МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА» (Самарский университет)

# МОДЕЛИРОВАНИЕ ТЕПЛОВОГО И ПРОЧНОСТНОГО СОСТОЯНИЯ ЭЛЕМЕНТА КОРПУСА КАМЕРЫ ЖРД

Рекомендовано редакционно-издательской комиссией института двигателей и энергетических установок в качестве электронных методических указаний

Составители В.А. Борисов, А.Ю. Тисарев

C A M A P A 2017

#### Составители В. А. Борисов, А. Ю. Тисарев

Рецензент: кандидат техн. наук, доцент В. С. Егорычев

Моделирование теплового и прочностного состояния элемента корпуса камеры ЖРД: электрон. метод. указания / сост. В.А. Борисов, А.Ю. Тисарев. – Самара: Изд-во Самарского университета, 2017. – Электрон. и граф. дан. (3,59 Мбайт). – 1 эл. опт. диск (CD-ROM).

Методические указания предназначены для выполнения лабораторной работы по методике расчета температуры и прочности элемента корпуса камеры ЖРД с проточным охлаждением с использованием метода конечных элементов и пакета ANSYS Mechanical, составленной на основе учебного пособия «Сопряжённое моделирование тепловых, гидродинамических и прочностных процессов в системе охлаждения камеры ЖРД».

Учебное пособие предназначено для специалистов по специальности 24.05.02 «Проектирование авиационных и ракетных двигателей», изучающих дисциплины «Конструкция и проектирование ракетных двигателей», «Ракетные двигатели».

Электронное учебное пособие разработано на кафедре конструкции и проектирования двигателей летательных аппаратов Самарского университета.

УДК

© Самарский университет, 2017

# Содержание

| Введение                                                | 4  |
|---------------------------------------------------------|----|
| Задание к лабораторной работе                           | 4  |
| 1 Формирование конечно-элементной модели частей корпуса | 7  |
| 2 Расчёт теплового состояния камеры                     | 13 |
| 3 Расчёт прочности корпуса камеры                       | 18 |
| 3.1. Формирование численной модели элементов корпуса    | 18 |
| 3.2. Выбор граничных условий                            | 20 |
| 3.3. Проведение расчёта и анализ результатов            | 22 |
| Заключение                                              | 25 |
| Литература                                              | 25 |

#### Введение

В методических указаниях приводится методика расчета температуры и прочности элемента корпуса камеры ЖРД с проточным охлаждением с использованием метода конечных элементов и пакета ANSYS Mechanical, составленная на основе учебного пособия [1].

Расчет температурного состояния корпуса всегда сопутствует прочностным расчетам, так как от температуры зависят температурные напряжения и деформации элементов конструкции, а также прочностные характеристики материалов.

Для упрощения расчета исследуется только элемент цилиндрической части камеры, на длине которого давления и температуры газа и охладителя можно принять постоянными (они задаются). Этот элемент с одной стороны закреплён в осевом направлении (Рисунок 1), но закрепление не препятствует радиальным деформациям.

Механические и физические свойства материалов заданы в таблице 3. В лабораторной работе предполагается, что материал стенки хромистая бронза БрХ0,8, в рассматриваемых условиях находится в пластическом состоянии. Материал наружной оболочки (рубашки) — сталь ЭИ-654 (может быть и другая сталь), работает в основном в упругой области деформации.

Предполагается выполнение работы студентами индивидуальное или групповое. Варианты задания различаются геометрическими размерами элемента камеры. В работе должны быть определены эпюры напряжений и деформаций в обоих оболочках, максимальные и средние напряжения в рубашке. Средние напряжения необходимо сравнить с напряжениями, определенными приближенным методом.

# Задание к лабораторной работе

# 1.Исходные данные

Геометрия элемента камеры представлена на рисунке 1.



Рисунок 1 – Участок корпуса камеры сгорания

# На рисунке:

d- внутренний диаметр,

D- наружный диаметр камеры.

Кроме того, не обозначены размеры:

h<sup>/</sup>- толщина стенки внутренней оболочки;

h<sup>//</sup>- толщина рубашки.

Стенки между собой связаны ребрами, число которых Z , толщина ребра  $h_p$  , а высота  $\delta.$ 

Четыре варианта размеров элемента приведены в таблице 1.

Таблица 1 – Геометрические характеристики элемента корпуса

| Вариант | d, мм | h′, мм | δ, мм | h <sup>//</sup> , мм | Ζ   | h <sub>p</sub> , мм | D, мм | примечание |
|---------|-------|--------|-------|----------------------|-----|---------------------|-------|------------|
| 1       | 150   | 1      | 4     | 4                    | 60  | 1                   | 168   |            |
| 2       | 200   | 1      | 4     | 4                    | 90  | 1                   | 218   |            |
| 3       | 250   | 1,5    | 5     | 5                    | 108 | 1,3                 | 273   |            |
| 4       | 300   | 1,5    | 5     | 6                    | 120 | 1,5                 | 325   |            |

# 2. Нагрузки и температура деталей элемента

На внутреннюю поверхность стенки диаметром d падает тепловой поток от газа, температура поверхности стенки -  $T_{cm\Gamma}$ , на эту же поверхность действует давление газа  $p_{\kappa}$ .

Температура наружной поверхности этой стенки  $T_{cmX}$  зависит от отвода тепла в охладитель. Между оболочками протекает охладитель, его давление  $p_x$ , а температура  $T_X$ .

Наружняя оболочка (рубашка) имеет температуру  $T_P$ , которая зависит от отвода тепла в окружающее пространство. Все эти данные задаются, один вариант их приведен в таблице 2.

| Давление газа по длине элемента                | 8·10 <sup>6</sup> Па   |
|------------------------------------------------|------------------------|
| постоянное, рк                                 |                        |
| Давление охладителя принимаем                  | 9,5·10 <sup>6</sup> Па |
| постоянное, р <sub>х</sub>                     |                        |
| Температура внутренней поверхности             | 800 K                  |
| стенки постоянная, Т <sub>стГ</sub>            |                        |
| Температура поверхности стенки со стороны      | 760 K                  |
| охладителя постоянная, Т <sub>стХ</sub>        |                        |
| Температура рубашки постоянная, Т <sub>Р</sub> | 500 K                  |
| Материал стенки                                | БрХ08                  |

Таблица 2 – Давления и температуры поверхностей элемента

3. Задание к лабораторной работе

<u>Предварительная работа</u>: Построить объёмную модель элемента корпуса (рисунок 1) в соответствии с заданным вариантом.

Основная часть работы:

1 Формирование конечно-элементной модели частей корпуса

- 2 Расчёт теплового состояния элемента камеры
- 3 Расчёт прочности корпуса камеры
- 3.1 Формирование численной модели элементов корпуса
- 3.2 Выбор граничных условий
- 3.3 Проведение расчёта и анализ результатов

#### 1 Формирование конечно-элементной модели частей корпуса

На первом этапе необходимо сформировать конечно-элементную модель элемента корпуса камеры для расчёта его теплового состояния.

Используется следующий порядок построения модели.

1. Создаётся 3D-модель сектора корпуса (NX, SolidWorks, КОМПАС и др.). Для построения гексагональной конечно-элементной сетки, на этапе создания модели необходимо разделить объём на элементарные участки по аналогии, показанной на рисунке 2.



Рисунок 2 – 3D модель участка стенки камеры

Далее данная модель экспортируется в формат .x\_t (Parasolid).

2. Запускается ANSYS Mechanical и импортируется геометрическая модель:

Utility Menu (UM)  $\rightarrow$  File  $\rightarrow$  Import  $\rightarrow$  PARASOLID (.x\_t)...

- 3. Для отображения объёмов и поверхностей необходимо проделать следующую операцию:
  - 1) UM $\rightarrow$  PlotCtrls $\rightarrow$  Style $\rightarrow$  Solid Models Facets $\rightarrow$  Normal Faceting $\rightarrow$  $\rightarrow$ OK;
  - 2) UM  $\rightarrow$  Plot  $\rightarrow$  Volumes;



Рисунок 3 – Модель сектора камеры

4. Для теплового анализа камеры необходимо создать следующие типы конечных элементов: SOLID70 и SHELL131.

Main Menu (MM)  $\rightarrow$  Preprocessor $\rightarrow$  Element Type $\rightarrow$  Add/Edit/Delete  $\rightarrow$  Add $\rightarrow$  Solid 70 или Shell 131 $\rightarrow$  CLOSE.

5. Создаются модели материалов и определяются их свойства:  $MM \rightarrow$  Preprocessor  $\rightarrow$  Material Props $\rightarrow$  Material Models.

| Наименование           | обозначение                           | БрХ08                 | ЭИ-654              |
|------------------------|---------------------------------------|-----------------------|---------------------|
| модуль упругости       | <b>Е</b> (ЕХ), МПа                    | 1,19·10 <sup>5</sup>  | 1,6·10 <sup>5</sup> |
| коэф. Пуассона         | μ (PRXY)                              | 0,36                  | 0,3                 |
| предел текучести       | $\sigma_{0.2}$ (Yield Stss),          | 220                   | 640                 |
|                        | МПа                                   |                       |                     |
| касательный модуль     | $\mathbf{E}_{\mathbf{k}}$ (Tang Mod), | 1270                  | 4010                |
|                        | МПа                                   |                       |                     |
| плотность              | ρ (DENS), kg/m <sup>3</sup>           | 8900                  | 7510                |
| коэф. теплового        | <b>а</b> (ALPX), 1/град               | 18,9·10 <sup>-6</sup> | 17,8.10-6           |
| расширения             |                                       |                       |                     |
| коэф. теплопроводности | $\lambda$ (KXX), Bt/m·K               | 314                   | 15,9                |

Таблица 3 – Механические и физические свойства материалов

- 1) Mat Model Number 1 (БрХ08):
  - Structural→ Linear→ Elastic→ Isotropic→ EX: 1.19e11 и PRXY: 0.36;
  - Structural→ Nonlinear→ Inelastic→ Rate Independent→
     →Isotropic Hardening Plasticity→ Mises Plasticity→
     →Bilinear→ Yield Stss: 220e6 и Tang Mod: 1270e6;
  - Structural  $\rightarrow$  Density  $\rightarrow$  DENS: 8900;
  - Structural→ Thermal Expansion→ Secant Coefficient→ →Isotropic→ ALPX: 18.9e-6;
  - Thermal  $\rightarrow$  Conductivity  $\rightarrow$  Isotropic  $\rightarrow$  KXX: 314;
- 2) Material  $\rightarrow$  New Models  $\rightarrow$  2;

Свойства для второго материала ЭИ-654 определяются аналогично первому (используя значения из табл.3);

6. Построение сетки следует начать с разбиения рёбер:

MM→ Preprocessor→ Meshing→ Size Cntrls→ Manual Size→ →Lines→ Picked Lines→ Выбираются линии.



Рисунок 4 – Разбиение рёбер

| A Element Sizes on Picked Lines                     | X           |
|-----------------------------------------------------|-------------|
| [LESIZE] Element sizes on picked lines              |             |
| SIZE Element edge length                            |             |
| NDIV No. of element divisions                       | 3           |
| (NDIV is used only if SIZE is blank or zero)        |             |
| KYNDIV SIZE,NDIV can be changed                     | ✓ Yes       |
| SPACE Spacing ratio                                 |             |
| ANGSIZ Division arc (degrees)                       |             |
| ( use ANGSIZ only if number of divisions (NDIV) and |             |
| element edge length (SIZE) are blank or zero)       |             |
| Clear attached areas and volumes                    | □ No        |
| ОК                                                  | Cancel Help |

Рисунок 5 – Назначение числа конечных элементов

Рекомендуется задавать не менее трёх элементов по толщине.

7. После того как все линии разбиты, необходимо разбить базовую поверхность элементами SHELL131.

1) Выбор типа элемента: MM  $\rightarrow$  Preprocessor  $\rightarrow$  Meshing $\rightarrow$  MeshTool  $\rightarrow$  Element Attributes  $\rightarrow$  Set.

| <u>File Select List Plot PlotCtrls M</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>V</u> orkPlane Pa <u>r</u> ameters <u>M</u> acro Me <u>n</u> u | uCtrls <u>H</u> elp                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| □ ☞ ■ @ @ @ ? ■                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | - E Ct                                                                                                             | MeshTool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |
| Toolbar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |                                                                                                                    | Element Attributes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |
| SAVE_DB RESUM_DB QUIT PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WRGRPH GPLOT APLOT EPLOT                                          | VPLOT LPLOT NPLOT                                                                                                  | Global                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                                        |
| Main Menu       Image: Constants         Image: Preprocessor       Image: Constants         Image: Preprocessor       Image: Constants         Image: Real Constants       Image: Constants         Image: Real Constant KPs       Image: Real Constants         Image: Real Constant KPs       Image: Real Constant KPs         Image: Real Constant KPs       Image: Real Constant KPs <t< th=""><th>VOLUMES<br/>MAT NUM</th><th>Meshing Attributes Default Attributes for Meshing [TYPE] Element type number I I I I I I I I I I I I I I I I I I I</th><th>Image: State of the state</th><th>Clear<br/>Clear<br/>Clear<br/>Flip<br/>Clear<br/>tex<br/>Wweep</th></t<> | VOLUMES<br>MAT NUM                                                | Meshing Attributes Default Attributes for Meshing [TYPE] Element type number I I I I I I I I I I I I I I I I I I I | Image: State of the state | Clear<br>Clear<br>Clear<br>Flip<br>Clear<br>tex<br>Wweep |

Рисунок 6 – Выбор типа элемента SHELL131

- 8. Разбиение грани элементами SHELL31.
- В диалоговом окне MeshTool необходимо выбрать (рисунок 7):

- 1) Areas в окне Mesh;
- 2) Quad и Mapped в окне Shape;
- 3) Нажать кнопку Mesh;
- 4) Выбрать все торцовые грани корпуса;
- 5) Нажать ОК.

| MeshTool                |            |         |  |  |  |
|-------------------------|------------|---------|--|--|--|
| Element Attrib          | utes:      |         |  |  |  |
| Global                  | •          | ]Set    |  |  |  |
| 🗌 Smart Size            |            |         |  |  |  |
| <u> </u>                | 0          | •       |  |  |  |
| Fine                    | в          | Coarse  |  |  |  |
| Size Controls:          |            |         |  |  |  |
| Global                  | Set        | Clear   |  |  |  |
| Areas                   | Set        | Clear   |  |  |  |
| Lines                   | Set        | Clear   |  |  |  |
|                         | Сору       | Flip    |  |  |  |
| Layer                   | Set        | Clear   |  |  |  |
| Keypts                  | Set        | Clear   |  |  |  |
| Mach:                   |            |         |  |  |  |
| Shana: C                | Tri        |         |  |  |  |
| Shape: ( Tri ( Quad *** |            |         |  |  |  |
|                         | Mappeu     | C cheep |  |  |  |
| 3 0                     | or 4 sided | -       |  |  |  |
| Mach V Clear            |            |         |  |  |  |
| <b>3</b> 2              |            |         |  |  |  |
| Refine at: Elements     |            |         |  |  |  |
| Refine                  |            |         |  |  |  |
| Close Help              |            |         |  |  |  |

Рисунок 7 – Mesh Tool

Разбиение торцовых граней модели оболочечными элементами проводится для последующего создания трёхмерных элементов, путём вытягивая исходных элементов вдоль направляющей. Данная операция проводится командой Sweep.

9. Построение объёмной конечно-элементной модели:

1) выбор типа элемента и материала;

 $MM \rightarrow Preprocessor \rightarrow Meshing \rightarrow MeshTool \rightarrow Element Attributes \rightarrow Set.$ 

В графе Element Туре Number выбирается элемент SOLID70 и в графе Material Number номер соответствующего материала.

2) в графе Mesh выбрать Volume;

3) в графе Shape выбрать Sweep;

4) нажать Mesh, выбрать объёмы стенки и нажать ОК;

5) повторить последовательность действий для разбиения объёмов рубашки;



Рисунок 8 – Выбор объёма для команды SWEEP



Рисунок 9 – Результат, получаемый после выполнения команды

#### **SWEEP**

10. Удаление оболочечных элементов SHELL131:

1) зайти в MeshTool;

 $MM \rightarrow Preprocessor \rightarrow Meshing \rightarrow MeshTool/$ 

2) в графе Mesh выбрать Volume;

3) очистить модель от оболочечных элементов, нажав кнопку Clear и далее Pick All.

#### 2 Расчёт теплового состояния камеры

Для теплового расчёта необходимо на поверхности стенки и рубашки задать граничные условия. В данной работе рассматриваются граничные условия первого рода – температуры.

Примечание: значение температур необходимо задавать в Цельсиях.

Определение тепловых граничных условий и расчёт теплового состояния камеры проводится в следующей последовательности:

1) задание температуры внутренней поверхности стенки Т<sub>стГ</sub>:

 $\mathsf{MM} \rightarrow \mathsf{Preprocessor} \rightarrow \mathsf{Loads} \rightarrow \mathsf{Define} \ \mathsf{Loads} \rightarrow \mathsf{Apply} \rightarrow \mathsf{Thermal} \rightarrow$ 

 $\rightarrow$ Temperature $\rightarrow$  on Areas $\rightarrow$  Выбирается поверхность



Рисунок 10 – Выбор поверхности горячей стенки

| Apply TEMP on Areas              |                  |
|----------------------------------|------------------|
| [DA] Apply TEMP on areas         |                  |
| Lab2 DOFs to be constrained      | All DOF          |
|                                  | TEMP             |
|                                  | TE2              |
|                                  | TTOP             |
|                                  |                  |
|                                  |                  |
|                                  |                  |
|                                  |                  |
|                                  | TEMP             |
| Apply as                         | Constant value 💌 |
| If Constant value then:          |                  |
| VALUE Load TEMP value            | 527              |
| KEXPND Apply TEMP to boundary li | □ No             |
|                                  |                  |
| OK Apply                         | Cancel Help      |
|                                  |                  |
|                                  |                  |

Рисунок 11 – Задание температуры  $T_{ct\Gamma}$ 

Таким же образом задаются другие температуры





Рисунок 13 – Выбор поверхностей

для температуры T<sub>P</sub>

Рисунок 12 – Выбор поверхностей для температуры T<sub>стХ</sub>



Рисунок 14 – Выбор поверхностей для температуры T<sub>x</sub> Рисунок 15 – Результат наложения температур

2) так как мы моделируем только 1 сектор модели, необходимо чтобы значения температур в узлах граней сектора совпадали. Для этого создаются CP (Coupling) связи, которые наложат на узлы соответствующие ограничения. Перед выполнением данной команды необходимо выбрать только узлы соответствующих граней (рисунок 16). В данном случае CP связи можно создать, используя следующую команду Preprocessor > Coupling / Ceqn > Offset Nodes. Данная команда выполнится в том случае, если радиальная и осевая координаты в цилиндрической системе координат связываемых узлов будут одинаковыми. В противном случае необходимо задать значение возможного отклонения TOLER.



Рисунок 16 – Узлы, принадлежащие граням циклической симметрии.

| [CPCYC] Define Coupled DOFs Between Offset Nodes |                |
|--------------------------------------------------|----------------|
| Lab DOF for coupled nodes                        | TEMP           |
| TOLER Tolerance for offset                       | 0              |
| KCN Coordinate system                            | 5              |
| DX Offset in X-direction                         | 0              |
| DY Offset in Y-direction                         | 1.6            |
| DZ Offset in Z-direction                         | 0              |
| KNONR Node rotations                             | Rotate nodes 🔹 |
|                                                  |                |
| OK Cancel                                        | Help           |

Рисунок 17 – Опции команды Offset Nodes

В окне Coordinate system выбрана система координат №5, что обозначает цилиндрическую систему координат с осью у. Если у модели осью является ось Z, то введите 1.

3) расчёт теплового состояния:

- $MM \rightarrow Solution \rightarrow Analysis Type \rightarrow New Analysis \rightarrow Steady-State;$
- $MM \rightarrow Solution \rightarrow Solve \rightarrow Current LS;$

4) просмотр результатов:

MM→ General Postproc→ Plot Results→ Contour Plot→ Nodal Solu:

| ∧ Contour Nodal Solution Data                                                                                                                                         |                                        |      |       |        | ×        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|-------|--------|----------|
| Item to be contoured                                                                                                                                                  |                                        |      |       |        |          |
| Favorites     Modal Solution     Modal Solution     Modal Temp     Construction     Modal Temp     Construction     Construction     Thermal Gradien     Thermal Flux | e <mark>rature</mark><br>eratures<br>i |      |       |        | 4        |
| ۲.                                                                                                                                                                    |                                        |      |       |        | ×<br>>   |
| Undisplaced shape key                                                                                                                                                 |                                        |      |       |        |          |
| Undisplaced shape key                                                                                                                                                 | Deformed shape of                      | only |       |        | <b>_</b> |
| Scale Factor                                                                                                                                                          | Auto Calculated                        |      | - 0   | )      |          |
| Additional Options                                                                                                                                                    |                                        |      |       |        | ۲        |
|                                                                                                                                                                       |                                        | OK   | Apply | Cancel | Help     |

Рисунок 18 – Просмотр результатов



Рисунок 19 – Результат теплового расчёта

5) сохранение результатов:

UM→ Plot Ctrls→ Write Metafile→ Invert White/Back→ Сохранить:



Рисунок 20 – Сохранение

результатов



Рисунок 21 – Результат,

сохранённый в документе

# 3 Расчёт прочности корпуса камеры

Расчёт прочности элемента корпуса методом конечных элементов проводится в следующей последовательности.

- 1. Формирование численной модели элементов корпуса.
- 2. Выбор граничных условий.
- 3. Проведение расчёта и анализ результатов.

#### 3.1 Формирование численной модели элементов корпуса

Расчёт напряжённо-деформированного состояния (НДС) элементов корпуса камеры проводится на копии модели, которая уже использовалась для анализа её температурного состояния. однако для расчёта НДС необходимо внести в модель следующие изменения:

- удалить значения температур с поверхностей;
- преобразовать тепловые типы конечных элементов в структурные (конструкционные);
- создать связи, задающие равенство угловых координат на противоположных узлах, принадлежащих граничным граням.
- 1) удаление значений температур с поверхностей:

 $MM \rightarrow Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Delete \rightarrow Thermal \rightarrow \rightarrow Temperature \rightarrow on Areas \rightarrow Pick All;$ 

преобразование тепловых типов элементов в структурные:
 MM→ Preprocessor→ Element Type→ Switch Element Type→ Thernal to Struc;

| N Switch Elem Type                               | x                  |
|--------------------------------------------------|--------------------|
| [ETCHG] Switch Element Types Depending on Analys | is                 |
| Change element type                              | Thermal to Struc 🔹 |
| OK Cancel                                        | Help               |

Рисунок 22 – Окно Switch Elem Туре

3) Создание связей, имитирующих циклическую симметрию модели:

Сначала необходимо удалить тепловые СР связи, задающие равенство температур на узлах. Для этого необходимо выполнить команду Del Coupled Sets (Preprocessor > Coupling / Ceqn > Del Coupled Sets) и выбрать все существующие СР связи, как показано на рисунке 23.

| ▲ Delete Coupled DOF Sets                                                                             |                      | x       |
|-------------------------------------------------------------------------------------------------------|----------------------|---------|
| [CPDELE] Delete Coupled DOF Sets<br>NSET1,NSET2,NINC Range of sets<br>Nsel Of nodes in set, delete if | all All are selected | all all |
| ОК Арр                                                                                                | ly Cancel            | Help    |

Рисунок 23 – Окно Delete Coupled DOF Sets

Далее необходимо создать СР связи, имитирующие циклическую симметрию модели. Для этого требуется задать равенство угловых координат на противоположных узлах, принадлежащих граничным граням. Для этого воспользуемся командой Offset Nodes (Preprocessor > Coupling / Ceqn > Offset Nodes) и заполним необходимые данные (рисунок 24).

| ▲ Couple Offset Nodes                            | ×              |
|--------------------------------------------------|----------------|
| [CPCYC] Define Coupled DOFs Between Offset Nodes |                |
| Lab DOF for coupled nodes                        | UY 🔻           |
| TOLER Tolerance for offset                       | 0              |
| KCN Coordinate system                            | 5              |
| DX Offset in X-direction                         | 0              |
| DY Offset in Y-direction                         | 1.6            |
| DZ Offset in Z-direction                         | 0              |
| KNONR Node rotations                             | Rotate nodes 💌 |
|                                                  |                |
| OK Cancel                                        | Help           |
|                                                  |                |

Рисунок 24 – Окно Couple Offset Nodes

# 3.2 Выбор граничных условий

При расчёте прочности камеры сгорания необходимо приложить следующие граничные условия:

1) запрет на перемещение вдоль оси камеры:

 $MM \rightarrow Preprocessor \rightarrow Loads \rightarrow Define \ Loads \rightarrow Apply \rightarrow Structural \rightarrow on$ 



Рисунок 25 – Выбор поверхности перпендикулярной оси камеры

| Apply U,ROT on Areas                      | x                         |
|-------------------------------------------|---------------------------|
| [DA] Apply Displacements (U,ROT) on Areas |                           |
| Lab2 DOFs to be constrained               | All DOF<br>UX<br>UY<br>UZ |
|                                           | ROTX<br>ROTY<br>ROTZ      |
| Apply as                                  | UZ<br>Constant value      |
| If Constant value then:                   |                           |
| VALUE Displacement value                  |                           |
| OK Apply Cancel                           | Help                      |

Рисунок 26 – Наложение запрета на перемещение вдоль оси камеры

2) давления в охлаждающих каналах и внутри камеры:

задание давления рк:

 $MM \rightarrow Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow$ 

 $\rightarrow$ Pressure $\rightarrow$  on Areas:



Рисунок 27 – Выбор поверхности действия давления рк



Рисунок 28 – Задание значения давления р<sub>к</sub>

# Аналогично задаётся давление р<sub>х</sub>





Рисунок 29 - Выбор поверхностей действия давления р<sub>х</sub> Рисунок 30 – Результат наложения давлений

3) приложение рассчитанных температур:

 $MM \rightarrow Preprocessor \rightarrow Loads \rightarrow Define \ Loads \rightarrow Apply \rightarrow Structural \rightarrow$ Temperature  $\rightarrow$  From Therm Analy

В окне Name of results file выберите файл результатов теплового расчёта с расширением \*.rth. Далее нажмите ОК.

# 3.3 Проведение расчёта и анализ результатов

1) проведение расчёта:

- $MM \rightarrow Solution \rightarrow Analysis Type \rightarrow New Analysis \rightarrow Static;$
- $MM \rightarrow Solution \rightarrow Solve \rightarrow Current LS;$

2) просмотр результатов:

 $\mathsf{MM} {\rightarrow} \mathsf{General} \; \mathsf{Postproc} {\rightarrow} \; \mathsf{Plot} \; \mathsf{Results} {\rightarrow} \; \mathsf{Contour} \; \mathsf{Plot} {\rightarrow} \; \mathsf{Nodal} \; \mathsf{Solu} {\rightarrow}$ 

 $\rightarrow$  Stress $\rightarrow$  von Mises stress $\rightarrow$  OK:

| Item to be contoured   |                     |    |   |
|------------------------|---------------------|----|---|
| #Nodal Solution        |                     |    | - |
| DOF Solution           |                     |    |   |
| Stress                 | at al atom          |    |   |
| V Componer             | it of stress        |    |   |
| 7.Componer             | t of stress         |    |   |
| XY Shear str           | ess                 |    |   |
| YZ Shear str           | BSS                 |    | _ |
| 🕫 XZ Shear str         | ess                 |    |   |
| 1st Principal          | stress              |    |   |
| 2nd Principa           | l stress            |    |   |
| Stross intens          | stress              |    |   |
| won Mises st           | ress                |    |   |
|                        |                     |    |   |
| Indicale cod chano kov |                     |    |   |
| Undersphered shape wey |                     |    |   |
| Undisplaced snape key  | Deformed snape only |    | - |
| Scale Factor           | Auto Calculated     | -0 |   |
| Additional Options     |                     |    | 8 |
|                        |                     |    |   |

Рисунок 31 – Просмотр

результатов



Рисунок 32 - Результат прочностного расчёта

3) сохранение результатов:

UM→ Plot Ctrls→ Write Metafile→ Invert White/Back→ Сохранить.

#### Последовательность определения средних напряжений по объёму элемента

Для анализа средних напряжений в сечениях стенки и рубашки, необходимо сначала выбрать элементы через (UM  $\rightarrow$  Select  $\rightarrow$  Select Entities. Выбрать Elements). После этого необходимо создать компоненты элементов UM  $\rightarrow$  Select  $\rightarrow$  Comp/Assembly  $\rightarrow$  Create Component).



# Рисунок 33 – Создание компонентов набора элементов стенки и рубашки

| CMSEL,S,RUBASHKA                              | CMSEL,S,STENKA |                                               |  |  |
|-----------------------------------------------|----------------|-----------------------------------------------|--|--|
| *get,ecount,elem,0,count                      |                | *get,ecount,elem,0,count                      |  |  |
| lim,elem_set,array,ecount,1,1,,,              |                | *dim,elem_set,array,ecount,1,1,,,             |  |  |
| *dim,e_stress,array,ecount,1,1,,,             |                | *dim,e_stress,array,ecount,1,1,,,             |  |  |
| dim,e_volu,array,ecount,1,1,,,                |                | *dim,e_volu,array,ecount,1,1,,,               |  |  |
| *dim,s_x_v,array,ecount,1,1,,,                |                | *dim,s_x_v,array,ecount,1,1,,,                |  |  |
| /post1                                        |                | /post1                                        |  |  |
| ETABLE,estress,S,EQV                          |                | ETABLE, estress, S, EQV                       |  |  |
| *do,i,1,ecount                                |                | *do,i,1,ecount                                |  |  |
| *get,elem_n_min,elem,0,num,min                |                | *get,elem_n_min,elem,0,num,min                |  |  |
| *get,e_stress(i),elem,elem_n_min,etab,estress |                | *get,e_stress(i),elem,elem_n_min,etab,estress |  |  |
| *get,e_volu(i),elem,elem_n_min,volu           |                | *get,e_volu(i),elem,elem_n_min,volu           |  |  |
| *voper, s_x_v(i), e_stress(i),mult, e_volu(i) |                | *voper, s_x_v(i), e_stress(i),mult, e_volu(i) |  |  |
| esel,u,,,elem_n_min                           |                | esel,u,,,elem_n_min                           |  |  |
| *enddo                                        |                | *enddo                                        |  |  |
| *VSCFUN,volu_summ,SUM,e_volu                  |                | *VSCFUN,volu_summ,SUM,e_volu                  |  |  |
| *VSCFUN,sv_summ,SUM, s_x_v                    |                | *VSCFUN,sv_summ,SUM, s_x_v                    |  |  |
| Str_eq_r=sv_summ/volu_summ                    | 23             | Str_eq_st=sv_summ/volu_summ                   |  |  |

Средние напряжения в сечении для рубашки и стенки записаны соответственно как  $Str\_eq\_r$  и  $Str\_eq\_st$ . Данные результаты можно найти в MM-Parameters-Scalar Parameters.

Анализ напряжённо-деформированного состояния модели

В лабораторной работе необходимо получить:

1) Эпюры распределения эквивалентных напряжений и пластических деформаций в сечении рассматриваемого элемента корпуса.

2) Определить средние по объёму напряжения.

3) Рассчитать напряжения приближённым методом.

В расчете приближённым методом используется безмоментная теория оболочек, при которой напряжения по толщине стенки считаются постоянными. Если при этом принять, что напряжения в стенке достигли предела текучести материала  $\sigma_{0,2}^{\ /}$  и материал в дальнейшем не упрочняется, то окружные напряжения в наружной оболочке (рубашке) можно определить по следующей формуле

$$\sigma_{y''}^{\ \prime\prime} = \frac{p_{k} \frac{d}{2} - \sigma_{0,2}{}^{\prime} h^{\prime}}{h^{\prime\prime}},$$

σ<sub>y</sub><sup>//</sup> - окружные напряжения в рубашке (по величине они близки к эквивалентным);

 $\sigma_{0,2}$  - предел текучести стенки;

h', h'' - толщина стенки и рубашки, соответственно.

Значения напряжений должны быть занесены в следующую таблицу.

Таблица 4

| Напрях                | кения                     | Средние    |         | Предел                 | $n = \sigma_{0,2} / \sigma_{cp}$      |  |
|-----------------------|---------------------------|------------|---------|------------------------|---------------------------------------|--|
| по эпюре              |                           | напряжения | По      | текучести              | (Стенка работает в<br>области упруго- |  |
| σ <sub>max</sub> ,ΜΠa | σ <sub>min</sub> ,<br>MΠa |            | формуле | σ <sub>0,2</sub> , МПа | пластических<br>деформаций)           |  |
| Стенка                |                           |            |         |                        |                                       |  |
|                       |                           |            |         |                        |                                       |  |
| Рубашка               |                           |            |         |                        |                                       |  |
|                       |                           |            |         |                        |                                       |  |

По результатам работы должны быть сделаны выводы:

- 1. Какое напряжённо-деформированное состояние стенки и рубашки.
- 2. Каков запас прочности по средним и максимальным напряжениям.
- 3. Удовлетворяет ли рассматриваемый элемент нормам прочности?

Предложить, как обеспечить прочность элемента.

#### Заключение

Как следует из приведённого обзора креплений ЖРД, их конструкция весьма разнообразна и определяется конкретным назначением и устройством двигателя и летательного аппарата. Общими остаются основные требования: прочность, жесткость и надёжность работы при минимальной массе.

При неподвижной установке двигателя конструкция креплений простая, но все детали крепления силовые, необходим расчет их прочности, рациональный выбор материала и технологии изготовления.

Крепления двигателя при подвижной установки могут весьма сложными, особенно, если необходимо обеспечить управление летательным аппаратом в пространстве относительно всех координатных осей. Примером такого крепления может быть карданный подвес с шаровой пятой [2].

Изучение материала пособия позволяет найти прототипы для решения конструкторских задач, поставленных в курсовых и дипломных проектах.

#### Литература

- Безменова Н. В. Сопряжённое моделирование тепловых, гидродинамических и прочностных процессов в системе охлаждения камеры ЖРД : электрон. учеб. пособие / Н. В. Безменова, В. А. Борисов, А. Ю. Тисарев, С. А. Шустов. – Самара : Изд-во Самар. гос. аэрокосм. ун-та им. С.П. Королёва (нац. исслед. ун-т), 2013. – Электрон. текстовые и граф. дан. (3,25 Мбайт). – 1 эл. опт. диск (CD – ROM).
- Борисов В. А. Компоновка ЖРД : электрон. метод. указания / В. А. Борисов, В. С. Мелентьев. Самара : Изд-во Самарского университета, 2017. Электрон. и граф. дан. (3,98 Мбайт). 1 эл. опт. диск (CD-ROM).