ЛИТЕРАТУРА

1. Васин Н.Н. А.с. 1619070 СССР//Б.И. N.1. 1991. с.122.

2. Фурсов В.А. Анализ точности и построение алгоритмов идентификации по малому числу наблюдений - Изв. АН СССР, Техн. кибернетика, N 6, 1991г.

АНАЛОГО-ЦИФРОВЫЕ ПРЕОБРАЗОВАТЕЛИ ДВУХТАКТНОГО ИНТЕГРИРОВАНИЯ ДЛЯ МОСТОВЫХ ТЕНЗОРЕЗИСТОРНЫХ ДАТЧИКОВ

Вилоп Л.Э.

Включение тензорезисторов по мостовой схеме, как правило, имеет место в высокоточных датчиках, представляющих собой обособленный конструктивный узел и предназначенных для измерения физических величин через деформацию упругого элемента датчика.

Для получения измерительной информации с таких датчиков в системах измерения медленноменяющихся величин находят применение АЦП двухтактного интегрирования (АЦП ДИ), обеспечивающие в сравнении с другими видами АЦП повышенную разрешающую способность. Так в системах измерения тяги газотурбинных двигателей с мостовыми тензорезисторными датчиками усилий типа ТВС АЦП двухтактного интегрирования обеспечивает разрешающую способность 15 бит при выходном сигнале датчика 40 мВ и времени преобразования 60 мс [1].

Схемотехника таких АЦП имеет отличия от схемотехники АЦП ДИ цифровых вольтметров [2.3]. Точность преобразования в них определяется точностью соответствия цифрового кода на выходе АЦП деформации тензорезистора. К узлам, определяющим эту точность, добавляется схема питания датчика и линия связи "датчик-преобразователь". Вместе с тем, при условии стабильности величины выходного сопротивления датчика и отсутствии влияния остаточных параметров ключевых элементов, не имеет принципиального значения величина входного сопротивления интегратора Последнее обстоятельство дополняет множество АЦП ДИ с потенциальным входом АЦП ДИ с токовым входом (нулевым входным сопротивлением интегратора) [1]. На рис.1 приведена обобщённая функциональная схема АЦП ДИ с мостовым тензорезисторным датчиком ($R_{\tau,1} \div R_{\tau,4}$). Различия точностных характеристик АЦП в основном определяются схемой коммутации

Рис.1

и формирования входных токов интегратора (СКФ) и схемой питания датчика (СПД). Поэтому эти узлы на рисунке недетализированы и возможные варианты их исполнения являются предметом рассмотрения.

При симметричном разбалансе сопротивления тензорезисторов моста, $R_{\tau 1} = R_{\tau 4} - R_{\sigma \tau} + \Delta R = R_{\sigma \tau} (1 + \epsilon), \quad R_{\tau 2} = R_{\tau 3} = R_{\sigma \tau} - \Delta R = R_{\sigma \tau} (1 - \epsilon),$ а

э.д.с. сигнала на выходе датчика $e_c = \epsilon \cdot E$, где: $\epsilon = \Delta R / R_o$; E - напряжение, подведённое к диагонали питания моста с выхода схемы питания датчика

В исходном состоянии (интервалах между преобразованиями) замкнут ключ К_О и нуль-орган (НО) поддерживает нуле-

вое напряжение на конденсаторе интегратора С (нулевые начальные условия интегрирования). В первом такте преобразования длительностью t_u (рис.2), задаваемой схемой управления (СУ), на вход интегратора через некоторое сопротивление заряда R_3 подаётся ток l_1 , определяемый e_c датчика и неинформативными составляющими э.д.с. входной цепи, обусловленными термоэдс контактов - e_T , токами утечек - l_{yT} и э.д.с. смещения операционных усилителей - e_{cMDy} . За время t_N ток l_1 создаёт на конденсаторе интегратора заряд $q_1 = l_1 \cdot t_N$.

Во втором такте конденсатор разряжается до нулевого напряжения током I₂, определяемым сопротивлением разряда R_p и суммарной э.д.с., создаваемой источником опорного напряжения и, как показано ниже, э.д.с. смещения операционных усилителей. Длительность разряда:

$$T_{\tilde{E}} = \frac{I_1}{I_2} \cdot I_{W} . \tag{1}$$

определяемая моментом срабатывания нуль-органа, пропорциональна l₁ и

Рис.3

следовательно, пропорциональна є. Формула (1) представляет собой обобщённую запись функции преобразования АЦП двухтактного интегрирования.

В эквивалентной схеме включения датчика (рис.3) $e_c = \epsilon \cdot E$, $R'_{вых} = R''_{выx} = R_{вых}$ и включает в себя выходное сопротивление датчика $R_{вых,n} \approx R_{or} / 2$ и сопротивление ли-

нии "датчик- преобразователь" - Г_л; е_т - термо-э.д.с. контактов; I_{ут} - суммарный ток утечки входной цепи преобразователя; U_{вх} - напряжение, подаваемое на вход СКФ.

На рис.4 приведена цепь формирования опорных напряжений для схем питания датчика и разряда интегратора. Номиналы $R_1 = R_1''$, $R_2' = R_2''$. Источники E_n и $E_{n,2}$ питают операционные усилители АЦП ($E_{n,1} = E_{n,2}$). Напряжения +U_{on1} и -U_{on1} составляют величину порядка 8÷10B, U_{on2} имеет порядок $e_{c, макс} \approx 40$ ÷50 мВ

На рисунках 5, 6 и 7 представлены три варианта схемы коммутации и формирования входных токов интегратора. Обозначения входных и выходных контактов на этих схемах соответствуют обозначениям и означают соединение с одноимёнными контактами на рис.1 (точки а и), рис.3 (точки +U_{вх} и -U_{вх}), рис.4 (точки +U_{on1}, -U_{on1} и +U_{on2}, -U_{on2}). Штриховая линия, озна-

чающая замыкание ключей в первом такте, обозначена 1т, во втором такте -2т. Наличие инвертора означает противофазное управление.

Схема коммутации и формирования (СКФ1), приведённая на рис.5, реализует токовый вход АЦП [1], при котором на вход интегратора подаётся максимально возможный ток короткого замыкания выхода датчика, вследствие чего уменьшается влияние на результат преобразования собственных шумов интегратора и нуль-органа Так как ключевые элементы представляют собой МОП - ключи (Г_{кл}≈100 Ом и

ТКг_{кл}≈3·10 ³1/⁰С), то для уменьшения влияния нестабильности Г_{кл} в схеме используется входной коммутатор с активной компенсацией влияния остаточных параметров [4], в котором [5]. г_{кл.экв} = $r_{кл.}/K_{oy2}$, $e_{кл.экв.=} e_{c_{M-oy2}}$ + U_{ab}/K_{oy2} , где: K_{oy2} -коэффициент усиления ОУ2; U_{ab} - напряжение между входами ОУ интегратора ($U_{ab} \approx e_{c_{M,oy} uht}$).

Функция преобразования АЦП с СКФ1, полученная с учётом неинформативных параметров на основании соотношения (1), имеет вид:

$$T_{\varepsilon 1} = \frac{R_{p}}{R'_{Bbix}} \cdot \frac{e_{c} + e_{T} + I_{yT}R'_{Bbix} + e_{cMoy2}}{U_{on1} + e_{cMoy1} + e_{cMoy2}} \cdot t_{\mu}$$
(1)

Приведённые к диапазону выходного сигнала датчика (е_{с макс}) аддитивные составляющие погрешности преобразования могут быть определены, как отношения изменений неинформативных слагаемых в числителе функции преобразования (2) к максимальному значению слагаемого е_с. Максимальная результирующая аддитивная погрешность при этом равна:

$$\delta_{01} = \frac{\Delta e_{\tau} + \Delta I_{yT} R'_{Bbix} + I_{yT} \Delta R'_{Bbix} + \Delta e_{CMDy2}}{e_{CMDK} c}$$
(3)

Коэффициент преобразования АЦП на основе СКФ1

$$S_{\varepsilon 1} = \frac{dT}{d\varepsilon} = \frac{R_p}{R'_{BMX}} \cdot \frac{E}{U_{OT 1} + e_{CMDY1} + e_{CMDY2}} \cdot t_M$$
(4)

Учитывая, что $R'_{\text{вых}} \approx R_{\text{вых } d} \approx R_{\text{от}}/2$, а $U_{\text{оп1}} = E$ и его величина при билолярных ОУ, как минимум, на три порядка превышает $e_{\text{смоу}}$ и $e_{\text{смоу2}}$, можно записать:

$$S_{\varepsilon 1} = 2 \frac{R_{\rm p}}{R_{\rm or}} t_{\rm u}$$
 (5)

На основании формулы (5) относительная мультипликативная погрешность:

$$\delta_{S1} = \frac{\Delta R_p}{R_p} - \frac{\Delta R_{o\tau}}{R_{o\tau}}$$
(0)

Зависимость $S_{\epsilon 1}$ от R_o предъявляет повышенные требования к стабильности R_o датчика, что является недостатком АЦП с токовым входом. Второй его недостаток - несимметричность входной цепи, снижающая устойчивость АЦП к внешним помехам

В СКФ2 (рис.6), используется инструментальный усилитель на ОУ1:ОУ3, имеющий симметричный потенциальный вход и обеспечивающий диапазон входных напряжений интегратора, при котором можно пренебречь влиянием е_{см} ОУ интегратора

Функция преобразования АЦП на основе СКФ2:

$$T_{\epsilon 2} = \frac{e_c + e_\tau + I_{yT} R_{Bbix} + e_{cMDy1} + e_{cMDy2}}{U_{on2} + e_{cMDy1} + e_{cMDy2}} \cdot i_{\mu}$$
(7)

Приведенная к диапазону ес аддитивная погрешность:

$$\tilde{O}_{02} = \frac{\Delta e_{\tau} + \Delta I_{y\tau} R_{Bbix} + I_{y\tau} \Delta R_{Bbix} + \Delta e_{cMoy1} + \Delta e_{cMoy2}}{e_{cMak} c}$$
(8)

Рис.6

при одинаковой элементной базе имеет тот же порядок, что и у АЦП с токовым входом

Коэффициент преобразования АЦП на основе СКФ2.

$$S_{1,2} = \frac{E}{U_{on2} + e_{cMoy1} + e_{cMoy2}} \cdot t_{\mu}$$
(9)

не зависит от коэффициента усиления инструментального усилителя и сопротивления резистора на входе интегратора, однако, вследствие того, что U_{on2 =} e_{с макс}, в знаменателе формулы (9) нельзя пренебречь слагаемыми е_{смоу} и е_{смоу2} Относительная мультипликативная погрешность, вызываемая температурным дрейфом есмоу и есмоу2, в соответствии с выражением (9) определяется следующим образом:

$$\delta_{S2} = \frac{\Delta e_{cMDy1} + \Delta e_{cMDy2}}{U_{on2}}$$
(10)

Относительная мультипликативная погрешность, вызываемая изменением отношения U_{on2}/E , определяется разностью ТКС R_3 и $R_2' + R_2''$ (рис.4)

$$\bar{o}_{\text{SUon2/E}} = \frac{R_2' + R_2''}{R_2' + R_3'' + R_3} \cdot \left(\frac{\Delta R_3}{R_3} - \frac{\Delta R_2' + \Delta R_2''}{R_2' + R_2''}\right) \tag{11}$$

Изменение в начале второго такта напряжения на зыходе ОУЗ на 10÷20В требует учёта инерционности операционных усилителей ОУ1-ОУЗ

СКФЗ, приведённая на рис.7, отличается от СКФ1 тем, что она имеет потенциальный вход. Заряд интегратора в ней производится не через выходное сопротивление измерительной цепи, а через резистор заряда R_3 , входное напряжение на который подаётся через ключ с активной ком пенсацией остаточных параметров на ОУ2 [6]. Аналогичный ключ на ОУ1 используется во втором такте для подачи

напряжения на резистор разряда R_p. Эквивалентные параметры этих ключей (г_{кл.экв}, е_{кл.экв}) определяются так же [5], как параметры ключей входного коммутатора в СКФ1.

Функция преобразования АЦП с СКФЗ имеет вид:

$$T_{\epsilon 3} = \frac{R_p}{R_3} \cdot \frac{e_c + e_\tau + l_{yT} R_{Bbix} + e_{cMOy2} + e_{cMOy.UHT}}{U_{on1} + e_{cMOy1} + e_{cMOy.UHT}} \cdot t_u$$
(11)

Аддитивная погрешность определяется по формуле:

$$\delta_{03} = \frac{\Delta e_{\tau} + \Delta I_{y\tau} R'_{Bbix} + I_{y\tau} \Delta R'_{Bbix} + \Delta e_{CMDy2} + \Delta e_{CMDyUHT}}{e_{CMDK,C}}$$
(13)

Коэффициен преобразования:

$$S_{r3} = \frac{R_p}{R_s} \frac{E}{U_{on1} + e_{cMOY1} + e_{cMOYHT}} \cdot t_{\mu} \approx \frac{R_p}{R_s} \cdot t_{\mu}$$
(14)

На основании формулы (14) относительная мультипликативная погрешность:

$$\delta_{S3} = \frac{\Delta R_p}{R_p} - \frac{\Delta R_3}{R_3}$$
(15)

определяется разностью ТКС резисторов заряда и разряда.

Все рассмотренные СКФ содержат составляющую мультипликативной погрешности, обусловленную разностью ТКС сопротивлений, определяющих входные токи интегратора в первом и втором тактах преобразования (формулы (6), (11) и (15)) В СКФ2, кроме этого, мультипликативная погрешность определяется температурным дрейфом **е**_{с м} входных ОУ инструментального усилителя и соизмерима с аддитивной погрешностью, вызываемой этим дрейфом

В отношении аддитивной погрешности все рассмотренные схемы идентичны. При $e_{c, \text{макс}} = 40 \text{ мВ}$ и использовании биполярных ОУ общего применения (TK $e_{cM} \approx 10 \text{мкB/}^{\circ}\text{C}$) аддитивная погрешность, обусловленная температурным дрейфом e_{cM} одного ОУ. составляет величину 0,025%/ $^{\circ}$ C. Применение прецизионных ОУ (с TK $e_{cM} \leq 1 \text{мкB/}^{\circ}$ C) снижает эту погрешность на порядок и делает её соизмеримой с погрешностями, обусловленными температурными изменениями составляющих e_{T} , l_{yT} и R_{Bbix} На практике это означает, что максимальная результирующая аддитивная погрешность может составлять 0,01%/ $^{\circ}$ C. В пятнадцатиразрядном АЦП это соответствует трём единицам младшего разряда.

Аддитивная погрешность, не превышающая в рабочем диапазоне температур единицы младшего разряда, имеет место при применении периодической автокалибровки нуля. Особенность такой автокалибровки [7] заключается в том. что для исключения составляющих аддитивной погрешности, обусловленных изменением е_т, I_{ут} и R_{вых}, производится обнуление напряжения питания датчика E. При этом е_с=0 и вводимая при обработке поправка содержит все составляющие аддитивной погрешности. Схемотехнически обнуление напряжения Е может быть осуществлено, например, применением в СПД двуполярного компенсационного стабилизатора с коммутируемыми опорными напряжениями - при получении поправки на соответствующие входы СПД подаются нулевые опорные напряжения.

Из рассмотренных АЦП наиболее предпочтительным является АЦП на основе СКФЗ, который в отличие от АЦП на основе СКФ1 имеет потенциальный вход со всеми его достоинствами, а в отличие от АЦП на основе СКФ2 не требует автокалибровки коэффициента преобразования и начало второго такта преобразования в нём не сопровождается длительным переходным процессом усилителя.

ЛИТЕРАТУРА

1. Вилоп Л.Э. Аналого-цифровые преобразователи с токовым входом для тензорезисторных датчиков усилия. В кн.:Тез. докл. Всесоюзн. конф "Методы и средства измерения механических параметров в системах контроля и управления". -Пенза: ПДЭНТП: 1992. -С.110.

2 Прянишников В.А. Интегрирующие цифровые вольтметры постоянного тока. -Л.: Энергия, 1976. -224с

3. Способы и средства интегрирующего преобразования // ТС-5. Обзорная информация/ ЦНИИТЭИприборостроения. -М., 1982. -52с.

4. А.с.849486 СССР. МКИ Н03К 17/00. Коммутатор :Л.Э.Вилоп, О.П.Скобелев //Открытия, изобретения. -1981 -

5. Вилоп Л.Э. Коммутаторы с активной компенсацией остаточных параметров в преобразователях на основе методов тестовых переходных процессов // Автоматизация научных исследований. Сб.науч.тр. КуАИ -Куйбышев, 1987. -С.144-154

6. Патент 1264421 Великобритания, МКИ Н03К 17/02. Precision switching circut/ P.C.Michael (Великобритания). Заявлено 02.01.69; Опубл 23.02.72: -3c

7. Полунов Ю.Л., Гальченко В.Д. Цифровые измерительно-управляющие устройства тензометрических весов и дозаторов -М.: Энергоатомиздат, 1986. -152c

44