Эквивалентная схема такого датчика представлена на рисунке 1б. Так как внутренний цилиндр поделен на 3 равные части, то все емкости (C_5) межу внешним экраном и каждым из участков будут одинаковы. Также будут одинаковы взаимные емкости между участками (C_4) . Емкости C_1 , C_2 и C_3 будут завесить от расположения частицы внутри датчика.

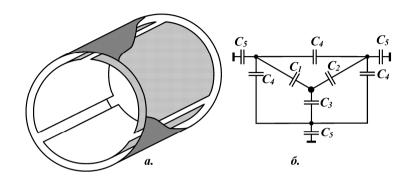


Рисунок 1 - Датчик определения координаты частицы

УДК 621.3843.62

МОДЕЛИРОВАНИЕ БЕСКОНТАКТНОЙ ЗАРЯДКИ МИКРОЧАСТИЦ В КАМЕРЕ ЭЛЕКТРОСТАТИЧЕСКОГО ИНЖЕКТОРА

А. С. Видманов

г. Самара, «Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)»

Для проведения экспериментов по изучению высокоскоростного удара широко используются электростатические и электродинамические ускорители [1]. В качестве ускоряемого элемента в таких ускорителях используют частицы с диаметрами 0,1-100 мкм. Микрочастицы, перед тем как попасть в тракт ускорителя, заряжаются в инжекторе. Известны различные виды инжекторов данного типа [1].

Для решение задачи определения заряда частицы на выходе инжектора, не обходимо рассмотреть процессы происходящие при подлете микрочастицы к иголке зарядного электрода инжектора.

При подлете микрочастицы к острию илы напряженность электростатического поля на поверхности частицы возрастает, что приводит к возникновению автоэлектронной эмиссии (холодная эмиссия) с поверхности, подлетающей частицы.

Плотность тока автоэлектронной эмиссии сильно зависит от напряженности электрического поля на поверхности частицы и описывается уравнением Фаулера-Нордгейма [2]:

$$i_{3} = \frac{1.54 \cdot 10^{-6}}{t^{2} \text{(y)}} E^{2} \Phi^{-1} \exp \left[\frac{6.83 \cdot 10^{9} \Phi^{1.8}}{E} \Theta \text{(y)} \right] \left(\frac{A}{M^{2}} \right)$$

где $\Theta(y)$ — функция Нордгейма; E — напряженность поля (B/M); Φ — работа выхода материала (эВ); $y=3,79\cdot10^{-5}E^{-0.5}\Phi^{-1}$; t(y)=1,041-1,095; $\Theta(y)=0,93-0,966\cdot y^2$.

С помощью программного пакета Matlab были рассчитаны значения напряженности на поверхности проводящей алюминиевой частицы в зависимости от расстояния до иглы и потенциала на частицы при условии, что на зарядный электрод подано напряжение 25 кВ.

Список использованных источников

- 1 Сёмкин, Н. Д., Пияков А. В., Погодин А. П. Эволюция и перспективы развития устройств для моделирования микрометеоритов в лабораторных условиях // Прикладная физика. 2008. №4. С. 153 -163.
- 2 Месяц Г.А., Проскуровский Д.И. Импульсный электрический разряд в вакууме. Новосибирск: Наука, 1984. 256с.

УДК 621.78: 621.311: 621.317.1: 629.7.05

МЕТОДЫ ЗАЩИТЫ БОРТОВОЙ АППАРАТУРЫ ОТ ПОМЕХ ЭЛЕКТРОСТАТИЧЕСКОГО РАЗРЯДА

А.В. Костин

г. Самара, «Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)»

Рассматривая результаты ранее проведённых экспериментов можно сформулировать научно-обоснованные рекомендации по конструкционным методам защите БА КА от ЭМП, вызванного ЭСР. Они приведены ниже в порядке убывания целесообразности их применения: