C BOCCTAROBASSISS DYHKHMM M EE HPOMBBOAHUX

В настоящей работе придлагается метод аппроксимации функции о ее менентным или интегральным характеристикам, в основу которого пломены принципы сформулированные в [1, 2].

Пусть на отрезко 😅 👝 , I] задана непрерывная, однозначная

рункция f(x) , Объекты вида

$$M_{o} = f(0), \quad M_{i} = f(0), \quad M_{o} = \int x^{n-2} f(x) dx, \quad n = 23, \quad (1)$$

условимся называть моментами n^{20} порядка, а ооъекты вида

$$y = f(0), \quad y = f(t), \dots, \quad y_n = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) dx, \quad dx$$
 (2)

интегральми n^{20} порядка. Функцию f(x) на интервале x [0, 1] заменям функцией

$$\widehat{f}(x) = \sum_{i=0}^{m} K_i x^i \tag{3}$$

приближающей 🕬 так, чтобы имел место минимум суммы

$$S = (M_0 - K_0)^2 + (M_1 - \sum_{i=0}^{\infty} K_j)^2 + \sum_{i=0}^{n} (M_i - \sum_{j=0}^{\infty} \frac{K_j}{j+i-1})$$

или минимум суммы

$$S = [Y_0 - K_0]^2 + \sum_{i=1}^{n} [Y_i - \sum_{j=0}^{n} \frac{j^{j} K_j}{(j+i-1)^j}]^2$$

Используя обычные методы [3], получим систему линейных уравнений относительно неизвестных коэффициентов K_i в виде

$$U_{oc} K_{o} + U_{ot} K_{t} + ... + Q_{om} K_{m} = Z_{0} ,$$

$$U_{10} K_{0} + Q_{11} K_{t} + ... + Q_{1m} K_{m} = Z_{1} ,$$

$$U_{mo} N_{o} + Q_{mo} N_{o} + ... + Q_{mm} K_{m} = Z_{m} ,$$

$$U_{mo} N_{o} + Q_{mo} N_{o} + ... + Q_{mm} K_{m} = Z_{m} ,$$

$$U_{mo} N_{o} + Q_{mo} N_{o} + ... + Q_{mm} K_{m} = Z_{m} ,$$

где

$$u_{i,k}$$
 $i + 2$, $i = 1/(i + i - i)$
 $v_{i,k}$ $v_{$

Обсудим возможные направления применения сформулированного метода.

- I. Восстановление функции. Под восстановлением функции понимается задача построения степенного полинома вида (3), заменяющего с минимально-допустимой погредностью заданную функцию. Рассмотрим три случая наиболее часто встречающиеся на практике.
- I.І. Замена аналитической функции приближающим полиномом. Если функция задана в аналитическом виде, допускающем вычисление моментных либо интегральных характеристик по выражениям (I), (2), то построение полинома сводится к решению системы (4) относительно K_{ℓ} .

В качестве примера рассмотрим замену функции Cos.7.7 на интервале (C,7) полиномом целой положительной степени. Моменты функции имеют следующие значения:

$$M_{s}=1, M_{s}=-1, M_{s}=\int Cos\pi x dx=0, M_{s} \int x Cosi x dx=-2,$$

$$M_{g}=\int x^{2}Cos\pi x dx \qquad , M_{s}=\int x^{2}Cos\pi x dx \qquad , M_{s}=\int x^{2}Cos\pi x dx \qquad .$$

$$M_{6}=\int x^{2}Cos\pi x dx-y \qquad , M_{s}=\int x^{2}Cos\pi x dx-y \qquad .$$

В результате решения системы (4) получен приближающий полином

$$f(x) = 1 \cdot 0.0066x - 4,8253x \cdot C,0325x^3 + 57732x^4 \ge 5039x^2$$
В работе [I] получен приближающий полином для
$$f(x) = 1 - 0.00034x - 4,930726x^2 + 0.01946x^3 + 2.53426x^4$$

$$+ 0.356048x^5 - 1.93.16x^6 + 0.55176x^4.$$

Значения, рассчитанные по выражениям (5, 6) и точные значения $y = cos \pi x$ приведены в таблице I. Можно сделать вывод, что оба полинома достаточно хорошо приближают заданную рузкцию.

1.2. Замена точной функции, заданной в дискретной форме, приближающим полиномом. Подобная задача возникает для рункции f(x) заданной таблично на некотором конечном множестве точек x_1 $f(x_0), f(x_1), \ldots, f(x_{n/2})$, когда требуется опредедить f(x) для промежуточных значений аргумента. Причем, желательно иметь результаты в виде простого аналитического выражения. Математическая формулировка задачи, предложенная выше, остается без изменения. Расчет интегральных или моментных характеристик в этих случаях

Pagrana I

X.	Cos Ix	πο ψο	і по формуле
0	0,00000	1,00 000	
U,I	0,951056	0,951011	,951056
0,2	0,809017	0,8000	0,809015
0,3	0,587785	0,587829	0,587785
0,4	0,309017	0,30900:	4,309016
0,5	0	0,00 010	
0,6	-0,309017	-0,308984	-0,309016
- 0,7	-0,587785	-0,58	-0,587785
0,8	-0,809017	-0,80)1	-0,809017
U,9	-0,951056	-0,97102.	-0,951056
I,0	-1,000000	-I,0000.0	-I,000000

$$f_{1}x = 1 - 0,0012x - 4.8927x - 0,4212x^{3} + 5,5282x^{4} - 22132x^{3}$$
 (7)

u обеспечивает необходимую точность. В таблице 2 приведены знычения u = log RX, рассчитанные по (7).

Подобная задача решалась и для функции $y=2x^3e^{-x}$. В таблице 3 приведены точные значения этой функции и приближенные, расчитанные по полиному

$$\int_{0}^{\pi} (x) = -0.9544x + 18.8651x^{2} - 3.9618x^{3} - 44.2295x^{4} + 39.8870x^{5} - 0.8594x^{6} - 6.4030x^{7}.$$

Совпадение следует признать вполне- удовлетворьтельным.

1.3. Замена табличной функции, содержащей случайные возмущения приближающим полиномом.

Во многих задачах, связанных с обработкой результатов наблюдений. табличные значения функции содержат некоторую погрешность. Наибольшее распространение для восстановления функции получил метод наименьших квадратов. В связи с тем, что метод постьоен на минимизации среднеквадратичной ошибки в точках задания рункции, поведение аппроксимирующего полинома на интервале между точками остается бесконтрольным. Это приводит к тому, что с повышением степени полинома возникают ложные колебания между узлами задания рункции. хотя аппроксимация возможна с меньшей среднеквыдратичной ошиокой. Естественно, что полученные полиномы непригодны для целей интерполяции и дальнейшего анализа структуры рассматриваемого физического явления. Численные эксперименты, проведенные по предлагаемому методу показали, что он свободен от перечисленных недостатков. в табл. 2, 3 приведены функции $y = Cos \pi x$ и $y = 2x^3 e^{-x}$ ные по значениям, содержащим случайную относительную погрешность в I и 5%. Аппроксимирующие полиномы имеют вид

$$-(x) = 1,0000 + 0,025x - 5,0824x^{2} + 0,0727x^{3} + 4,7939x^{4} - -1,5561x^{5} - 0,2533x^{6}$$
(8)

для функции $y = \cos \pi x$ с уровнем возмущения в 1%,

$$\hat{f}(x) = 1,0000 - 0,02/7x - 4,9528x^2 - 02129x^3 + 4,9581x^4 - 1,1595x^5 - 0,6111x^6$$
(9)

для той же функции с уровнем возмущения в 5%,

$$\widetilde{f}(x) = -0.9571x + 19.0331x^2 - 38345x^3 - 46.8883x^4 +
+ 43.8746x^5 - 1.7913x^6 - 7.0925x^2$$
(10)

для функции $y = 2x^3e^{x}$ с уровнем возмущения в 1%,

$$\hat{f}(x) = -0.6283x + 18.1859x^2 - 12.5902x^3 - 8.9346x^4 + (II)$$

$$+1.0498x^5 - 12.9301x^6 + 30.5976x^2 - 2.5323x^4 - 9.8737x^9$$

для той же функции с уровнем возмущения 5%.

Таблица 2

×	Costia	по формуле (I2)	по формуле (14)	по формуле (15)
0,00	1,0000	1,0000	1,0000	1,0000
0,05	0,9877	-	0,9886	0,9848
0,10	0,9511	0,9511	0,9522	0,947I
0,15	0,8910	, -	0,8920	0,8867
0,20	0,8090	0,8088	0,8095	0,8051
0,25	0,707I	-	0,7069	0,703I
0,30	0,5878	0,5873	0,5870	0,5836
0,35	0,4540	-	0,4527	0,4484
0,40	0,3090	0,3086	0,3083	0,3020
0,45	0,1564	* 440	0,1545	- 0,1464
0,50	0,0000	0,0000	-0,0019	-0,0I20
0,55	-0,1564	-	-0,1581	-0,1716
0,60	-0,3090	-0,3087	-0,3104	-0,3245
0,65	-0,4540	-	-0,4549	-0,4703
0,70	-0,5878	-O _# 5874	-0,588I	-0,5998
0,75	-0,707I	-	-0,7068	-0,7161
0,80	-0,8090	· -0,8088	-0,808I	-0,8083
0,85	-0,8910	-	-0,8895	-0, 8856
0,90	-0,9511	-0,9510	-0,9493	-0,936I
0,95	-0,9877	-	-0,9862	-0,9783
1,00	-1,0000	-1,0000	-I,0000	-I,0000
-				

Таблица 3

Costa	по форму-	по формуле	по формуле
0	0	0	0
0,0131	0,0013	0,0010	0,0124
0,0858	0,0852	0,0865	0,1055
0,2371	0,2485	0,2513	0,2679
0,4601	0,4739	0,4780	0,4866
0,7358	0,744I	0,7492	0,7476
I,0409	I,04II	1,0463	I,0354
1,3533	1,3471	1,3511	I,334I
I,6539	I,6452	, I,6470	I,6276
1,9280	1,9209	1,9196	1,9009
2,1654	2,1625	2,1576	2,1408
2,3597	2,3615	2,3532	2,3375
2,5082	2,5132	2,5023	2,4854
2,6109	2,6162	2,6044	2,584I
2,6698	2,6728	2,6623	2,6383
2,6885	2,6876	2,6810	2,6571
2,6714	2,6674	2,6666	2,6517
2,6234	2,6190	2,6252	2,6305
2,5496	2,5482	2,5599	2,5925
2,4551	2,4577	2,4693	2,5161
2,3440	2,3440	2,3440	2,3440

2. восстановление производных

Важнейним своистьюм полиномов, которые строятся по описанному методу, является способность приолижаться к заданной функции на всем интервале с повышением порядка полинома. Это дает возможность проведения над ними операции дифференцирования в аналитическом виде. На рис. I, 2 показано сопоставление точных значений производных от. тункций y = Losiax и $y = 2x^3e^{-x}$ со значениями рассчитанными по полиномам, являющимся первыми производными (8-II). Обращает на себя внимание тот факт, что даже для уровня возмущений в 5% значения производной и характер ее изменения достаточно удовлетнорительны. В настоящее время наиболее эффективным средством решения задач такого родасчитаются методы, основанные на регуляризирующих функционалах А.Н. Тихонова. На рис. I, 2 представлены результаты восстановления производных по одному из этих методов [4]. Сравнение результатов подтверждает эффективность предлагаемого подхода.

Литература

- І. Власов В.Г. Собрание трудов. Том 5. Судпромгиз, 1959.
- 2. "Методы и средства технической кибернетики". Сборник статей. Выпуск IO, Fura, 1970.
 - 3. Линник Ю.В. Метод наименьних квадратов. 1962.
- 4. Веденеев E.R., Аидков Н.П. Применение метода регуляризации к дифференцированию функции одного переменного, заданнои таблично. В сборнике "Вычислительные методы и программирование", вып. 13. ИздательствомГУ, 1969.

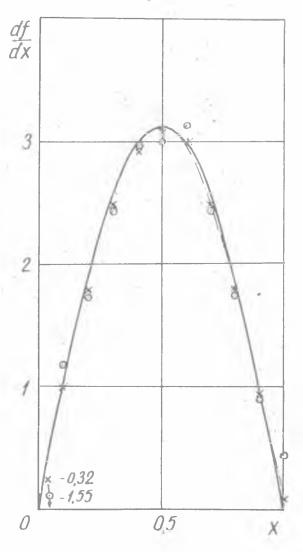


Рис. І.

точное решение и при возмущении 1%;

по предлагаемому методу при возмущении 5%;

х по методу работы [4] при возмущении 1%;

о при возмущении 5%.

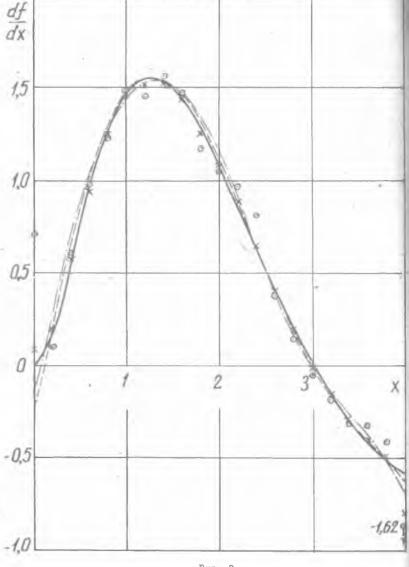


Рис. 2.

точное решение;
по предлагаемому методу при возмущении 14;
при возмущении 54.

при возмущении 5%; по методу работы (три возмущении 1% при возмущении 1%