В. А. МОРОЗОВ, В. В. ПАХОМОВ, А. А. КАМЫШНИКОВА, В. Г. ЭТЕНКО

О ДИНАМИЧЕСКИХ ПРОЦЕССАХ В ДАТЧИКЕ ХОЛЛА ПРИ ИЗМЕРЕНИИ ИМПУЛЬСНОЙ МОЩНОСТИ СВЧ

Известно, что явление эффекта Холла в полупроводниках можно использовать для измерения СВЧ мощности [1]. Зависимость выходного напряжения с датчика Холла от проходящей мощности СВЧ описывается выражением

$$U_{x} = A_{0} \cdot U \cdot P_{HB}, \tag{1}$$

где A_0 — постоянный коэффициент, не зависящий от температуры;

 U — подвижность носителей заряда полупроводникового материала;

 $P_{\rm MB}$ — мощность импульса СВЧ в волноводе.

Важным требованием к измерителям мощности СВЧ, основанным на эффекте Холла в полупроводниках, является линейность выходной характеристики. Однако опыт показывает, что при достижении определенных уровней мощности линейность выходной характеристики нарушается [2].

В настоящей работе рассматриваются некоторые вопросы, связанные с отклонением выходной характеристики от линейного

закона

При помещении датчика Холла в СВЧ тракт происходит его нагревание, обусловленное активными потерями в кристалле. Важно выяснить степень этого нагрева и его влияние на подвижность носителей заряда полупроводникового материала. Для математического описания динамических процессов в полупроводнике при действии импульсной мощности СВЧ воспользуемся дифференциальным уравнением теплового баланса [3].

$$C\frac{d\theta}{dt} + H\Theta = P_{\text{HA}},\tag{2}$$

где C — теплоемкость датчика, $\partial \mathcal{H}/\rho a \partial$;

 $\Theta = \Theta_{A} - \Theta_{C}$ — перегрев датчика относительно окружающей среды, $zpa\partial$;

 $\Theta_{\mathtt{A}}$ — температура датчика град;

 $\Theta_{\rm c}$ — температура окружающей среды, град;

 $P_{\rm HA} = K P_{\rm HB}$ — мощность, выделяющаяся в объеме датчика, BT; K — коэффициент поглощения датчика; H— коэффициент теплообмена, $BT/M^2 cpad$.

Решения уравнения (2) записываются в виде

$$\Theta = \frac{P_{\text{ид}}}{H} \left(1 - e^{-\frac{t}{\tau}} \right)$$
для $0 < t < \tau$ и
$$\Theta = \frac{P_{\text{ид}}}{H} \left(1 - e^{-\frac{\tau}{\tau}} \right) e^{-\frac{1}{\tau}} (t - \tau_{\text{H}})$$
для $\tau_{\text{H}} < t < T_{\text{H}}$. (3)

Здесь $\tau = \frac{C}{H}$ — тепловая постоянная времени, $ce\kappa$;

т_и — длительность импульса, сек;

 $T_{\rm m}$ — период повторения импульсов, сек. Приведенные решения справедливы при

$$\frac{T_{\rm B} - \tau_{\rm B}}{\tau} > 5. \tag{4}$$

В случае невыполнения неравенства (4), в стационарном тепловом режиме, решение находится методом математической индукции и определяется выражением

$$\Theta = \frac{P_{\text{tri}}}{H} - \frac{1 - e^{-\frac{\tau_{\text{tr}}}{\tau}}}{1 - e^{-\frac{\tau_{\text{tr}}}{\tau}}}.$$
 (5)

Решения уравнения (2) позволяют рассчитать перегрев датчика Холла относительно окружающей среды при воздействии на него импульсной СВЧ мощности. Температурная зависимость предельной подвижности в рассматриваемом диапазоне температур для $I_{\pi}Sb$ с $n\!=\!4,6\cdot10^{14}$ см $^{-3}$ и $U\!=\!300000$ см $^2/все\kappa$ при 77° К определяется выражением [4]

$$U_{\text{npen}}(T) = 4.45 \ 10^8 \ T^{-1.68}$$
 (6)

Наряду с этой зависимостью существует зависимость подвижности носителей заряда от электрического поля. Начиная с определенного для каждого полупроводникового материала величины электрического поля $(E_{\rm кp})$ подвижность носителей заряда определяется выражением [5]

$$U = U_0 \sqrt{\frac{E_{\rm kp}}{E}},\tag{7}$$

где $U_{\rm o}$ — подвижность при $E = E_{\rm kp}$.

Следует отметить что величина критического поля является функцией температуры $(E_{\rm kp} \sim T^2)$ и подвижности $(E_{\rm kp} \sim \frac{1}{U})$. Ес-

ли напряженность электрического поля E (4-:-5) $E_{\rm up}$ (в области комнатной температуры), то зависимость подвижности от электрического поля становится более сложной и описывается эмпирической формулой

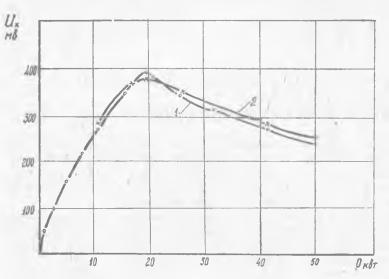
$$U = U_0 \sqrt{\frac{E_{\kappa p}}{E} \left(\frac{E'_{\kappa p}}{E}\right)^2}.$$
 (8)

Зависимость выходного напряжения с датчика Холла из InSb $cn = 4,6 \cdot 10^{14} \ cm^{-3}$ от переходящей мощности СВЧ снималась экспериментально на частоте 10000 Мгц (рис. 1, кривая 1).

При расчете зависимости выходного напряжения с датчика Холла от проходящей мощности были приняты следующие вели-

чины

$$A_0=0,78\cdot 10^{-9}\,\frac{h\cdot ce\kappa}{a\cdot c\kappa^2}$$
; $T_{\pi}=10^{-3}\,ce\kappa$, $\tau_{\kappa}=10^{-6}\,ce\kappa$; $c=c\cdot \gamma\cdot V_{\pi}=24\cdot 10^3\,\frac{\kappa a n}{epad}$. $C=4,03\frac{\kappa a n}{e\cdot c\kappa^3}$ — удельная теплоемкость материала датчика; $\gamma=5,7\frac{e}{c\cdot m^3}$ — плотность материала датчика; $V_{\pi}=2\cdot 4\cdot 0,03\,$ мм — объем датчика Холла; $H=h\cdot S_{\pi}=0,015\frac{em}{epad}$, где $0,5\leqslant h\leqslant 1\frac{em}{c\cdot m^2\cdot epad}$; h — удельный коэффициент теплообмена; S_{π} — поверхность теплообмена; S_{π} — поверхность теплообмена; $E'_{\kappa p}=4000\frac{e}{c\cdot m}$ — вторая критическая точка электрического поля;


 $E_{\rm Kp} = 200 \frac{\rm s}{\rm c.m}$ — критическая точка поля при температуре 77° К (4).

Расчеты показывают, что до мощностей порядка 0,75-1 *квт* выходное напряжение с датчика Холла практически не зависит от температуры. При мощностях больших или равных 1 *квт* зависимость выходного напряжения от проходящей мощности становигся нелинейной. Эта область характеризуется тем, что электрическое поле больше критического и наряду с температурным влиянием сказывается влияние сильного электрического поля. При достижении полей больших $(4 \div 5)$ $E_{\rm кp}$ влияние электрического поля преобладает над температурным влиянием. На рис. 1 приведена расчетная кривая выходного напряжения с датчика Холла при различных уровнях мощности СВЧ с учетом всех вышеперечисленных эффектов (кривая 2).

В результате проведенной работы выявлена природа явлений, происходящих в полупроводниковом материале при воздействии на него импульсной СВЧ мощности больших уровней, которая

является общей для полупроводниковых материалов.

Показано, что при достижении величины электрического поля $-E_{\rm KP}$, зависящей от физических параметров полупроводникового материала, линейность выходной характеристики $U_x = f(P)$ нарушается. Предложенная методика позволяет производить расчет рабочих характеристик измерительных головок для различных полупроводниковых материалов датчика.

 $Puc.\ 1.$ Зависимость выходного напряжения с датчика Холла от проходящей мощности СВЧ:

1 — расчетная кривая; 2 — экспериментальная кривая.

Из результатов данной работы следует, что увеличение верхнего предела измерения СВЧ мощности может быть достигнуто как путем применения полупроводниковых материалов с меньшей величиной подвижности носителей заряда, так и путем расположения датчика Холла в волноводе в точках с меньшим значением компоненты электрического поля.

ЛИТЕРАТУРА

1. Бокринская А. А., Скорик Е. Г. Методы измерения мощности СВЧ. Гос. изд. тех. лит. УССР, Киев, 1962.

2. Котосонов Н. В. Изв. высш. уч. заведений «Радиофизика», 11, № 8,

1968.

3. Богданов Г. Б. Основы теории и применения ферритов в технике измерений и контроля, М., 1967.

4. Материалы, используемые в полупроводниковых приборах. Под ред.

Хогарта, М., 1968.

5. Степаненко И. П. «Основы теории транзисторов и транзисторных схем, М., «Энергия», 1967.

6. ProcLEEE, № 8, 1970.

7. Кобус. Датчики Холла и магниторезисторы, изд. «Энергия», М., 1971.