УДК 621.396.6

В. А. Христок

МЕТОДИНА РЕШЕНИЯ ЗАДАЧИ ОПТИМИЗАЦИИ ВНХОДНОГО ПАРА-МЕТРА РЭА ПО КРИТЕРИЮ МАКСИМУМА ВЕРОЯТНОСТИ БЕЗОТ-КАЗНОЙ РАБОТН

Задача. Виходной параметр РЭА (у) является функцией внутренних параметров x_i ($i=1,2,\ldots,m$), которие представляются суммой $x_i = x_i + A x_i$, где \bar{x}_i и $A x_i$ соответствение номинальное вначение (величина неслучайная) и случайное отклонение от номинального вначения, внаванное действием равличных дестабилизирующих факторев. Известни закони распределения $A x_i$, а следовательно и x_i , и исходине значения $\bar{x}_i = \bar{x}_i$. Требуется епределить такое значение $\bar{x}_i = \bar{x}_i^2$, при котором вероятность безоткавной работи РЭА бил об максимальной, т.е. $P(t) = P[Y_n < y < y_i]$ мах. (здесь y_n и y_i соответствению вихний и верхний допустимие предели значений y_i).

Преднагаемая методика решения такой задачи состоит из следу-

<u>I этап.</u> Статистические испитания физической модели РЭА, в результате которых получаем плотность распределения y - f(y).

<u>П этап. Проведение факторного эксперимента /1</u>/на физической модели РЭА, в результате котерого получаем математическую мождель РЭА в виде полинома первой степени: $\hat{y} = \mathcal{E}_o + \sum_i \mathcal{E}_i \cdot \mathcal{X}_i$.

I этап Отискание \bar{x}_i^* путём двихения по градиенту расчётным путём 11 с применением метода "золотого сечения" 12 заданного интервала неопределённости $(\bar{x}_{imin} - \bar{x}_{io})$ или $\bar{x}_{io} - \bar{x}_{imax}$.

Литература

- 1. D. П. Адлер. Планирование эксперимента нри поиске опткмальных условий. М., Наука, 1971г.
- 2. П. Лж. Уалли. Методи поиска экстремума. М., Наука, 1967г.