МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ»

Расчет и анализ высотно-скоростных характеристик ТРДД с одним управляющим фактором с помощью автоматизированной системы «АСТРА»

Утверждено Редакционно-издательским советом университета в качестве методических указаний

С А М А Р А Издательство СГАУ 2011 УДК СГАУ: 629.7.036

Составители: В.В. Кулагин, В.С. Кузьмичев, И.Н. Крупенич, А.Ю. Ткаченко. В.Н. Рыбаков

Репензент:

Расчет и анализ высотно-скоростных характеристик ТРДД с одним управляющим фактором с помощью автоматизированной системы «АСТРА»: эл. метод. указания / сост. В.В. Кулагин, В.С. Кузьмичев, И.Н. Крупенич, А.Ю. Ткаченко, В.Н. Рыбаков.—Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2011. — 13 с.: ил.

В методических указаниях изложены содержание и методика проведения лабораторной работы по курсу «Теория, расчет и проектирование авиационных лвигателей энергетических И установок». Основное внимание при выполнении лабораторной работы уделяется анализу результатов и выводам, которые делаются Обязательным условием успешного студентами самостоятельно. лабораторных работ проведения является предварительная Для самостоятельная подготовка студентов. этого необходимо ознакомление с данными методическими указаниями и изучение соответствующих разделов курса по лекциям и рекомендованной литературе.

Указания предназначены для студентов II факультета, обучающихся по специальности 130200.

СОДЕРЖАНИЕ

1 Совместная работа узлов, характеристики и управление ТРД	ДД с
одним управляющим фактором	4
2 Математическое моделирование ТРДД с одним управляю	щим
фактором с помощью автоматизированной системы «АСТРА»	10
3 Цель, задачи и порядок выполнения лабораторной работы	11
Список использованной литературы	13

1 СОВМЕСТНАЯ РАБОТА УЗЛОВ, ХАРАКТЕРИСТИКИ И УПРАВЛЕНИЕ ТРДД С ОДНИМ УПРАВЛЯЮЩИМ ФАКТОРОМ.

Решение задачи начинается с *предварительного выбора закона управления двигателем*. Предварительный выбор заключается в том, что назначаются несколько законов управления или несколько вариантов одного закона управления, что позволит далее рассчитать и исследовать соответственно несколько вариантов характеристик двигателя и сделать окончательный выбор закона управления.

Выбор закона управления двигателя основывается на материале разд. 12.1 «Термодинамические основы управления ГТД» учебника [1]. Необходимо также привести и обосновать структурную схему управления двигателем.

Затем составляется методика расчета характеристик спроектированного (выполненного) двигателя. За основу принимается метод расчета характеристик простейшего ТРД, описанный в разд. 12.2.2, а также изложенные в разд. 12.2.3 соображения, касающиеся особенностей расчета многовальных ТРДД.

Далее с помощью системы АСТРА рассчитываются четыре характеристик ТРДД: 1) дроссельные (рис. 1), muna 2) климатические (на рис. 2 приведены для закона регулирования ограничениями по $p_{\kappa}^* \le p_{\kappa_{\max}}^* = 3588, 1 \kappa \Pi a$ $n_{\text{\tiny BH}} = const$ $T_{\Gamma}^* \le T_{\Gamma \max}^* = 1750 \, K$), 3) высотные (рис. 3) и 4) скоростные (рис. 4). характеристик выполняется различных ДЛЯ законов управления, предварительно выбранных выше (для начала можно принять закон управления $n_{\rm BJ} = const$).

Результаты расчета распечатываются в таблицах (см. таблицы 1, 2, 3, 4 и 5), а основные данные, удельные параметры двигателя и параметры рабочего процесса, а также частоты вращения роторов изображаются на графиках и подробно анализируются: объясняется полученный характер изменения параметров в зависимости от внешних условий, исследуется влияние закона управления. Анализ каждой из характеристик располагается соответственно за каждым из рис. 1, 2, 3 и 4.

Таблица 1. Результаты расчета дроссельных характеристик

	Проектный	- ' '1	$H=0$, $M_{\Pi}=0$							
	DOGUGE HOU		$m_{\Pi} - 0$, $m_{\Pi} - 0$							
Параметр	расчет при									
двигателя	$H = 11\kappa M$,	$n_{\text{ВД}i=1}^{1}$	$n_{\mathrm{BJ}i=2}$	$n_{\text{ВД}i=3}$			$n_{{\rm BД}i=n-1}$	$n_{\mathrm{B}\mathrm{I}i=n}$		
	$M_{\Pi} = 0.8$	-2.	-7	-7.			-2			

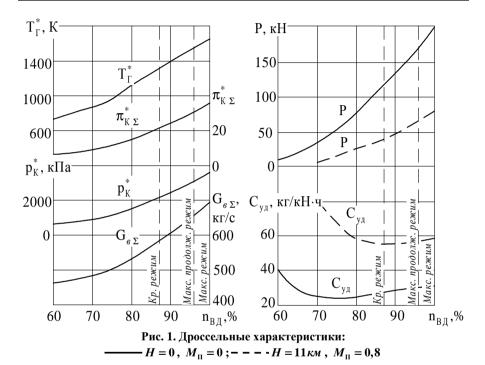


Таблица 2. Результаты расчета климатических характеристик

	Проектный	H =	$H=0$, $M_{\Pi}=0$, $p_{\mathrm{H}}=101325\Pi a$, $n_{\mathrm{B}\mathrm{J}}=n_{\mathrm{B}\mathrm{J},\mathrm{makc}}$ *						
Параметр двигателя	расчет при $H = 11 \kappa M$, $M_{\Pi} = 0.8$	$T^*_{\mathrm{H}i=1}$	$T_{\mathrm{H}i=2}^*$	$T^*_{{\mathrm H}i=3}$			$T^*_{{\mathrm{H}}i=n-1}$	$T_{\mathrm{H}i=n}^*$	

5

¹ Режим задается принятым параметром режима

Таблица 3. Результаты расчета климатических характеристик

	Проектный	$H = 0$, $M_{\Pi} = 0$, $p_{H} = 97325 \Pi a$, $n_{B,\Pi} = n_{B,\Pi,\text{Marke}} *$							
Параметр двигателя	расчет при $H = 11 \kappa M$, $M_{\Pi} = 0.8$	$T^*_{\mathrm{H}i=1}$	$T_{\mathrm{H}i=2}^*$	$T_{\mathrm{H}i=3}^{*}$			$T^*_{\mathrm{H}i=n-1}$	$T^*_{\mathrm{H}i=n}$	

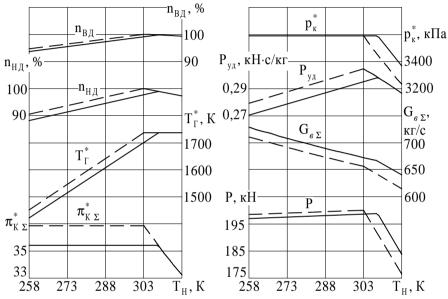


Рис. 2. Климатические характеристики H=0, $M_{\rm II}=0$, $p_{\rm H}=101,3\kappa\Pi a$; --H=0, $M_{\rm II}=0$, $p_{\rm H}=97,3\kappa\Pi a$

Таблица 4. Результаты расчета высотных характеристик

	Проектный		$M_{\scriptscriptstyle \Pi}$	=0.8, n	$n_{\mathrm{BJ}} = n_{\mathrm{BJ}}$	макс.продолж	* кит.	
Параметр двигателя	расчет при $H = 11 \kappa M$, $M_{\Pi} = 0.8$	$H_{i=1}$	$H_{i=2}$	$H_{i=3}$			$H_{i=n-1}$	$H_{i=n}$

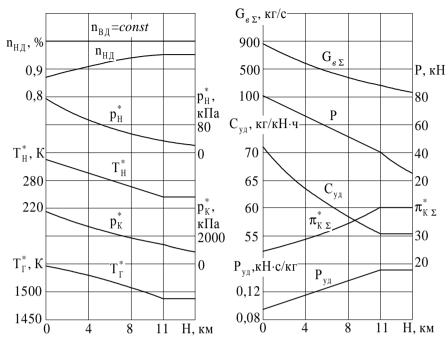


Рис. 3. Высотные характеристики, $M_{_{\rm II}} = 0.8$, $n_{_{\rm BJ}} = const$ (макс.продолж.режим)

Таблица 5. Результаты расчета скоростных характеристик

	Проектный	$H=11$ км , $n_{ m BJ}=n_{ m BJ,makc}$ *						
Параметр двигателя	расчет при $H = 11 \kappa M$, $M_{\Pi} = 0.8$	$M_{\Pi i=1}$	$M_{\Pi i=2}$	$M_{\Pi i=3}$			$M_{\Pi i=n-1}$	$M_{\Pi i=n}$

Рассчитываются также и распечатываются по всем четырем работы типам характеристик линии совместной на характеристиках компрессора ВД и НД. Анализируются особенности совместной работы узлов двухвального ТРДД (см. разд. 11.1.2 и 11.1.3 [1]). Анализируются и объясняются различия в их протекании, в том числе в протекании линий на характеристиках ВД и НД. Объясняется связь скольжения роторов с наклоном линий совместной работы.

По результатам расчета и анализа параметров окончательно выбирается закон управления двигателя. В общем случае закон

управления, как известно (см. разд. 13.1.2), выбирается из условия обеспечения тактико-технических требований, предъявляемых к летательному аппарату. В данном случае его рекомендуется выбирать из условия обеспечения заданной тяги.

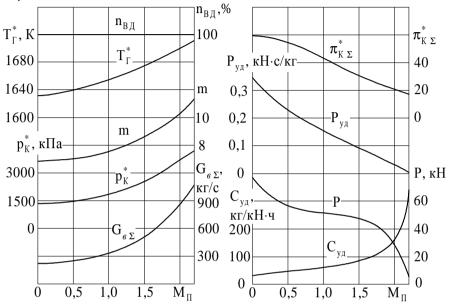


Рис. 4. Скоростные характеристики, $H = 11 \kappa M$, $n_{\rm BJ} = 100\%$ (макс.режим)

Далее целесообразно рассчитать и проанализировать, какое снижение удельного расхода топлива даст дополнительное регулирование одного из характерных сечений ($F_{\rm c.кp}$, $F_{\rm c.a}$) в этих условиях работы, т.е. оценить в первом приближении целесообразность перехода к двигателю с двумя управляющими факторами.

Подчеркнем, что обоснование принятого закона управления, анализ совместной работы узлов и полученных результатов расчета характеристик, а также составление методики расчета характеристик двигателя должны быть изложены подробно.

Если расчет высотно-скоростных характеристик показал, что из условия обеспечения технических требований приходится выходить за рамки принятых ограничений, например по максимальной температуре газа перед турбиной $T^*_{\Gamma_{\max}}$, по температуре газа

в условиях длительного крейсерского полета $T_{\Gamma \, \mathrm{kp}}^*$ или по диаметральным размерам двигателя, и выбранный вариант проблему выбора двигателя на самолет не решает, то после тщательного анализа результатов проделанной работы необходимо сформировать уточненный вариант параметров рабочего процесса и начальный уровень проектирования повторить в *полном* объеме.

2 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТРДД С ОДНИМ УПРАВЛЯЮЩИМ ФАКТОРОМ С ПОМОЩЬЮ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ «АСТРА»

Для того, чтобы получить данные необходимые для анализа совместной работы узлов и характеристик ТРДД с одним управляющим фактором, студент выполняет расчётный эксперимент с помощью виртуальной модели рабочего процесса ТРДД, реализованной в автоматизированной системе термогазодинамического расчёта и анализа АСТРА.

Исходными данными для выполнения расчётов являются:

- температура $T_{\rm H}$ и давление $p_{\rm H}$ атмосферного воздуха;
- результаты проектного термогазодинамического расчета в условиях взлетного режима;
- площади характерных сечений двигателя.

Результатами расчётного эксперимента являются дроссельные, а также высотные, скоростные и климатические характеристики ТРДД для различных вариантов закона управления.

З ЦЕЛЬ, ЗАДАЧИ И ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ.

Цели и особенности лабораторной работы

- 1. Закрепление и углубление теоретических знаний, полученных при изучении совместной работы узлов выполненного ТРДД с одним управляющим фактором и его характеристик.
- 2. Закрепление навыков самостоятельной обработки результатов расчётного эксперимента, построение линий совместной работы и дроссельной характеристики ТРДД.

Порядок проведения лабораторной работы

- 1. Проверка готовности студентов к выполнению лабораторной работы. При домашней подготовке к лабораторной работе рекомендуется пользоваться учебником [1].
 - 2. Проведение расчётного эксперимента.
- 3. Обработка результатов расчётного эксперимента, оформление протокола, построение графиков.
- 4. Письменный анализ результатов расчётного эксперимента и сдача лабораторной работы преподавателю.

Проведение расчётного эксперимента

Особенностью данной лабораторной работы является то, что данные, получаемые с помощью виртуальной модели ТРДД, эквивалентны результатам испытания двигателя в боксе наземного стенда.

Обработка результатов расчётного эксперимента

В результате обработки данных должны быть определены основные параметры, характеризующие работу двигателя, список которых в системе АСТРА формируется автоматически.

На основании данных, полученных в ходе обработки результатов расчётных экспериментов, заполняются таблицы 1-5, строятся линии совместной работы и графики дроссельной, высотной, скоростной и климатических характеристик.

Анализ результатов. Основные выводы

В заключение необходимо проанализировать результаты, полученные в ходе выполнения лабораторной работы и сделать выводы, касающиеся влияния закона регулирования на совместную работу узлов и характеристики ТРДД с одним управляющим фактором. При этом используются знания, полученные при изучении курса лекций (глава 13 учебника [1]).

Анализ результатов и основные выводы являются центральным местом работы. Этот раздел студент выполняет самостоятельно, в произвольной форме и достаточно тщательно.

Сдача лабораторной работы

Выполненная и оформленная работа сдается преподавателю. В процессе сдачи преподаватель задает 2-3 вопроса по совместной работе узлов и характеристикам ТРДД с одним управляющим фактором. Если студент не сдал работу, то лабораторная работа подлежит пересдаче после изучения соответствующих разделов курса.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1 Кулагин, В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок [Текст]: Учебник. 2-ое изд. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. (Кн. 1). Основы теории ГТД. Совместная работа узлов выполненного двигателя и его характеристики (Кн. 2). М.: Машиностроение, 2003. – 615 с.: ил.