МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С. П. КОРОЛЁВА»

АВТОМАТИКА И РЕГУЛИРОВАНИЕ АВИАЦИОННЫХ ДВИГАТЕЛЕЙ И ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК КУРСОВАЯ РАБОТА

C A M A P A 2016 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С. П. КОРОЛЁВА»

> АВТОМАТИКА И РЕГУЛИРОВАНИЕ АВИАЦИОННЫХ ДВИГАТЕЛЕЙ И ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК КУРСОВАЯ РАБОТА

> > C A M A P A 2016

УДК 62-85 (075)

Составители: Г.М. Макарьянц, А.Б. Прокофьев, А.И. Сафин

Автоматика и регулирование авиационных двигателей и энергетических установок. Курсовая работа. / Минобрнауки России, Самар. нац. исслед. ун-т им. С. П. Королева; сост. Г.М. Макарьянц, А.Б. Прокофьев, А.И. Сафин -Самара, 2016.

Приведён порядок выполнения курсовой работы по дисциплине автоматика и регулирование авиационных двигателей и энергетических установок.

Целью лабораторных работ является закрепление практических навыков студентов при моделировании систем автоматического управления в программном комплексе Matlab.

Предназначено для студентов технических специальностей и направлений.

Разработано на кафедре автоматических систем энергетических установок.

© Самарский университет, 2016

СОДЕРЖАНИЕ

Стр.

1. ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ	6
2. D-РАЗБИЕНИЕ В ПЛОСКОСТИ ОДНОГО ПАРАМЕТРА	7
3. АЛГЕБРАИЧЕСКИЙ КРИТЕРИЙ РАУСА-ГУРВИЦА	10
4. ЧАСТОТНЫЙ КРИТЕРИЙ МИХАЙЛОВА	13
5. ЧАСТОТНЫЙ КРИТЕРИЙ НАЙКВИСТА	17
6. ПОСТРОЕНИЕ ПЕРЕХОДНОГО ПРОЦЕССА	19

1. ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Составление структурной схемы САР.
- 2. Преобразование структурной схемы и нахождение передаточных функций.
 - 2.1. Нахождение общей передаточной функции системы $W_{_{3 a M H}}(s)$.
 - 2.2. Нахождение передаточной функции неизвестного коэффициента собственного оператора *k*(*s*) для построения D-разбиения.
 - 2.3. Нахождение передаточной функции разомкнутой САР $W_{nas}(s)$.
- 3. Построение D-разбиения САР.
 - 3.1.Построение границы D-разбиения и контрольного значения коэффициента *k*.
 - 3.2.Определение устойчивости системы по критерию Рауса-Гурвица для выбранного значения *k*.
 - 3.3.Определение устойчивости системы по критерию Михайлова для выбранного значения *k*.
 - 3.4.Определение устойчивости системы по критерию Найквиста для выбранного значения *k*.
- 4. Построение графиков переходных процессов в системе для пяти значений коэффициента k, выбранных из области устойчивости системы (два в районе левой границы области устойчивости, один примерно в центре и два ближе к правой). Оценка изменения качества переходных процесса в системе при варьировании коэффициентов k.

2. D-РАЗБИЕНИЕ В ПЛОСКОСТИ ОДНОГО ПАРАМЕТРА

При анализе САР возникает задача определения областей изменения коэффициентов собственного оператора при которых система является устойчивой. Такие области получают с помощью D-разбиения в плоскости искомого параметра, т.е. рассматриваемого коэффициента. Для построения D-разбиения в плоскости рассматриваемого параметра его необходимо выделить в собственном операторе системы D(s) в явном виде:

D(s) = A(s)k + B(s),D(s) = 0,A(s)k + B(s) = 0,B(s)

$$k = -\frac{B(s)}{A(s)}.$$

Затем выполняется замена $s = j\omega$ и строится годограф k на комплексной плоскости при изменении круговой частоты входного сигнала в диапазоне $\omega \in (-\infty, +\infty)$. После этого на полученную кривую наносится штриховка с левой стороны при движении по линии годографа и изменении ω от $-\infty$ до $+\infty$. Область с внутренней штриховкой является подозрительной на устойчивость и проверяется с помощью одного из критериев.

В программном комплексе Matlab можно реализовать механизм выделения реальной и мнимой части из известной передаточной функции. Для этого из результата работы команды *nyquist* в специальные переменные Re_ и Im_ извлекается информация о реальной и мнимой частях передаточной функции, а затем с помощью оператора ":" она преобразуется в тип пригодный для

построения годографа. Листинг механизма выделения реальной и мнимой частей выглядит следующим образом:

 $[Re_, Im_, Omega] = nyquist(k);$ $Re(:,1,1) = Re_(1,:);$ $Im(:,1,1) = Im_(1,:);$

При этом определяются значения вещественной и мнимой частей только для положительных частот. При построении графика годограф для отрицательных частот строится отображением относительно оси абсцисс. Команда построения графика D-разбиения выглядит следующим образом

plot(Re, Im, Re, -Im), grid on.

При необходимости можно ограничить минимальное и максимальное значение по осям координат с помощью команды *axis*.

Пример.

Построить границу D-разбиения, если передаточная функция параметра разбиения имеет вид:

$$k(s) = \frac{-0,005s^3 - 0,035s^2 - 2,03s - 2}{-0,005s^2 - 0,03s - 1,3}.$$

Тогда листинг программы построения границы D-разбиения выглядит следующим образом:

```
clc

clear

k = tf([-0.005, -0.035, -203, -2], [-0.005, -0.03, -1.3]);

figure(1)

[Re_, Im_, Omega] = nyquist(k);

Re(:,1,1) = Re_(1,:);

Im(:,1,1) = Im_(1,:);

plot(Re, Im, Re, -Im), grid on

xlabel('Rek(w)')

ylabel('Imk(w)')

axis([0.25 - 80.80])
```

В результате граница D-разбиения выглядит следующим образом.

3. АЛГЕБРАИЧЕСКИЙ КРИТЕРИЙ РАУСА-ГУРВИЦА

Для исследования устойчивости САР с помощью критерия Payca-Гурвица требуется выполнить анализ матрицы Гурвица, составленной из коэффициентов характеристического уравнения САР.

 $a_0r^n + a_1r^{n-1} + \ldots + a_{n-1}r + a_n = 0$

Для устойчивости САР необходимо и достаточно, чтобы все диагональные миноры матрицы Гурвица были положительны. При этом матрица Гурвица составляется по следующему правилу. Вначале по диагонали выписываются все коэффициенты от a_1 до a_n в порядке возрастания сверху вниз. Затем заполняются столбцы в порядке убывания номеров коэффициентов. Недостающие коэффициенты заменяются нулями.

В программном комплексе Matlab программа проверки устойчивости по Раусу-Гурвицу будет состоять из трёх этапов. На первом этапе необходимо присвоить значения коэффициентам характеристического уравнения. Синтаксис этой операции следующий:

$$a_i = x;$$

где a_i – коэффициент характеристического уравнения с индексом *i* (при этом индекс изменяется в диапазоне $i = \overline{0.n}$). Значение переменной фиксируется в памяти и отображается в окне "Workspace". Знак ";" в конце команды позволяет не выводит численное значение введённой переменной в окно "Comand Window".

Далее составляется матрица. Синтаксис команды задания матрицы следующий:

$$A = [A_{1,1}, A_{1,2}, \dots, A_{1,n-1}, A_{1,n}; \dots; A_{n,1}, A_{n,2}, \dots, A_{n,n-1}, A_{n,n}];$$

Элементы матрицы задаются по правилу составления матрицы Гурвица. В Matlab матрица задаётся последовательностью коэффициентов, заключённых в квадратные скобки. При этом элементы строки отделяются знаком ",", а столбцы ";". В завершении второго этапа вычисляется длина матрицы A с помощью команды *length*(X):

$$n = length(A);$$

С её помощью переменной n присваивается значение длины матрицы A.

На втором этапе с помощью цикла проверяется условие: являются ли главные диагональные миноры матрицы Гурвица отрицательными. Подпрограмма с циклом выглядит следующим образом:

while
$$n \sim = 0$$

 $D = det(A);$
if $D <= 0$
 $disp('cucmema + e ycmoŭuuba');$
 $break;$
 $else$
 $A(:,n) = [];$
 $A(n,:) = [];$
 $n = n - 1;$
 end

end

В ней с помощью команды det(X) выполняется расчёт детерминанта матрицы, затем с помощью оператора *if* происходит проверка знака. Если детерминант оказался отрицательный, то с помощью команды disp('X') выводится сообщение, что система неустойчива. Далее сразу следует прерывание цикла. Для этого используется команда *break*. В случае, если детерминант оказался положительный, то выполняется вычёркивание последнего столбца и последней строки матрицы. Для этого используется оператор ":".

На третьем этапе с помощью оператора условия, в случае, если все миноры оказались положительными выводится сообщение: система устойчива.

Пример.

С помощью критерия Payca-Гурвица проверить устойчивость САР, собственный оператор которой имеет вид:

 $0,0014r^4 + 0.0196r^3 + 0.091r^2 + 0.35r + 1,624 = 0$

Тогда листинг программы проверки устойчивости САР с помощью критерия Рауса-Гурвица выглядит следующим образом.

$$a0 = 0.0014;$$

 $a1 = 0.0196;$
 $a2 = 0.091;$
 $a3 = 0.35;$
 $a4 = 1.624;$
 $A = [a1,a3,0,0;a0,a2,a4,0;0,a1,a3,0;0,a0,a2,a4];$
 $n = length(A);$
while $n \sim = 0$
 $D = det(A);$
if $D <= 0$
 $disp('cucmema + e \ ycmoŭuuba');$
 $break;$
 $else$
 $A(:,n) = [];$
 $A(n,:) = [];$
 $n = n - 1;$
 end
end
if $D > 0$
 $disp('cucmema \ ycmoŭubba');$
 end

В рассматриваемом случае система неустойчива.

4. ЧАСТОТНЫЙ КРИТЕРИЙ МИХАЙЛОВА

При исследовании устойчивости САР с помощью частотного критерия Михайлова анализируется собственный оператор САР:

$$D(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n,$$

где *s* - оператор Лапласа, *n* - величина, характеризующая порядок исследуемой САР. Вначале выполняется замена $s = j\omega$, где *j* - мнимая единица, ω - круговая частота гармонического сигнала, поступающего на вход САР. Такая замена позволяет получить амплитудно-фазовую частотную характеристику (АФЧХ) первого рода:

$$D(j\omega) = a_0(j\omega)^n + a_1(j\omega)^{n-1} + ... + a_{n-1}(j\omega) + a_n.$$

Полученное выражение приводят к виду, представляющему собой сумму вещественной и мнимой частей:

$$D(j\omega) = \operatorname{Re} D(\omega) + \operatorname{Im} D(\omega)j,$$

где $\operatorname{Re} D(\omega)$ - вещественная часть, $\operatorname{Im} D(\omega)$ - мнимая часть.

По виду графика АФЧХ первого рода, называемому годограф Михайлова, судят об устойчивости САР. Критерий Михайлова формулируется следующим образом. Для устойчивости САР необходимо и достаточно, чтобы годограф Михайлова начинался на вещественной положительной полуоси и в направлении против часовой стрелки проходил столько квадрантов, каков порядок анализируемой САР.

Перед началом создания программы в Matlab рекомендуется провести процедуру чистки окна "Comand Window" и очистку памяти от переменных и

функций, оставшихся от предыдущих расчётов. Для этого применяются команды *clc* и *clear* соответственно.

Далее следует команда figure(1), используемая для создания области графика, на которой будет построен годограф Михайлова.

Значения коэффициентов собственного оператора САР записываются в память с помощью синтаксиса

 $a_i = x;$

где a_i – коэффициент собственного оператора САР (индекс изменяется в диапазоне $i = \overline{0.n}$).

Затем циклически изменяя частоту от $\omega = 0 pad/c$ до $\omega = \omega_{max} pad/c$ с шагом $\Delta \omega$ рассчитывается значение АФЧХ первого рода $Dj\omega$ и из него выделяется вещественная Re и мнимая Im части, величины которых наносятся на график с помощью команды *plot*. Листинг цикла построения годографа Михайлова выглядит следующим образом:

for $w = 0.0: \Delta w: w_{max}$, $Djw = a0*((w*j)^n) + a1*((w*j)^n(n-1)) + ... + a(n-1)*(w*j) + an;$ Re = real(Djw); Im = imag(Djw); plot(Re, Im, 'b.') xlabel('Re(D)') ylabel('Im(D)')hold on end

В представленном листинге команды *xlabel* и *ylabel* обозначают названия осей. Команда *hold on* сохраняет настройки графика и отмеченные на нём точки годографа Михайлова при выполнении цикла.

После выполнения цикла на график наносится координатная сетка grid on и ограничиваются минимальные и максимальные значения по осям $axis([x_{min} x_{max} y_{min} y_{max}]).$

Пример.

Выполнить анализ устойчивости САР, собственный оператор которой представлен выражением:

 $D(s) = s^3 + 4s^2 + 2s + 7$

Тогда листинг программы по оценки устойчивости с помощью критерия Михайлова выглядит следующим образом:

```
clc
clear
figure (1)
a0 = 1;
a1 = 4;
a2 = 2;
a3 = 7;
for w = 0.0: 0.05: 10
  Djw = a0*((w*j)^3) + a1*((w*j)^2) + a2*(w*j) + a3;
  Re = real(Djw);
  Im = imag(Djw);
  plot(Re, Im, 'b.')
  xlabel('Re(D)')
  ylabel('Im(D)')
  hold on
end
hold off
grid on
axis([-88-1.51.5])
```

В результате годограф Михайлова выглядит следующим образом.

Рисунок 2 – Пример построения годографа Михайлова

5. ЧАСТОТНЫЙ КРИТЕРИЙ НАЙКВИСТА

С помощью критерия Найквиста осуществляется оценка устойчивости замкнутой САР. При этом для анализа используется АФЧХ системы, полученной в результате размыкания обратной связи исходной - замкнутой. Эта система так и называется – разомкнутая, а её амплитудно-фазовая частотная характеристика – АФЧХ второго рода.

Стоит отметить, что передаточные функции замкнутой и разомкнутой систем связана следующим соотношением:

$$W_{_{3a,M}}=\frac{W_{_{pa,s}}(s)}{1+W_{_{pa,s}}(s)}.$$

Критерий Найквиста состоит из двух частей и формулируется следующим образом. Для устойчивости замкнутой системы, полученной замыканием устойчивой разомкнутой системы, необходимо и достаточно, чтобы АФЧХ разомкнутой системы не охватывала точку с координатами (-1,0) на комплексной плоскости. Для устойчивости замкнутой системы, полученной замыканием неустойчивой разомкнутой, необходимо и достаточно, чтобы при изменении частоты от $-\infty$ до $+\infty$ АФЧХ разомкнутой системы охватывала в положительном направлении точку с координатами (-1,0) столько раз, сколько положительных корней имеется в характеристическом уравнении разомкнутой системы.

Ключевым в оценке устойчивости САР по Найквисту является умение построить годограф АФЧХ второго рода. Для этого в Matlab используется функция nyquist(W), которая в качестве аргумента использует передаточную функцию W. Для построения передаточной функции используется команда $tf([b_0, b_1, ..., b_{m-1}, b_m], [a_0, a_1, ..., a_{n-1}, a_n]).$

Пример.

Построить АФЧХ второго рода, если передаточная функция в разомкнутом состоянии имеет вид

$$W_{pa3} = \frac{10}{s^3 + s^2 + 2s + 5}$$

Тогда листинг программы построения АФЧХ второго рода выглядит следующим образом

clc clear figure (1) W = tf([10],[1,1,2,5]); nyquist(W), grid on;

В результате АФЧХ второго рода имеет вид.

Рисунок 3 – Пример построения АФЧХ второго рода для критерия Найквиста

6. ПОСТРОЕНИЕ ПЕРЕХОДНОГО ПРОЦЕССА

Переходная характеристика системы автоматического управления h(t) представляет собой процесс на выходе из системы при подаче на её вход сигнала в форме единичной ступенчатой функции Хэвисайда. Математически она описывается выражением:

$$\mathbf{l}(t) = \begin{cases} 0, npu \, t < 0\\ 1, npu \, t \ge 0 \end{cases}$$

Для расчёта переходной характеристики необходимо знать передаточную функцию системы, которая обычно представляется в виде дроби:

$$W(s) = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n},$$

где a_i и b_i - постоянные коэффициенты, s - оператор Лапласа, n и m - целые числа, определяющие порядок числителя и знаменателя передаточной функции.

В Matlab имеется тип данных, определяющих динамическую систему в виде комплексной передаточной функции. Синтаксис команды, задающей передаточную функцию:

$$tf([b_0s^m, b_1s^{m-1}, \dots, b_{m-1}s, b_m], [a_0s^n, a_1s^{n-1}, \dots, a_{n-1}s, a_n]),$$

где $b_0, ..., b_m$ - значения коэффициентов полинома в числителе передаточной функции; $a_0, ..., a_m$ - значения коэффициентов полинома в знаменателе.

Для расчёта переходной характеристики системы по её передаточной функции в Matlab используется команда *step*, в результате выполнения которой происходит построение графика переходной характеристики.

Рассмотрим пример построения переходной характеристики системы, заданной её передаточной функцией.

Пример.

САР описывается передаточной функцией

$$W(s) = \frac{0.8s^2 + 2s + 4}{s^4 + 4s^3 + 29s^2 + 40s + 60}.$$

Для построения передаточной функции системы создадим объект с именем

W. Затем построим функцию переходного процесса с помощью команды step(W).

Листинг программы выглядит следующим образом.

```
clc
clear
W = tf([0.8,2.4], [1,4,29,40,60])
step(W)
```

В результате график переходного процесса имеет вид.

Рисунок 4 – Пример построения графика переходного процесса

Для заметок

Для заметок

Учебное издание

Автоматика и регулирование авиационных двигателей и энергетических установок

Курсовая работа

Составители: Макарьянц Георгий Михайлович, Прокофьев Андрей Брониславович, Сафин Артур Ильгизарович

Самарский университет.

443086 Самара, Московское шоссе, 34.