РАСПРЕДЕЛЕНИЕ ДЛИНЫ ОТРЕЗКОВ АППРОКСИМАЦИИ

При решении многих задач, связанных с исследованием систем сжатия информации, необходимо знать функции распределения вероятности длины отрезков аппроксимации [1]. Обычно для этих целей используются распределения, полученные экспериментальным путем. Однако вследствие большой трудоемкости такой способ часто оказывается неприемлемым. В данной статье предлагается аналитический способ нахождения функций распределения для случая кусочно-линейной аппроксимации сигналов.

Задачу будем решать при исходных предположениях, что сигнал s(t) на отрезке аппроксимации представляет реализацию стационарного гауссовского процесса с известной корреляционной функцией и является дважды дифференцируемой функцией.

Из вычислительной математики известно, что погрешность линейной интерполяции $\varepsilon(t)$ функции s(t) на интервале [0,T] может быть представлена следующим образом [2]:

$$\varepsilon(t) = \frac{s''}{2}(tT - t^2),$$

где s'' — значение второй производной сигнала $s(\tau)$ в некоторой точке τ , принадлежащей интервалу [0,T]. Наибольшего значения ε_m функция $\varepsilon(t)$ достигает в точке $t_1 = \alpha T$, $\alpha \varepsilon(0,1)$. Величина α является случайной с плотностью $W(\alpha)$. Поскольку при дискретизации максимальная ошибка фиксирована, то, положив $\varepsilon(t_1) = \varepsilon_m$, можно определить длину отрезка интерполяции

$$T = \sqrt{\frac{2\varepsilon_m}{\mid s'' \mid (\alpha - \alpha^2)}}.$$

Таким образом T является функцией двух случайных величин s'' и α . Для нахождения функций распределения $\Phi(T)$ и w(T) необходимо знать двумерную плотность распределения w_2 (s'',α). Считая s'' и α независимыми случайными величинами, их совместную плотность определим как произведение одномерных

$$w_2(s'', \alpha) = w(|s''|) \cdot w(\alpha).$$

Пр этом интегральная функция распределения длины отрезков может быть найдена из выражения [3]

$$\Phi_{(T)} = \iint w(|s''|) \cdot w(\alpha) ds'' d(\alpha). \tag{1}$$

7—5431

$$T > \sqrt{\frac{2s_m}{|s''| (\alpha - \alpha^2)}}.$$

Известно, что вторая производная гауссовского процесса также является гауссовским процессом, т. е. плотность распределения ее модуля w(|s''|) будет равна

$$w(|s''|) = \sqrt{\frac{2}{\pi\sigma_2^2}} exp\left[-\frac{1}{2}\left(\frac{s''}{\sigma_2}\right)^2\right], \qquad (2)$$

где σ_2^2 — дисперсия второй производной процесса, s(t), которая определяется по его корреляционной функции. Отыскание распределения $w(\alpha)$ представляет сложную задачу. Однако на окончательный результат вид распределения $w(\alpha)$ влияет незначительно. Поэтому в первом приближении можно принять плотность вероятности $w(\alpha)$ пропорциональной среднеквадратичному значению ошибки интерполяции ε в функции от α

$$\varepsilon(\alpha) = S(\alpha) - S(0)(1 - \alpha) - S(1)\alpha.$$

Основываясь на этом предположении и найдя дисперсию ошибки $\sigma_{\epsilon}(\alpha)$, получим выражение для $w(\alpha)$:

$$w(\alpha) = 6\alpha(1-\alpha), \ \alpha \in [0, 1]. \tag{3}$$

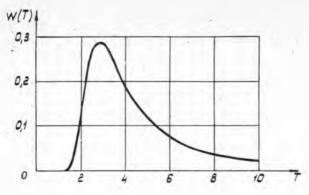
Подставив (2) и (3) в (1), получим

$$\Phi_{(T)} = \int \int \sqrt{\frac{2}{\pi}} \frac{1}{\sigma_2} exp\left[-\frac{1}{2} \left(\frac{s''}{\sigma_2}\right)^2\right] 6 (\alpha - \alpha^2) ds'' d\alpha = T > \sqrt{\frac{2s_m}{|s''| (\alpha - \alpha^2)}}$$

$$= \int_{\frac{8\varepsilon_{m}}{T^{2}}}^{\infty} \sqrt{\frac{2}{\pi}} \frac{1}{\sigma_{2}} exp\left[-\frac{1}{2} \left(\frac{s''}{\sigma_{2}}\right)^{2}\right] \int_{\frac{1}{2} - \sqrt{\frac{1}{4} - \frac{2\varepsilon_{m}}{|s''| T^{2}}}}^{\frac{1}{4} - \frac{2\varepsilon_{m}}{|s''| T^{2}}} 6(\alpha - \alpha^{2}) ds'' d\alpha = \int_{\frac{8\varepsilon_{m}}{T^{2}}}^{\infty} \frac{1}{\sqrt{2\pi} \sigma_{2}} exp\left[-\frac{1}{2} \left(\frac{s''}{\sigma_{2}}\right)^{2}\right] \sqrt{1 - \frac{8\varepsilon_{m}}{|s''| T^{2}}} \left(2 + \frac{8\varepsilon_{m}}{|s''| T^{2}}\right) ds''.$$
 (4)

Дифференцируя (4) по параметру T, найдем выражение для плотности $w\left(T\right)$

$$w(T) = \int_{\frac{8\varepsilon_m}{T^2}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_2} exp\left[-\frac{1}{2}\left(\frac{s''}{\sigma_2}\right)^2\right] \frac{192\varepsilon_m^2}{T^5(s'')^2 \sqrt{1-\frac{8\varepsilon_m}{|s''|T^2}}} ds''.$$



P и с. 1. График функции w(T) для отношения $\frac{z_m}{\sigma_z} = 1$

Введем обозначение

$$1-\frac{8s_m}{\mid s''\mid T^2}=p^2.$$

Тогда после преобразований будем иметь

$$w(T) = \frac{1}{\sqrt{2\pi}} \cdot \frac{48\varepsilon_m}{\sigma_2 T^3} \int_0^1 \exp\left\{-\frac{1}{2} \left[\frac{8\varepsilon_m}{T^2 \delta_2 (1-p^2)}\right]^2\right\} dp.$$

К сожалению, интегралы (4) и (5) не выражаются через элементарные функции, и решение их возможно лишь численными методами. Однако это не затрудняет практического использования полученных распределений, поскольку $\Phi(T)$ и w(T) параметрически зависят только от отношения $\frac{\varepsilon_m}{\sigma_2}$. Поэтому, используя таблицу значений функций или их графики, построенные для какой-то величины отношения $\frac{\varepsilon_m}{\sigma_2}$, легко построить нужное распределение для другого отношения $\frac{\varepsilon_m}{\sigma_2}$. В табл. 1. приведены значения функции $\Phi(T)$ [а на рис. 1 график функции w(T)], полученные для отношения $\frac{\varepsilon_m}{\sigma_2}$ =1. Для нахождения по таблице или по графику новых функций распределения вероятности необходимо воспользоваться следующими соотношениями:

$$\Phi_{1}(T) = \Phi\left(T \ \sqrt{\frac{\sigma_{2}}{\varepsilon_{m}}}\right),$$

$$w_{1}(T) = \sqrt{\frac{\sigma_{2}}{\varepsilon_{m}}} \ w\left(T \ \sqrt{\frac{\sigma_{2}}{\varepsilon_{m}}}\right).$$

T	$\Phi(T)$	Т	$\Phi(T)$	Т	$\Phi(T)$	Т	$\Phi(T)$	Т	$ \Phi(T) $	Т	$\Phi(T)$
1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4	0,0001 0,0006 0,0021 0,0056 0,0120 0,0218 0,0353 0,0525 0,0730 0,0962	2,5 2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4	0,1215 0,1483 0,1761 0,2044 0,2328 0,2610 0,2887 0,3157 0,3420 0,3673	3,5 3,6 3,7 3,8 3,9 4,0 4,1 4,2 4,3 4,4	0,3918 0,4153 0,4377 0,4592 0,4797 0,4992 0,5178 0,5356 0,5525 0,5685	4,6 4,7 4,8 4,9 5,0 5,1 5,2 5,3	0,5583 0,5983 0,6122 0,6254 0,6778 0,6498 0,6612 0,6719 0,6823 0,6922	5,6 5,7 5,8 5,9 6,0 6,1 6,2 6,3	0,7015 0,7106 0,7191 0,7273 0,7350 0,7426 0,7497 0,7566 0,7630 0,7690	7,0 7,5 8,0 9,0 10 20	0,7753 0,8018 0,8236 0,8414 0,8689 0,8900 0,9512 0,9750 0,9870 0,9992

В заключение приведем выражение для интегральной функции распределения Эрланга, аппроксимирующей интеграл (4) с абсолютной погрешностью, не превышающей 0,05

$$\Phi'(T) = 1 - \sum_{k=0}^{3} \frac{(0.842T)^k}{k!} exp(-0.842T),$$

а также соответствующую этой функции плотность вероятности w'(T)

$$w'(T) = 0.0839T^3 exp(-0.842T).$$

ЛИТЕРАТУРА

1. Виттих В. А., Гинзбург А. Н. Оценка помехоустойчивости адаптивных дискретизаторов измерительных сигналов. «Автометрия», № 4, 1967.

2. Демидович В. П., Марон И. А. Основы вычислительной математики. М., Изд. «Наука», 1970.

3. Корн Г., Корн Т. Справочник по математике. М., Изд. «Наука», 1968.

В. А. ВИТТИХ, В. А. СОЙФЕР

ДОСТОВЕРНОСТЬ ФИКСАЦИИ ВРЕМЕННЫХ МЕТОК ПРИ КУСОЧНО-ЛИНЕЙНОЙ АППРОКСИМАЦИИ СИГНАЛОВ

Кусочно-линейная аппроксимация сигналов находит широкое применение в технике измерений; ее основное достоинство заключается в том, что она позволяет весьма экономно описывать сигналы, часто встречающиеся в практике.