сферхзвуковой части сопла строится как квадратичная парабола, которая является внутренней огибающей линией для прямых отрезков, соединяющих соответственные точки деления отрезков y - y и a - a на 8 равных частей каждый.

По профилю камеры определяются радиусы промежуточных расчетных сечений r_2 , r_3 , r_4 , r_5 в мм.

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ РАСЧЕТОВ

Расчеты могут выполняться с применением калькулятора или на ПК. В последнем случае расчеты удобно выполнять в среде математического пакета программ MathCAD. Перед выполнением расчетов с применением калькулятора предварительно необходимо заготовить таблицы 1-4 результатов расчетов, примеры которых даются в приложениях. Заполнять эти таблицы следует по мере получения численных значений и сначала мягким карандашом.

Численные значения всех рассчитываемых величин и параметров нужно получать и записывать в таблицы обязательно пятью верными цифрами, включая в их число и нули в начале тех численных значений, которые получаются меньше единицы.

Необходимые для расчетов формулы и уравнения даются в приложениях. Вывод и анализ формул и уравнений рассматриваются на лекциях и в учебной литературе. Некоторые из расчетных формул потребуется получать самостоятельно.

При использовании пакета MathCAD газодинамические функции могут быть запрограммированы заранее в виде функций пользователя, что позволяет их применять в любой части программы при любых начальных и входных данных.

Расчеты нужно начинать с определения и вычисления значений для таблицы 1 в следующем порядке:

1. Определить и рассчитать значения всех величин и параметров для сечения κ , за исключением значений p^* , p, ρ^* , ρ , G, ρcS . Начать следует с вычисления значения $q_{\kappa} = q(\lambda_{\kappa}) = S_y/S_{\kappa}$ и определения соответствующего значения $\lambda_{\kappa} < 1$, что проще всего сделать подбором значения λ по формуле газодинамической функции $q(\lambda)$.

При использовании пакета MathCAD величина *λ* легко определяется, например, из решения нелинейного уравнения:

$$F(k,\lambda) = \left(\frac{k+1}{2}\right)^{1/(k-1)} \cdot \lambda \cdot \left(1 - \frac{k-1}{k+1} \cdot \lambda^2\right)^{1/(k-1)} - q_{\kappa} = 0$$

с применением встроенной функции этого пакета *root*(..,..,..):

$$\lambda_{k} = root(F(k,\lambda), \lambda, 0, 1),$$

в которой по порядку стоят следующие параметры: $F(k, \lambda)$ - вспомогательная функция, задающая однородное уравнение, λ - неизвестная, относительно которой

решается уравнение, числа 0 и 1 – определяют диапазон возможных значений решения, в данном случае опредяляется величина λ для дозвуковой области течения.

2. Определить и рассчитать значения всех величин и параметров для сечения 0. Начать следует с подсчета значения $(a_{KP})_0$ и вычисления $\lambda_0 < \lambda_K$ по формуле, представляющей собой преобразованное уравнение количества движения для газа, находящегося в камере сгорания между сечениями 0 и κ . При вычислении λ_0 значение $\tau(\lambda_0)$ берется равным единице в первом приближении и уточняется во втором-третьем приближениях по формуле газодинамической функции $\tau(\lambda)$.

При отыскании λ_0 средствами MathCAD преобразованное уравнение количества движения решается аналогично предыдущему пункту.

Внимание: подсчет значения G₀ и значения G во всех других случаях производить по формуле расхода, выраженной через параметры торможения газового потока.

3. Вычислить значение p_{κ} по формуле, представляющей собой преобразованное уравнение неразрывности для живых сечений 0 и κ газового потока в сечении κ .

4. Определить и рассчитать значения всех величин и параметров для сечения 1 по аналогии с расчетами по пунктам 2, 3.

5. Определить и рассчитать значения всех величин и параметров для всех сечений от сечения 2 до сечения *a*. Начать следует с подсчета значений $q(\lambda) = S_y/S$ и подбора соответствующих значений λ . Нужно иметь в виду, что в сечениях 2, 3 должно быть $\lambda < 1$, в сечении y $\lambda = 1$, в сечениях 4, 5, *a* должно быть $\lambda > 1$.

6. Для варианта 2 необходимо определить и рассчитать все величины и параметры газового потока в сечении a_{3a} непосредственно за скачком уплотнения, которое практически совмещается с сечением *a* непосредственно перед скачком уплотнения. Начать следует с подсчета значения $(\lambda_a)_{3a} = 1/\lambda_a$ и соответствующего значения $q(\lambda_a)_{3a}$, а в дальнейшем нужно иметь в виду, что в прямом скачке уплотнения T^* не изменяется, p^* и ρ^* скачкообразно уменьшаются.

Определение и вычисление значений для таблицы 2 можно выполнять в следующем порядке: 1. Выписать из таблицы 1 значения всех величин и параметров для сечений 5, 4, *у* в таблицу 2.

2. Определить и рассчитать значения всех величин и параметров для сечений 5_{3a} , 4_{3a} по аналогии с расчетами сечения a_{3a} в таблице 1.

3. Определить и рассчитать значения всех величин и параметров для оставшихся сечений таблицы 2, начиная с подсчета значений $q(\lambda) = q(\lambda)_{3a} S_{3a} / S$ (для вариантов 3, 4) или $q(\lambda) = S_v / S$ (для варианта 5) и подбора соответствующих значений $\lambda < 1$.

Определение и вычисление значений для таблиц 3, 4 могут выполняться в следующем порядке:

1. Значения λ , p^* , *S* в таблицу 3 переписать из таблиц 1, 2.

2. Подсчитать значения f, Φ для таблицы 3 и значения всех величин для таблицы 4. Определить значения p_H из условия, что в любом дозвуковом потоке при истечении во внешнюю среду давление равно p_H .

ПОСТРОЕНИЕ РАСЧЕТНЫХ ЗАВИСИМОСТЕЙ

Выполняется по результатам расчетов (таблицы 1-4) в форме графиков, представленных на рис.2-7. Масштабы по осям координат для всех графиков должны быть обязательно стандартными.

ОТЧЕТ ПО КУРСОВОЙ РАБОТЕ

Оформляется в соответствии с требованиями, предъявляемыми к учебным отчетам. В отчете должны быть численные значения исходных данных, допущения для расчетов, порядок расчетов каждого из вариантов газового потока с расчетными формулами и уравнениями, результаты расчетов (таблицы 1-4), графики расчетных зависисмостей (рисунки 2-7).

ПРИЛОЖЕНИЯ

Даны ниже и содержат формулы и уравнения, необходимые для расчетов, примеры таблиц результатов расчетов (таблицы 1-4), схему построения профиля камеры (рис. 1), примеры графиков расчетных зависимостей (рис. 2-7).

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

Абрамович Г.Н. Прикладная газовая динамика, 5-е издание.
Часть І. –М.: Наука, 1991. -597 с. 4-е издание. –М.: Наука, 1976. -888 с.

2. Сергель О.С. Прикладная гидрогазодинамика. –М.: Машиностроение, 1981. - 374 с.

ПРИЛОЖЕНИЕ

ОПРЕДЕЛЕНИЕ ГАЗОДИНАМИЧЕСКИХ ФУНКЦИЙ

$$\begin{split} \lambda &= \frac{c}{a_{KP}} , \quad a_{KP} = \sqrt{2 \cdot \frac{k}{k+1} \cdot RT^*} , \qquad M = \frac{c}{a} , \quad a = \sqrt{kRT} , \\ \tau &= \frac{T}{T^*} , \qquad \pi = \frac{p}{p^*} = \left(\frac{T}{T^*}\right)^{k/(k-1)} , \qquad \varepsilon = \frac{\rho}{\rho^*} = \left(\frac{T}{T^*}\right)^{1/(k-1)} , \\ q &= \frac{\rho c}{(\rho c)_{KP}} = \frac{\rho}{\rho^*} \frac{\rho^*}{\rho_{KP}} \frac{c}{a_{KP}} = \frac{\varepsilon}{\varepsilon_{KP}} \lambda , \\ f &= \frac{Gc + pS}{p^*S} = (1 + \lambda^2) \cdot \varepsilon \end{split}$$

ФОРМУЛЫ ГАЗОДИНАМИЧЕСКИХ ФУНКЦИЙ

$$\begin{aligned} \tau(\lambda) &= 1 - \frac{k-1}{k+1} \cdot \lambda^2 \ , \qquad \pi(\lambda) = \left(1 - \frac{k-1}{k+1} \cdot \lambda^2\right)^{k/(k-1)} \ , \quad \varepsilon(\lambda) = \left(1 - \frac{k-1}{k+1} \cdot \lambda^2\right)^{1/(k-1)} \\ q(\lambda) &= \left(\frac{k+1}{2}\right)^{1/(k-1)} \cdot \lambda \cdot \left(1 - \frac{k-1}{k+1} \cdot \lambda^2\right)^{1/(k-1)} \\ f(\lambda) &= (1 + \lambda^2) \left(1 - \frac{k-1}{k+1} \cdot \lambda^2\right)^{1/(k-1)} \\ M &= \lambda \cdot \sqrt{\frac{2}{k+1}} \left/ \sqrt{1 - \frac{k-1}{k+1} \cdot \lambda^2} \end{aligned}$$

 $\lambda_{_{\!K\!p}} \;=\; 1 \;, \quad q_{_{\!K\!p}} \;=\; 1 \;, \quad M_{_{\!K\!p}} \;=\; 1 \;,$

$$\begin{split} \tau_{\kappa p} &= \frac{2}{k+1} , \quad \pi_{\kappa p} &= \left(\frac{2}{k+1}\right)^{k/(k-1)} , \quad \varepsilon_{\kappa p} &= \left(\frac{2}{k+1}\right)^{1/(k-1)} , \\ f_{\kappa p} &= 2 \cdot \left(\frac{2}{k+1}\right)^{1/(k-1)} \end{split}$$

ФОРМУЛЫ ПАРАМЕТРОВ ГАЗА И ОДНОМЕРНОГО ГАЗОВОГО ПОТОКА

$$\begin{split} T^* &= T + \frac{k - 1}{kR} \frac{c^2}{2} = \frac{T}{\tau} , \qquad T = T^* - \frac{k - 1}{kR} \frac{c^2}{2} = \tau T^* \\ p^* &= p \left(\frac{T^*}{T}\right)^{k/(k-1)} = \frac{p}{\pi} , \qquad p = p^* \left(\frac{T}{T^*}\right)^{k/(k-1)} = \pi p^* \\ \rho^* &= \rho \left(\frac{T^*}{T}\right)^{1/(k-1)} = \frac{\rho}{\varepsilon} , \qquad \rho = \rho^* \left(\frac{T}{T^*}\right)^{1/(k-1)} = \varepsilon \rho^* \\ \frac{p}{\rho} &= RT , \qquad \frac{p^*}{\rho^*} = RT^* , \qquad \frac{\pi}{\varepsilon} = \tau , \\ c &= \sqrt{2 \frac{k}{k - 1} RT^*} \left[1 - \left(\frac{p}{p^*}\right)^{(k-1)/k}\right] = \lambda a_{\kappa p} = Ma , \\ G &= \rho c S = m_G \cdot \frac{p^* S}{\sqrt{T^*}} \cdot q(\lambda) , \qquad m_G = \sqrt{\left(\frac{2}{k + 1}\right)^{\frac{k+1}{k-1}} \cdot \frac{k}{R}} \\ \Phi &= Gc + p S = p^* S f(\lambda) . \end{split}$$

УРАВНЕНИЯ ДЛЯ ОДНОМЕРНОГО ГАЗОВОГО ПОТОКА

Живое сечение *j* располагается за живым сечением *i* по потоку.

УРАВНЕНИЕ НЕРАЗРЫВНОСТИ

$$G_j$$
 = G_i , или $\rho_j c_j S_j$ = $\rho_i c_i S_i$

УРАВНЕНИЕ ЭНЕРГИИ

$$T_j^* - T_i^* = \frac{k-1}{kR}q_H - \frac{k-1}{kR}l_T$$
,

где: q_H - удельная внешняя теплота, получаемая газовым потоком, l_T - удельная внешняя техническая работа, совершаемая (отдаваемая) газовым потоком.

УРАВНЕНИЕ КОЛИЧЕСТВА ДВИЖЕНИЯ

$$G(\vec{c}_j - \vec{c}_i) = p_i S_i \vec{n}_i + (\vec{P}_{nos})_{i-j} - p_j S_j \vec{n}_j ,$$

ИЛИ

$$\Phi_j \vec{n}_j - \Phi_i \vec{n}_i = \left(\vec{P}_{nob} \right)_{i-j}$$
 ,

где: \vec{n}_i , \vec{n}_j - единичные векторы, направленные по потоку и нормальные живым сечениям *i* и *j*, $(\vec{P}_{nob})_{i-j}$ - главный вектор всех внешних поверхностных сил, действующих на газ в потоке на участке между сечениями *i* и *j*. В курсовой работе значения $(\vec{P}_{nob})_{i-j}$ в проекциях на ось потока (камеры) определяются равенствами $(\vec{P}_{nob})_{0-\kappa} = p_0(S_{\kappa} - S_0)$ на участке $0 - \kappa$ и $(\vec{P}_{nob})_{1-\kappa} = 0$ на участке $1 - \kappa$.

Уравнение неразрывности и уравнение количества движения , преобразованные для вычисления значений λ_0 , p_{κ} , λ_1 , p_1 получаются в следующем виде:

$$p_{j} = p_{i} c_{i} \vec{S}_{i} T_{j} / (T_{i} c_{j}),$$
$$\lambda_{i}^{2} - \sqrt{\frac{T_{j}^{*}}{T_{i}^{*}}} \cdot \left\{ \lambda_{j} + \frac{k+1}{2k} \cdot \frac{\tau(\lambda_{j})}{\lambda_{j}} \right\} \cdot \lambda_{i} + \frac{k+1}{2k} \cdot \frac{\tau(\lambda_{i})}{\overline{S}_{i}} = 0$$

Студентам рекомендуется выполнить самостоятельно преобразования уравнений неразрывности и количества движения.

КОЭФФИЦИЕНТЫ ИЗМЕНЕНИЯ ДАВЛЕНИЯ ТОРМОЖЕНИЯ

 $\sigma_{i-j} = p_j^* / p_i^*$ для газового потока на участке i-j, в курсовой работе $\sigma_{0-1} = \sigma_{s.p}$, $\sigma_{1-\kappa} = \sigma_T$, $\sigma_{\kappa-y} = 1$.

$$\sigma_{\Pi} = \frac{p_{_{3a}}^{*}}{p^{*}} = \frac{q(\lambda)}{(q(\lambda))_{_{3a}}} = \lambda^{2} \cdot \left(1 - \frac{k - 1}{k + 1}\lambda^{2}\right)^{\frac{1}{k - 1}} / \left(1 - \frac{k - 1}{k + 1} \cdot \frac{1}{\lambda^{2}}\right)^{\frac{1}{k - 1}},$$

где значения p^* , $q(\lambda)$, λ соответствуют состоянию газового потока непосредственно перед скачком уплотнения.

СИЛЫ ВОЗДЕЙСТВИЯ ПОТОКА НА КАМЕРУ И ТЯГА КАМЕРЫ

ПРИЛОЖЕНИЕ 2

Варианты	1 - 5						1 - 4	1 – 3	1 – 2	2
Сечения	0	1	к	2	3	у	4	5	а	a _{3a}
<i>r</i> , MM	25,456	36	36	27,0	20,9	20	26,7	37,1	44,6	44,6
S, мм ²	2035,8	4071,5	4071,5	2290,2	1372,3	1256,6	2239,6	4324,1	6249,1	6249,1
q(λ)	0,1933	0,0969	0,3086	0,5487	0,9157	1,0	0,5611	0,2906	0,2011	0,6791
λ	0,1215	0,0606	0,1960	0,3634	0,7295	1,0	1,7183	2,0179	2,1376	0,4678
τ(λ)	0,9984	0,9996	0,9957	0,9853	0,9409	0,8889	0,6719	0,5476	0,4923	0,9757
π(λ)	0,9918	0,998	0,9788	0,9288	0,7373	0,5549	0,137	0,0492	0,0279	0,8842
ε(λ)	0,9935	0,9984	0,9830	0,9426	0,7836	0,6243	0,2039	0,0899	0,0587	0,9062
М	0,1146	0,0571	0,1852	0,3452	0,7091	1,0	1,9763	2,5710	2,8723	0,4465
Т*, К	300	300	2936	2936	2936	2936	2936	2936	2936	2936
Т, К	299,52	299,88	2923,4	2892,8	2762,5	2609,8	1972,7	1607,8	1445,4	2864,7
р [*] , МПа	10,083	10,061	9,8747	9,8747	9,8747	9,8747	9,8747	9,8747	9,8747	2,9242
р, МПа	10,0	10,041	9,6654	9,1716	7,2806	5,4795	1,3528	0,4858	0,2755	2,5856
ρ* , кг/м ³	117,44	114,19	11,452	11,452	11,452	11,452	11,452	11,452	11,452	3,3912
ρ, кг/м ³	113,70	114,01	11,257	10,795	8,9738	7,1495	2,3351	1,0295	0,6722	3,0731
а _{кр} , м/с	312,89	312,89	978,83	978,83	978,83	978,83	978,83	978,83	978,83	978,83
λа _{кр} , м/с	38,016	18,961	191,85	355,71	714,06	978,83	1681,9	1975,2	2092,3	457,9
а, м/с	331,6	331,8	1036,0	1030,5	1007,1	978,84	851,02	768,29	728,45	1025,5
Ма, м/с	38,001	18,946	191,87	355,73	714,13	978,84	1681,9	1975,3	2092,3	457,89
G, кг/с	8,7953	8,7999	8,7926	8,7938	8,7936	8,7935	8,7938	8,7934	8,7942	8,7943
рсS, кг/с	8,7961	8,7946	8,7930	8,7946	8,7943	8,7940	8,7958	8,7934	8,7890	8,7934

Таблица 1. Результаты расчета параметров газового потока, варианты 1, 2

Таблица 2.	Результаты	расчета	параметров	газового	потока,	варианты	3, 4,	, 5
------------	------------	---------	------------	----------	---------	----------	-------	-----

Варианты	1 – 3	3		1 - 4	4			1 - 5	5		
Сечения	5	5 _{3a}	a	4	4 _{3a}	5	а	у	4	5	a
<i>r</i> , MM	37,1	37,1	44,6	26,7	26,7	37,1	44,6	20	26,7	37,1	44,6
S, мм ²	4324,1	4324,1	6249,1	2239,6	2239,6	4324,1	6249,1	1256,6	2239,6	4324,1	6249,1
$q(\lambda)$	0,2906	0,7107	0,4918	0,5611	0,7996	0,4141	0,2866	1,0	0,5611	0,2906	0,2011
λ	2,0179	0,4956	0,3216	1,7183	0,5820	0,2669	0,1816	1,0	0,3728	0,1842	0,1264
τ(λ)	0,5476	0,9727	0,9885	0,6719	0,9624	0,9921	0,9963	0,8889	0,9846	0,9962	0,9982
$\pi(\lambda)$	0,0492	0,8708	0,9438	0,137	0,8255	0,9610	0,9818	0,5549	0,9251	0,9813	0,9912
ε(λ)	0,0899	0,8952	0,9548	0,2039	0,8577	0,9687	0,9854	0,6243	0,9396	0,9850	0,9929
М	2,5710	0,4738	0,3050	1,9763	0,5593	0,2526	0,1715	1,0	0,3542	0,1740	0,1193
Т*, К	2936	2936	2936	2936	2936	2936	2936	2936	2936	2936	2936
Т, К	1607,8	2855,8	2902,2	1972,7	2825,6	2912,8	2925,1	2609,8	2890,8	2924,8	2930,7
р [*] , МПа	9,8747	4,0377	4,0377	9,8747	6,9293	6,9293	6,9293	9,8747	9,8747	9,8747	9,8747
р, МПа	0,4858	3,5160	3,8108	1,3528	5,7201	6,6591	6,8032	5,4795	9,1351	9,6900	9,7878
р*, кг/м ³	11,452	4,6826	4,6826	11,452	8,0362	8,0362	8,0362	11,452	11,452	11,452	11,452
ρ, кг/м ³	1,0295	4,1920	4,4710	2,3351	6,8926	7,7847	7,9189	7,1495	10,760	11,280	11,371
а _{кр} , м/с	978,83	978,83	978,83	978,83	978,83	978,83	978,83	978,83	978,83	978,83	978,83
$\lambda a_{\kappa p}$, m/c	1975,2	485,11	314,79	1681,9	569,68	261,25	177,76	978,83	364,91	180,30	123,72
а , м/с	768,29	1023,9	1032,2	851,02	1018,5	1034,1	1036,3	978,84	1030,2	1036,2	1037,3

Продолжение Таблицы 2

Сечения	5	5 _{3a}	a	4	4 _{3a}	5	a	у	4	5	a
Ма, м/с	1975,3	485,12	314,82	1681,9	569,65	261,21	177,73	978,84	364,90	180,30	123,75
G , кг/с	8,7934	8,7934	8,7939	8,7938	8,7938	8,7929	8,7948	8,7935	8,7938	8,7934	8,7942
рсS, кг/с	8,7934	8,7936	8,796	8,7958	8,7935	8,7928	8,7951	8,7940	8,7934	8,7943	8,7935

Таблица 3. Результаты расчета импульсов газового потока

Варианты	1 - 5	1 - 5	1 - 5	1	2	3	4	5
Сечения	0	к	у	а	a	а	а	а
λ	0,1215	0,1960	1,0	2,1376	0,4678	0,3216	0,1816	0,1264
р [*] , МПа	10,083	9,8747	9,8747	9,8747	2,9242	4,0377	6,9293	9,8747
S, мм ²	2035,8	4071,5	1256,6	6249,1	6249,1	6249,1	6249,1	6249,1
f	1,0081	1,0208	1,2486	0,3271	1,1045	1,0536	1,0179	1,0088
Ф, кН	20,693	41,041	15,493	20,185	20,183	26,584	44,077	62,251

Таблица 4. Результаты расчета сил и тяги

Варианты	1	2	3	4	5
σ _{в.р}	0,9978	0,9978	0,9978	0,9978	0,9978
στ	0.9815	0.9815	0.9815	0.9815	0.9815
σ_{Π}	-	0,2961	0,4089	0,7017	1,0
р _н , МПа	0,2755	2,5856	3,8108	6,8032	9,7878
Р _{0-к} , кН	20,348	20,348	20,348	20,348	20,348
Р _{к-у} , кН	- 25,548	- 25,548	- 25,548	- 25,548	- 25,548
Р _{у-а} , кН	4,692	4,690	11,091	28,584	46,758
Р _{0-а} , кН	- 0,508	- 0,510	5,891	23,384	41,558
Р _{внутр} , кН	20,185	20,183	26,584	44,077	62,251
Р _{нар} , кН	- 1,722	- 16,158	- 23,814	- 42,514	- 61,165
Р, кН	18,463	4,025	2,770	1,563	1,086

Рисунок 1 - Схема камеры ракетного двигателя

Рисунок 2 - Изменение температуры газа по длине камеры ракетного двигателя

Рисунок 3 - Изменение давления газа по длине камеры ракетного двигателя

Рисунок 4 - Изменение плотности газа по длине камеры ракетного двигателя

Рисунок 5 - Изменение скорости газового потока по длине камеры ракетного двигателя

Методические указания

РАСЧЕТ ИДЕАЛЬНОГО ГАЗОВОГО ПОТОКА В КАМЕРЕ РАКЕТНОГО ДВИГАТЕЛЯ

Методические указания Составители Бирюк В.В.,Диденко А.А., Угланов Д.А., Цыганов А.М.

Компьютерная вёрстка Угланов Д.А. Подписано в печать _____. Формат 60х84 1/21 Бумага офсетная. Печ. л. _____. Тираж _____ экз. Заказ _____. Арт. ____/ 2016.

РАСЧЕТ ИДЕАЛЬНОГО ГАЗОВОГО ПОТОКА В КАМЕРЕ РАКЕТНОГО ДВИГАТЕЛЯ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА» (САМАРСКИЙ УНИВЕРСИТЕТ) 443086, САМАРА,МОСКОВСКОЕ ШОССЕ, 34.

Изд-во Самарского университета. 443086, Самара, Московское шоссе, 34.