фронта управляющего импульса при различных величинах Δ_c . Из графиков следует, что при обычно рекомендуемом режиме работы и параметрах ШГ, то есть при $A_r = 0.2B$, $d^* = 0.02$, $d^*_{2} = 0.15$, относительный разброс емкостей варикапов плеч ШГ не должен превышать 0.005. Тогда уровень помех, обусловленных ударными колебаниями, будет не более 0.5 мкВ при достаточно высокой крутизне фронта управляющих импульсов (D = 0.03), что соответствует приблизительно 0.01 В/мксек.

Литература

- І. Комолов В.П., Рошаль А.С., Трофименко И.Т., ФельдманБ.Я. Параметроны в цифровых устройствах. М., "Энергия", 1968.
- Вечканов Г.П., Вечканова Р.А. Чувствительный фазометр. Исследования по акустике, электрофизике, радиоэлектронике. Межвузовский сборник, вып. 3/72/, 1975.
- З. Ершов В.П., Рассохин Г.И., Яновский Е.А. ' Емкостные параметроны. Изд. Вычис. центра АН СССР, 1966.
- Каплан А.Е., Кравцов Ю.А., Рылов В.А. Параметрические генераторы и делители частоты. "Сов. радио", 1966.
- Струков А.З. Возможности исследования параметрического генератора для расширения пропускной способности аналого – цифровых систем. Труди МАИ, вып. 200, 1970.

Г.П. Вечканов, Р.А. Вечканова

ШУМОВЫЕ ХАРАКТЕРИСТИКИ ПАРАМЕТРИЧЕСКОГО НУЛЬ-ОРГАНА С ВИДЕОИМПУЛЬСНЫМ УПРАВЛЕНИЕМ

В фазовых системах, производящих измерение фаз малых (по сравнению с шумами) сигналов, в качестве высокочувствительных фазовых нуль-органов [I], [2] применяются параметрические генераторы (ПГ). Порог чувствитёльности такой фазовой системы и ее быстродействие во многом зависят от динамических и щумовых качеств ПГ.

Настоящая работа посвящена исследованию собственных шумов Ш с видеоимпульсным управлением.

Как показано в [3], при возбуждения ПГ импульсами подкачки среднеквадратичное значение эквивалентных (приведенных ко входу) пумов составляет малую величину (до IMкВ), если добротность контура Ш выбрана порядка 50 при напряжейии подкачки 0,3 - 0,4В . Однако такой способ возбуждения не всегда приемлем из-за низкого бистродействия Ш [4]. Лучшие результаты получаются при возбуждении Ш путем изменения затухания его контура. Практически это осуществляется подачей видеоимпульсов на специальные дополнительные управляющие диоды.

На рис. Іа показана схема балансного ШС с управлением затухания,

Рис.I. Схема балансного Ш с управлениём затухания

где A_{I} , A_{2} - управляющие диоды; B_{I} , B_{2} - вариканы; E(t) - напряжение генератора видеоимпульсов; R_{i} - внутреннее сопротивление генератора видеоимпульсов; L_{i} , L_{2} - связанные индуктивности с коэффицаентом взаимоиндукции М и активными сопротивлениями $Z_{L_{i}}$ и $Z_{L_{2}}$; R_{i} , C_{i} - элементы цепи автосмещения; $U_{a}(t)$ - напряряжение генератора подкачки; R_{fx} , L_{cf} , M_{cf} - параметры входной цепи фазирующего сигнала $U_{fx}(t)$.

Срыв колебаний субгармоника путем увеличения затухания контура III приводит к ускорению спада остаточных колебаний. Это позволяет при заданной чувствительности III уменьшить интервал времени между импульсами запуска, что равносильно увеличению быстродействия.

При исследовании влияния собственных шумов Ш на процесс различения фазы достаточно учитывать случайность начальных условий при возбуждении субгармонических колебаний, поскольку, как показал анализ, время корреляции случайного процесса значительно превышает длительность начального этапа установления субгармоники. Скорость возрастания субгармонических колебаний определяется начальными условиями, которые могут быть получены после колебаний на основе решения дийференциальных уравнений балансного ШГ.

На рис. Іб показана эквивалентная охема балансного Ш, где Z, и Z_2 – активные эквивалентные сопротивления, получающиеся путем пересчета активных сопротивлений управляющих диодов и варикалов; $U_{c1}(.t)$,

 $U_{c_2}(t)$ – эквивалентные генераторы сигналов, получающиеся путем пересчета $U_{\xix}(t)$ на вход каждого плеча IIГ. При идеальной балансировке плеч $U_{c_1}(t) = U_{c_2}(t) = U_{c\sigma}(t)$, $L_1 = L_2 = L_{\sigma}$, $z_1 = z_2 = z_3$, $C_1(U_1) = C_2(U_2) = C(U)$ и балансный IIГ эквивалентен простейшему одноконтурному (рас. IB) с индуктивностью $L = 2L_{\sigma}$ и с $U_c(t) = 2U_{c\sigma}(t)$.

Посхольку основной интерес представляют исследования процессов, происходящих вблизи сепаратриси, где колебания субгармоники развиваются достаточно медленно, то все теоретические исследования проводятся с использованием метода медленно меняющихся амплитуд. С этой целью исходное дифференциальное уравнение

$$\begin{split} & \left[\mathcal{O}_{\mathcal{H}}(U) + u \frac{d\mathcal{O}_{\mathcal{H}}(U)}{du}\right] \left[\frac{d^{2}u}{dt^{2}} + \Omega \mathcal{O}(t)\frac{du}{dt}\right] + \left[2 \frac{d\mathcal{O}_{\mathcal{H}}(U)}{du} + u \frac{d^{2}\mathcal{O}_{\mathcal{H}}(U)}{du^{2}}\right] \left(\frac{du}{dt}\right)^{2} + \Omega^{2}u = \Omega^{2}U_{0}(t) \end{split}$$

определяется в виде

 $\mathcal{U} = \mathcal{A}_{q} \cos\left(2\omega t + \mathcal{Y}_{q}\right) + \mathcal{A}_{2} \cos\left(\omega t + \mathcal{Y}_{2}\right),$

где A_1 и \mathcal{Y}_1 – амплитуда и фаза подкачки; A_2 и \mathcal{Y}_2 – амплитуда и фаза субгармоники; $C_H(U)$ – нормированная емкость варикапа $C_H(U) = \frac{C(U)}{C_0}$; Ω – собственная частота контура III; C_0 –емкость варикапа при U = 0; C(t) – изменяющееся затухание контура III.

Поскольку на начальном этапе установления субгармонических колебаний амплитуда субгармоники соизмерима с шумами, ПГ может рассматриваться как линейная система, поэтому влиянием колебаний субгармоники на коэффициент модуляции емкости, нелинейную расстройку и нелинейное затухание можно пренебречь и считать, что эти параметры определяются лишь амплитудой подкачки. При воздействии шумов на контур ШГ происходят флуктуации изображающей точки и сепаратрисы на фазовой плоскости. Для удобства определения общей дисперсии шумов ШГ необходимо все шуми привести ко входу ШГ, что равносильно определению добавочных флуктуационных составляющих амплитуды и фазы входного сигнала. 8-7884

(I)

Решение дифференциального уравнения Ш производится в "нормальных "координатах Х и У [3], где укороченные дифференциальные уравнения представляются в канонической форме. "Нормальные" координаты связаны с естественными декартовыми координатами $A_s = A_s \sin \varphi_s$ и $A_c = A_2 \cos \varphi_2$ с помощью линейного преобразования $A_c = X + \gamma Y$, $A_s = \gamma X + Y$. Ось Y является сепаратрисой, а X - асимптотой. Укороченные дифференциальные уравнения в координатах X . У имерт вил:

$$\frac{dX}{d\tau} = \lambda_1 X + \Lambda \frac{\sin \theta + \gamma \cos \theta}{1 - \gamma^2};$$

$$\frac{dY}{d\tau} = \lambda_2 X - \Lambda \frac{\cos \theta + \gamma \sin \theta}{1 - \gamma^2},$$
(2)

где τ - безразмерное время; $\tau = \frac{\Omega}{2} t$;

$$\gamma = \frac{-\gamma}{m + \sqrt{m^2 - \varphi^2}}; \ \lambda_1, \lambda_2 = - \mathcal{O} \pm \sqrt{m^2 - \varphi^2};$$

л - коэффициент модуляции нелинейной емкости:

Λ. θ - амплитуда и фаза входного сигнала;

ч полная расстройка контура [3], [4], ч = чо + чн;

У., У., - начальная и нелинейная расстройки контура.

В результате решения уравнений (2) и при т = 0 можно получить начальные условия:

$$X_{0} = X_{H} + \Lambda \frac{\sin \theta + \gamma \cos \theta}{\lambda_{1} (1 - \gamma^{2})}; \qquad (3)$$

$$Y_{0} = Y_{H} - \Lambda \frac{\cos \theta + \gamma \sin \theta}{\lambda_{1} (1 - \gamma^{2})}, \qquad (4)$$

где

$$\begin{split} X_{H} &= \frac{1}{1 - y^{-2}} \left(\mathcal{A}_{CH} - \gamma \mathcal{A}_{SH} \right); \quad Y_{H} &= \frac{1}{1 - y^{-2}} \left(\mathcal{A}_{SH} - \gamma \mathcal{A}_{CH} \right) \\ \mathcal{A}_{SH} &= -\Lambda \frac{y \sin \theta - (m - \theta_{g}) \cos \theta}{\theta_{g}^{-2} - m^{-2} + y^{-2}}; \\ \mathcal{A}_{CH} &= -\Lambda \frac{y \cos \theta - (m + \theta_{g}) \sin \theta}{\theta_{g}^{-2} - m^{-2} + y^{-2}}; \end{split}$$

$$\Lambda \frac{\mathcal{G}\cos\theta' - (m + d_{\hat{g}})\sin\theta}{\theta_{\hat{g}}^2 - m^2 + \mathcal{G}_{\hat{g}}^2}$$

О³ - затухание контура ШГ, при котором наступает срыв субгармонических колебаний.

Фаза входного сигнала, соответствующая положению изображающей точки на сепаратрисе, определяется из условия X₀ =0 и равна

$$\theta_c = a \, g c \, t g \, \frac{g}{m + \sqrt{m^2 - g^2}} \tag{5}$$

Из выражения (5) следует, что фаза θ_c не зависит от амплитуды входного сигнала. Следовательно, в линейном случае флуктуации амплитуды Λ не приводят к эквивалентным флуктуациям фазы входного сигнала и из рассмотрения могут быть исключены. Под приведением шумов ко входу понимается определение эквивалентных флуктуаций входного сигнала $\Delta \theta$ относительно среднего значения θ_c . Для этого в выражение (5) вводятся флуктуационные составляющие. Тогда

$$\begin{split} \tilde{\theta} &= \theta_c + \theta + \Delta \theta \; ; \quad tq \; \tilde{\theta} = \frac{q}{\bar{m} + \sqrt{\bar{m}^2 - \frac{q}{q} t}} \; ; \\ \tilde{g} &= \tilde{g}_0 + \tilde{g}_H = g + \Delta g \; ; \\ \tilde{g}_0 &= \frac{\tilde{\omega}_n^2}{4g^2} - 1 \; ; \quad \tilde{g}_H = \sum_{i=1}^2 c_i \left[I_0 \left(\beta_i \tilde{A}_i \right) - 1 \right] ; \\ \tilde{\omega}_n &= \omega_n \left(1 + \Delta \omega \right) ; \quad \tilde{A}_i = A_i + \Delta A \; ; \\ \tilde{m} &= \sum_{i=1}^2 c_i \; I_1 \left(\beta_i \tilde{A}_i \right) = m + \Delta m \; ; \end{split}$$

 $\Delta\theta = tq\, \tilde{\theta} - tq\, \theta_o \; , \label{eq:delta}$

 Ω - собственная частота контура III; ω_n - частота подкачки; ΔA - флуктуационная составляющая амплитуды подкачки;

 $A \omega$ - относительная флуктуационная составляющая частоты подкачки; $I_o(\beta_i \tilde{A_i}), I_i(\beta_i \tilde{A_i})$ - модифицированные функции Бесселя нулевого и первого порядка аргумента $\beta_i \tilde{A_i}$; $C(U) = C_o \left\{ 1 + \sum_{i=1}^{r} c_i (e^{-\beta_i U}) \right\};$ $c_1, c_2, \beta_1, \beta_2$ - параметры аппроксимации емкости варикапа для обычно используемого варикапа типа Д901: $c_7 = 0,67;$ $\beta_1 = 0,255; c_2 = 0,185; \beta_2 = 5,158; c_0 = 0,1 \cdot 10^{-9} \Phi.$ Напряжение смещения на варикапы принимается равным нулю. После преобразования выражения (6) величина флуктуаций фазы входного сит-

нала

$$\Delta \theta = N_{\omega} \Delta \omega + N_{A} \Delta A,$$
$$N_{\omega} = -2\gamma_{\Psi} (\Psi_{o} + 1);$$

где

(7)

(6)

$$\begin{split} N_{A} &= -\sum_{i=1}^{2} c_{i} \beta_{i} \left\{ \gamma_{m} I_{a} \left(\beta_{i} A_{t} \right) + \left[\gamma_{4} - \frac{\delta_{m}}{\beta_{i} A_{t}} \right] I_{t} \left(\beta_{i} A_{t} \right) \right\} ; \\ \tilde{\gamma}_{m} &= -\frac{\gamma}{\sqrt{m^{2} - \frac{\alpha}{2}^{2}}} ; \quad \tilde{\gamma}_{\frac{\alpha}{2}} = \frac{\gamma \left(1 + \gamma_{m} \gamma^{\frac{\alpha}{2}} \right)}{\frac{\alpha}{2}} . \end{split}$$

Из полученного выражения следует, что на флуктуации фазы входного сигнала влияют только флуктуации частоты и амплитуды подкачки.

Принимая во внимание, что все отклонения параметров – случайные величины, из равенства (7) можно получить выражение для дисперсии шумов Ш, обусловленных флуктуациями параметров схемы и подкачки:

$$\mathcal{G}_{\theta}^{2} = N_{A}^{2} \mathcal{G}_{A}^{2} + N_{\omega}^{2} \mathcal{G}_{\omega}^{2} , \qquad (8)$$

где \mathcal{O}_{q}^{2} , \mathcal{O}_{ω}^{2} – дисперсия флуктуаций амплитуды и частоты подкачки соответственно.

Щумы, действующие в контуре ПГ на частоте субгармоники (высокочастотные щумы), оказывают непосредственное влияние на процесс различения фаз в ПГ. По методике, приведенной в [3], можно получить аналогичное выражение при видеоимпульском возбуждении ПГ и отсутствии постоянного смещения на варикапах:

$$\widetilde{\mathcal{O}}_{\Lambda \mathcal{V}}^{2} = \frac{\kappa \Gamma}{C_{0}} \frac{\vartheta(1+\varphi)\lambda_{1}^{2}\lambda_{19}^{2}}{(\lambda_{1}+\lambda_{19})^{2}} \left[\frac{\lambda_{1}\gamma^{2}+\lambda_{19}}{\lambda_{1}\lambda_{19}} + \frac{\vartheta(\lambda_{1}^{2}-\lambda_{19}^{2}-1)}{\lambda_{29}-\lambda_{19}} \right], \qquad (9)$$

$$\gamma = \frac{\vartheta_{9}}{(2\varphi)} : \lambda_{10}\lambda_{20} = \vartheta_{10} - \sqrt{\omega^{2}+\omega^{2}},$$

где

к - постоянная Больцмана; Г - абсолютная температура.
Общая дисперсия амплитудных шумов, приведенных ко входу Ш, равна

$$\tilde{\sigma}_{\Lambda}^{z} \delta_{x} = \tilde{\sigma}_{\Lambda u}^{z} + \Lambda^{2} \left(N_{R}^{2} \tilde{\sigma}_{R}^{2} + N_{\omega}^{2} + \tilde{\sigma}_{\omega}^{2} \right).$$
(10)

При исследовании влияния амплитуды входного сигнала *А* на дисперсию $\mathcal{G}^{z}_{A \ b x}$ удобно рассматривать относительное среднеквадратичное значение шумов:

$$G_{H} = \frac{G_{A, b, x}}{G_{*}}$$

где 6, - среднеквадратичное значение шумов, рассчитанное по формуле (IO) при Λ = IMKE.

На рис. 2 показаны графики зависимости σ_H от Λ при различных g_o , σ_g и A_1 . Из графиков следует, что щумы подкачки начинают влиять на точность различения фаз лишь при $\Lambda > 0, I$ В. При мень-

пях амплитудах входного сигнала шумы подкачки можно не учитывать.

Рис.2. График зависимости σ_{μ} от Λ : 3 $\sigma_{\sigma} = 0,25; A_{I} = 0,38; - - \sigma_{\sigma} = 0,55; A_{I} = 0,4 B; g_{\sigma} = 0$

Щумы, приведенные ко входу Ш, определяются только по высокочастотным щумам, определяемым выражением (9).

На рис. З. приведены графики зависимости $\mathcal{G}_{\Lambda\delta x}$ от \mathcal{G}_{ρ} при различных значениях \mathcal{O}_{ρ} и \mathcal{A}_{τ} , из которых следует, что при малых значениях \mathcal{O}_{ρ} минимальная величина $\mathcal{G}_{\Lambda\delta x}$ имеет место при начальной расстройке \mathcal{G}_{ρ} , несколько отличной от нуля. При увеличении \mathcal{O}_{ρ} значение $\mathcal{G}_{\Lambda\delta x}$ возрастает и минимум его перемещается в область $\mathcal{G}_{\rho} = 0$. С увеличением \mathcal{A}_{τ} максимальное среднеквадратичное значение шумов увеличивается. Величина \mathcal{G}_{ρ} , при которой $\mathcal{G}_{\Lambda\delta x}$ имеет минимальное значение (при небольших \mathcal{O}_{ρ}), раена – \mathcal{G}_{μ} и зависит только от амплитуды подкачки \mathcal{A}_{τ} .

Для устойчивой надежной работы фазового нуль-органа на ПГ при достаточно низком уровне шумов рекомендуются следующие значения параметров схемы и сигналов: $\Im_o = 0$; $\mathbb{A}_{I} = (0, 2 - 0, 3)$ B; $\mathscr{O} = 0,02$; $\mathscr{O}_2 = 0.15 - 0.2$.

Из сравнения результатов, полученных и приведенных в [3] (где рассматривается возбуждение Ш импульсами подкачки), следует, что среднеквадратичное значение шумов при видеоимпульсном, возбуждении в несколько раз больше. Повышение уровня шумов снижает бистродействие фазовых систем, использующих Ш. Однако для сравнения таких систем по быстродействию недостаточно знать уровень приведенных ко входу шумов, необходимо произвести исследование характеристик быстродействия Ш. - уровня паразитных ударных колебаний и ширины зоны нечувствительности.

- 57 -

Ряс.3. График зависимости $G_{A\,\delta x}$ от 50 при $\mathcal{O}_{g} = 0,02$, $A_{I} = 0,25$ (a); $\mathcal{O}_{g} = 0,02$, $A_{I} = 0,4$ В (б)

Литература

I. Вечканова Р.А.Фазометр. Авт. св. СССР, № 370545, кл.0I 25/00, заявл. 06.10.72., опубл.05.07.74. Бюл. изобр. № 11, 1973.

- Вечканов Г.П., Вечканова Р.А. Чувствительный фазометр. Исследования по акустике, электрофизике, радиоэлектронике. Межвузовский сборник, вып. 3/72/, 1975.
- 3. Вечканов Г.П., Вечканова Р.А. Влияние тепловых и дробовых шумов на ошибку различения фазы в параметричес-

ком генераторе. Исследования по акустике, электрофизике, радиоэлектронике. Межвузовский сборник, вып. 3/72/, 1975.

4. Ершов В.П., Рассохин Г.Л., Яновский Е.А. Емкостные параметроны. Издание Вычисл.центра АН СССР, 1966.

А.Е. Дубинин, Н.Е. Корочкин, М.А. Куликов

К ОПРЕДЕЛЕНИЮ ВИБРОУСТОЙЧИВОСТИ ЭЛЕКТРОМАГНИТНЫХ АППАРАТОВ С ПОДВИЖНЫМИ СИСТЕМАМИ

В процессе работы аппаратуры, установленной на движущихся объектах, на электровозах, имеют место непрерывные сложные многокомпонентные вибрации, обуславливаемые движением электровоза с различной скоростью и работой электрооборудования внутри высоковольтной камеры.

Причиной вибраций является знакопеременная нагрузка во всех узлах и деталях аппаратов, возникающая вследствие инерции масс деталей. Сотрясения и удары, возникающие при трогании, сцепке, движении на " стрелках" и т.д., создают кратковременные ударные нагрузки. В связи с этим при проектировании тяговых аппаратов необходимо принимать меры, исключающие отказы в работе аппаратуры вследствие воздействия перечисленных факторов.

При расчете и проектировании магнитных систем электромагнитных аппаратов и конструкций их подвижных систем для работы в условиях вибраций большой практический интерес представляет определение частот собственных (свободных) колебаний подвижной системы и динамических сил, возникающих вследствие вибрационных ускорений, ударов и определяющих требования к конструкции подвижной системы тягового электромагнита и противодействующего устройства [1].

Поскольку подвижные системы электромагнитных аппаратов представляют собой механические системы с одной степенью свободы, то их положение при свободных колебаниях, когда приложенная сила F = 0, можно описать уравнением [2]:

$$x = Ae^{2t/2m} sin(\omega t + K).$$

где

$$x$$
 - отклонение подвижной системы от положения равновесия;
 A - амплитуда свободных колебаний; z - сопротивление пе-
ремещению подвижной системы; ω - угловая частота свобод-
ных колебаний подвижной системы [2]

 $\omega^2 = \frac{z}{m} - \left(\frac{z}{2m}\right)^2 \,.$

(2)

(I)